Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsuedu.ru/handle/123456789/65961
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLitvinova, T. A.-
dc.contributor.authorIppolitov, Y. A.-
dc.contributor.authorSeredin, P. V.-
dc.date.accessioned2025-12-04T09:41:23Z-
dc.date.available2025-12-04T09:41:23Z-
dc.date.issued2025-
dc.identifier.citationLitvinova, T.A. From STM to GPT: a comparative study of topic modeling methods for AI in dentistry / T.A. Litvinova, Y.A. Ippolitov, P.V. Seredin // Научный результат. Сер. Вопросы теоретической и прикладной лингвистики. - 2025. - Т.11, №3.-С. 85-121. - Doi: 10.18413/2313-8912-2025-11-3-0-5. - Библиогр.: с. 116-120.ru
dc.identifier.urihttp://dspace.bsuedu.ru/handle/123456789/65961-
dc.description.abstractThis study presents a comprehensive topic modeling analysis of scientific abstracts in the field of artificial intelligence (AI) applied to dentistry. Three complementary approaches were compared: Structural Topic Modeling (STM); embedding-based clustering using the Leiden algorithm on OpenAI text embeddings; and zero-shot GPT-based topic modelingru
dc.language.isoenru
dc.subjectlinguisticsru
dc.subjectcomputational linguisticsru
dc.subjecttopic modelingru
dc.subjectlarge language modelsru
dc.subjectdentistryru
dc.subjectscientometric analysisru
dc.subjectbibliometric methodsru
dc.subjectartificial intelligenceru
dc.titleFrom STM to GPT: a comparative study of topic modeling methods for AI in dentistryru
dc.typeArticleru
Appears in Collections:Т. 11, № 3

Files in This Item:
File Description SizeFormat 
Litvinova_From_STM_25.pdf2.26 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.