Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/64204
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKlimenko, D.-
dc.contributor.authorStepanov, N.-
dc.contributor.authorRyltsev, R.-
dc.contributor.authorYurchenko, N.-
dc.contributor.authorZherebtsov, S.-
dc.date.accessioned2024-12-23T08:16:33Z-
dc.date.available2024-12-23T08:16:33Z-
dc.date.issued2024-
dc.identifier.citationMachine learning assisted design of new ductile high-entropy alloys: Application to Al-Cr-Nb-Ti-V-Zr system / D. Klimenko, N. Stepanov, R. Ryltsev [et al.] // Intermetallics. - 2024. - Vol.175.-Art. 108469. - URL: https://www.sciencedirect.com/science/article/pii/S0966979524002887.ru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/64204-
dc.description.abstractThe search for new high-entropy alloys (HEAs) with desired properties is an urgent problem that is hardly solvable experimentally due to the extremely large number of possible alloy compositions. Here we address developing data-driven machine learning models (DDML) to predict the ductility of HEAsru
dc.language.isoenru
dc.subjecttechniqueru
dc.subjectmetal scienceru
dc.subjecthigh-entropy alloysru
dc.subjectmachine learningru
dc.subjectdataru
dc.subjectplasticityru
dc.subjectphenomenological modelsru
dc.subjectstrengthru
dc.titleMachine learning assisted design of new ductile high-entropy alloys: Application to Al-Cr-Nb-Ti-V-Zr systemru
dc.typeArticleru
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Klimenko_Machine_24.pdf490.22 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.