Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsuedu.ru/handle/123456789/65961
Title: From STM to GPT: a comparative study of topic modeling methods for AI in dentistry
Authors: Litvinova, T. A.
Ippolitov, Y. A.
Seredin, P. V.
Keywords: linguistics
computational linguistics
topic modeling
large language models
dentistry
scientometric analysis
bibliometric methods
artificial intelligence
Issue Date: 2025
Citation: Litvinova, T.A. From STM to GPT: a comparative study of topic modeling methods for AI in dentistry / T.A. Litvinova, Y.A. Ippolitov, P.V. Seredin // Научный результат. Сер. Вопросы теоретической и прикладной лингвистики. - 2025. - Т.11, №3.-С. 85-121. - Doi: 10.18413/2313-8912-2025-11-3-0-5. - Библиогр.: с. 116-120.
Abstract: This study presents a comprehensive topic modeling analysis of scientific abstracts in the field of artificial intelligence (AI) applied to dentistry. Three complementary approaches were compared: Structural Topic Modeling (STM); embedding-based clustering using the Leiden algorithm on OpenAI text embeddings; and zero-shot GPT-based topic modeling
URI: http://dspace.bsuedu.ru/handle/123456789/65961
Appears in Collections:Т. 11, № 3

Files in This Item:
File Description SizeFormat 
Litvinova_From_STM_25.pdf2.26 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.