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A B S T R A C T

The search for new high-entropy alloys (HEAs) with desired properties is an urgent problem that is hardly 
solvable experimentally due to the extremely large number of possible alloy compositions. Thus, methods for 
theoretical prediction of HEA’s properties play a key role. Currently, effective predictive models are based on 
machine learning methods and modern data analysis algorithms. Here we address developing data-driven ma-
chine learning models (DDML) to predict the ductility of HEAs. We have built several DDMLs and found that the 
best approach is based on the Support Vector Classifier, which significantly outperforms phenomenological 
models (balanced accuracy of 0.784 and F-score of 0.824). By combining this model with a previously developed 
yield strength prediction model, we have predicted and fabricated novel HEAs of the Al-Cr-Nb-Ti-V-Zr system 
with good mechanical properties. An obtained Al1Cr9Nb35Ti5V40Zr10 alloy demonstrates a combination of high 
strength at room and elevated temperature, combined with good ductility at room temperature.

1. Introduction

In the thousands of years, alloys were produced by addition of 
property-enhancing minor elements into one or two principal elements. 
Examples of as-fabricated materials are the most widely used alloys, 
such as steel, bronzes, aluminum alloys, titanium alloys, TiAl interme-
tallic alloys, etc. Traditionally, it was believed that an increase in the 
proportion of the minor elements would lead to the formation of many 
intermetallic phases, some of which could lead to a deterioration in the 
mechanical and functional properties of alloys.

However, Yeh et al. [1] and Cantor et al. [2] in 2004 showed that 
alloys with five or more elements in equatomic concentration can have a 
single-phase random solid solution. It was proposed that an increase in 
the contribution of configurational entropy for such alloys leads to sta-
bilization of the single-phase solid solution, therefore such alloys were 
called high-entropy alloys (HEAs). Further research has shown that this 
contribution is not so significant [3–5], so these alloys are also named as 
multicomponent alloys, multi-principal-element alloys, 
compositionally-complex alloys, or complex concentrated alloys [6]. 
This new paradigm for fabricating alloys concentrated in the central 

unknown space of chemical composition diagrams, rather than at the 
corners of this space, provides the presence of an enormous number of 
new alloys. Numerous papers devoted to HEAs (including reviews [3,
7–11]) reveal great interest to their discover in the scientific community.

Many HEAs were found to be attractive due to their high strength 
(including high-temperature strength), structural stability, hardness, 
wear resistance, as well as good corrosion and oxidation resistance [1,
12–17]. All that allows considering HEAs as promising materials for 
various fields. A relevant example is HEAs based on refractory metals 
(RHEA), which are promising candidates for high-temperature appli-
cations. Among RHEAs, the NbMoTaW and VNbMoTaW alloys reveal 
superb strength at 1600 ◦C. However, the high density (ρ > 12 g/cm3) of 
these alloys significantly limits their usability [18,19]. The use of lighter 
refractory elements makes it possible to reduce the density of the alloys 
(as well as the range of operating temperatures). For example, the 
HfNbTaTiZr alloy (ρ ~ 9.9 g/cm3) shows the yield strength of σy = 92 
MPa at 1200 ◦C [20]. The introduction of chromium into the 
CrMo0.5NbTa0.5TiZr alloy reduces density down to ρ ~8.2 g/cm3 keep-
ing the high yield strength at 1200 ◦C (σy = 171 MPa) [21]. Due to 
presence of aluminum, the AlMo0.5NbTaTiZr alloy has low density (ρ ~ 
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7.4 g/cm3) with high yield strength σy = 250 MPa at 1200 ◦C [22]. The 
decrease in fraction of heavy refractory metals can further reduce the 
density of the alloys, but at the same time decreases potential operating 
temperatures. However, alloys of the (Al)-Cr-Nb-Ti-V-Zr system with a 
specific yield strength at temperatures of 800–1000 ◦C superior to 
modern nickel alloys were already developed [23,24].

However, in an effort to improve strength characteristics, we often 
obtain alloys with low ductility (especially at room temperature). This is 
especially true for RHEAs, since their main phase is usually the BCC 
phase, which has less plasticity compared to FCC. For example, among 
the above-mentioned RHEAs, most have deformation before failure of 
less than 5 %. The actual practical use of such alloys as structural ma-
terials is difficult because limited plasticity complicates their deforma-
tion and mechanical processing.

A large number of principal elements opens a huge potential for the 
material design. On the other hand, the traditional trial-and-error 
method to search for new alloys is too labor-intensive and unpromis-
ing for the vast composition space of HEAs. Thus, methods for theoret-
ical prediction of structure and properties of HEAs play a key role.

The most straightforward methods for theoretical investigation of 
metallic alloys are based on atomistic simulations, where one calculates 
properties by averaging over microscopic trajectories. The central object 
of such simulations is the potential energy surface (PES) whose de-
rivatives are interatomic forces. The estimation of PES in HEAs is an 
extremely complicated problem. Indeed, with an increase in the number 
of principal elements, the number of pairs of interactions of different 
atomic types increases significantly. Besides the interactions of a higher 
order is hardly possible due to the exponential growth of the possible 
interactions. This leads to the fact that simple model functions widely 
used in atomic simulations for approximating PES (for example, the 
embedded atom method (EAM)) often provide low accuracy for HEAs. 
Moreover, parametrization of such potentials for multicomponent alloys 
requires extensive training databases and robust, efficient, and, prefer-
ably, fully automated fitting strategies, whose implementation is usually 
far from straightforward [25–27]. Nevertheless, such approaches can be 
used to predict the plasticity of HEAs. Daramola et al. [28] constructed 
the EAM potential for the CrFeMnNi system and calculated some char-
acteristics of the equiatomic alloy CrFeMnNi - the stability of the FCC 
phase, elastic constants, and stacking fault energy. Based on this data the 
dynamics a ½〈110〉{111} edge dislocation in the equiatomic CrFeMnNi 
alloy in the temperature range 0–900 K were simulated by molecular 
dynamics. Such approaches can demonstrate good accuracy, but require 
significant computational effort for each individual alloy and are poorly 
suited for screening vast compositional spaces.

In the case of first-principles simulations, the PES is calculated 
directly by solving the Schrödinger equation for electrons (foremost 
using density functional theory (DFT) approximations). Such ab initio 
methods provide high accuracy and predictive ability but have a high 
computational cost. First-principles simulations of HEAs consisting of 
more than 5 principal elements and non-stoichiometric compositions 
require the use of large model supercells (up to more than 1000 atoms) 
to cover such effects as various degrees of randomness and order dis-
tribution of these elements [29–32], extended dislocation core struc-
tures [33,34], etc. That makes ab initio simulations of HEAs extremely 
computationally expensive [35]. However, ab initio methods can also be 
used to predict the plasticity of RHEAs. Gao et al. [36] used three 
different ab initio methods to predict NbMoTaTiV plasticity at room 
temperature. Good agreement with experimental data was obtained, but 
such approaches are also poorly suited for screening large compositional 
spaces.

Analytical empirical models allow calculating some properties of 
HEAs with high accuracy, but they usually have a limited scope of 
applicability or require either specific data or tunable parameters. A 
typical example is the solid solution strengthening model for calculating 
the yield strength. A few such models adopted for HEAs show good 
agreement with theoretical and experimental data, but they are 

applicable for only single-phase alloys [37–40]. An example of using this 
approach to predict plasticity is the crystal plasticity with finite element 
method (CPFEM). CPFEM are based on the constitutive model of single 
crystal. In early studies, experimental data are used to back-fit the 
constitutive model of single crystal [41]. While microscopic material 
coefficients in physical mechanism are combined to solve the constitu-
tive model in order to connect more closely macroscopic performance 
and microscopic mechanism [42–46]. As with previous approaches, 
such models are characterized by high computational complexity, 
resource consumption and time consumption.

Phenomenological rules based on experimental data are another 
possible way for predicting different characteristics of HEAs, such as 
single-phase or multiphase composition [47–54], the presence of certain 
phase [55–58] or plasticity[59–61]. The general problems of this 
approach are low-accuracy, unbalanced score and thus limited appli-
cability [62,63]. The phenomenological rules of ductility based on 
Pettifor and Pugh criteria (G/B) [64], Valence Electron Concentration 
(VEC) criterion [65] or Rice and Thomson criterion Gb/γ [9] can be used 
to predict plasticity. However, such models are designed for 
single-phase alloys and also have low accuracy [62].

The last decade has been marked by the revolutionary development 
of artificial intelligence and machine learning (ML) [66]. This revolution 
has not only fundamentally changed several domains of computer sci-
ence (such as computer vision and natural language processing) but has 
also significantly affected culture, technology, and science (including 
materials science). ML models are generally flexible and complicated 
functions that can be parametrized (trained) on experimental and/or 
computation data to solve successfully different problems, such as 
classification and regression. Thus, ML is a promising tool to address the 
aforementioned challenges in the theoretical modeling of HEAs. For 
example, the use of ML models like neural networks as effective re-
gressors for PES makes it possible to achieve nearly ab initio accuracy in 
atomistic simulations of HEAs with orders of magnitude less computa-
tional costs [67]. This allows researchers to perform accurate 
first-principles simulations of materials with more than millions of 
atoms [68]. However, the use of machine learning potentials for 
exploratory research of the properties of structural materials is hardly 
possible. Indeed, direct atomistic simulations of such properties as yield 
strength for dozens of alloys are so computationally expensive that they 
become almost unrealizable. However, for exampleб сombining CPFEM 
with artificial neural networks [69] this reduces the cost of resources 
and time, although such models are still limited in their suitability for 
screening large compositional spaces.

Fortunately, there is another way, called data mining or data-driven 
approach, which involves making predictions by summarizing the 
available literature data and searching for hidden relations in these data 
using machine learning algorithms. A large amount of various data 
about HEAs collected from experiments or computations allow per-
forming ML-based predictions of their properties [70,71]. For example, 
data-driven ML models for predicting the phase composition of HEAs are 
widely used. The models are distinguished by their accuracy and range 
of predicted phase composition, from classifying alloys into single-phase 
and multiphase [72–76] to predicting the composition of a whole range 
of phases [77–81], including a different type of intermetallic phases 
[82]. Also, data-driven ML models allow predicting mechanical prop-
erties such as elastic moduli, microhardness, and yield strength at both 
room and elevated temperatures [83–86]. Nevertheless, using the 
example of Mg alloys, the possibility of predicting plasticity using such 
models was shown [87]. However, little attention has been paid to 
predict the ductility of RHEAs using data-driven ML [88].

Such models allow achieving high accuracy, low computational 
complexity and high calculation speed. That is, they are best suited for 
screening large compositional spaces, which is extremely important for 
searching new RHEAs. In this work, we used the DDML model combined 
with an elastic net to select training features to predict the plasticity of 
RHEAs at room temperature. The model was used to produce new 
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ductile alloys for the Al-Cr-Nb-Ti-V-Zr system.

2. materials and methods

2.1. Data collection and feature selection

A dataset for this article was constructed on the basis of experimental 
data reported in peer-reviewed research articles. The dataset was mainly 
formed using compressed fracture strain because its values are more 
widely presented in the literature. If data on elongation at break were 
available from several sources, the average value was included in the 
dataset. The alloys in the dataset were classified as “ductile” and “non- 
ductile” with a threshold value of 10 %. The dataset was supplemented 

by tensile fracture strain for alloys with superb (elongation to fracture 
>50 %) and poor (elongation to fracture <5 %) plasticity. These alloys 
have been classified as “ductile” and “non-ductile”, respectively. In 
summary, the dataset included 221 entries, of which 57 were “non- 
ductile” and 164 were “ductile”.

A crucial step in developing a ML model is the choice of input fea-
tures (descriptors) that determine the value of predicting properties or 
belonging to a certain class. Different approaches can be used to select 
training features. One of the most widely used and effective approaches 
for feature selection is based on the correlation value between a feature 
and a target parameter [89]. The effective set of features can also be 
found by iterating over an array of possible sets of features using evo-
lution algorithms [76]. A possible option is to select the set of features 
that are associated with the target parameter within existing models or 
hypotheses [90]. In our work, the elastic net, which is the linear mixture 
of ridge (L2 norm) and LASSO (L1 norm) regularization terms, was used 
for feature selection with L1 ratio of 0.5. The coefficients of elastic net 
regression represent the linear relationship between the features and the 
target variable, adjusted by the regularization terms. The greater the 
absolute value of the coefficient, the stronger the effect of the corre-
sponding feature on the target variable. The sign of the coefficient in-
dicates the direction of the effect: positive for positive correlation, 
negative for negative correlation. The coefficients that are zero indicate 
that the corresponding features are not relevant for the model, and they 
are eliminated by the LASSO penalty. Therefore, one can use the co-
efficients of elastic net regression to rank the features by their impor-
tance and select the ones that have non-zero coefficients.

In the first step, for each entry in the dataset, 69 descriptors were 
calculated [76]. Most of them were molar average values X and 
mismatch values δX of different physicochemical characteristics. 
(Table 1). Descriptors were normalized via Eq.(1) to make their values 
comparable: 

Xnorm
i =

Xi − Xmin
i

Xmax
i − Xmin

i
(1) 

where Xmin
i and Xmax

i are the maximum and minimum values of Xi fea-
tures, respectively.

The elastic net was used in two variants, as a regression model (for 
prediction of fracture strain of alloys) and as classifier model (for clas-
sification of alloys as “ductile” and “non-ductile”).

The selection of features was performed by next steps for both 
variant of the elastic set:

1) Separation of validation dataset. For checking elastic set and another 
model of machine, learning validation dataset was selected. 5 entries 
of both classes (10 entries total) were randomly chosen. The vali-
dation set was not used in training of machine learning model (elastic 
set and another model on next stage), only for checking models and 
calculations the accuracy metrics.

2) Dataset sampling. Due to severe skew in the class distribution of our 
dataset random undersampling was used for dataset sampling.

3) Elastic net. The coefficients for each feature were calculated.
4) Normalization of coefficients. Coefficients with maximum modulus 

was selected and then all the coefficients were normalized to the 
maximum values while maintaining their sign.

This sequence of calculations was performed 10 times to reduce the 
effect of random splitting and averaged. After that, the features were 
ranked by their importance based on the modulus of the normalized 
coefficient (Fig.S1, Fig.S2 and Table S1). Ones bigger than the threshold 
value were included in the set of features for training machine-learning 
models.

Since the coefficient values change continuously from 0 to 1, 
choosing the features cutoff threshold is a difficult task. As part of this 
work, the features cutoff value varied from 0.05 to 1 with a step of 0.05. 

Table 1 
Descriptors and equations for their calculations. The general formulas for X and 
δX are presented in the common third column for the corresponding rows.

Description Abbreviation Formula

Mixing Enthalpy ΔSmix ΔSmix = − R
∑

ci ln ci

Mixing Entropy ΔHmix ΔHmix =
∑∑

4ΔHmix
ij cicj

Combining effect of Mixing 
Enthalpy and Mixing 
Entropy

Ω Ω =
TmΔSmix

[ΔHmix ]
Tm =

∑
сiΤi

Atomic size mismatch R R =
∑

ciRi

δR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

ci

(

1 − Ri/R

)2
√

Λ Λ = ΔSmix/δR2

γ
γ =

(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Rs + R)2
− R2

(Rs + R)2

√ )

/

(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Rl + R)2
− R2

(Rl + R)2

√ )

Pauling electronegativity χP X =
∑

ciXi 

δX =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

ci

(

1 − Xi/X

)2
√Allen electronegativity χA

Martynov-Batsanov 
electronegativity

χMB

Alfred-Rochow 
electronegativity

χAR

Absolute electronegativity χAbs
Valence electron 

concentration
VEC

Melting point MT
Cohesive energy of solid CE
Compression Modulus MC
First ionization energy FIE
Second ionization energy SIE
Third ionization energy TIE
Work function WF
Atomic number AN
Quantum number QN
Column in periodic table C
Relative atomic mass RAM
Atom volume VA
Atomic environment number AEN
Miedema chemical potential CPM
Slater effective nuclear 

charge
NCE

Clementi effective charge 
nuclear

CNE

Boiling temperature TB
Vaporization enthalpy EV
Melting enthalpy EM
Atomization enthalpy EA
Yagoda ionic radii RI
Covalent radii RC
Schubert valence electron 

distance
DVE

Schubert core electron 
distance

DCE

Density D
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All features whose coefficient is equal to or greater than the feature 
cutoff threshold were included in the set of features for training models. 
Based on each set of features, after applying various balancing tech-
niques, datasets were generated for training models.

As noted above, our dataset shows a strong disproportion towards 
“ductile” alloys. Serious data imbalances can influence on the accuracy 
of the machine learning models. One possible method to eliminate the 
influence of imbalance is to balance the dataset (each output class is 
represented by the same number of entries). We used both under-
sampling by random undersampling and oversampling by Adaptive 
Synthetic (ADASYN) and Synthetic Minority Over-sampling Technique 
(SMOTE) algorithms. For each balancing technique, 10 datasets were 
formed. All of these datasets were used for training machine-learning 
models and averaged after that.

2.2. Machine learning

We employed several well-known ML models, including the support 
vector classifier with a radial basis function kernel (SVC), the k-nearest 
neighbor model (KNN), the gaussian naive Bayes classifier (GNB) and 
the AdaBoost with 100 decision trees (AB) for predicting the plasticity of 
HEAs. A grid search with F1-score estimation was used for tuning ML 
models.

After that, selected ML models were trained using balanced datasets. 
The ML algorithms, sets of features (and their threshold values) and 
balancing techniques were varied to find the model with the best metrics 
of accuracy.

We used the next accuracy metrics: balancing accuracy, f1-score, Δ 
and AUC. Balancing accuracy (BA) is the macro-average of recall scores 
per class, or, equivalently, raw accuracy, where each sample is weighted 
according to the inverse prevalence of its true class (Eq.(2)). 

BA=
1
2n
∑

(
TP

TP + FN
+

TN
TN + FP

)

(2) 

where TP (True Positive) represents the frequency with which a model 
correctly predicts the presence of a phase, TN (True Negative) represents 
the frequency with which a model correctly predicts the absence of a 
phase, FP (False Positive) represents the frequency with which a model 
incorrectly predicts the presence of a phase when it is not present, and 
FN (False Negative) representing the frequency with which a model 
incorrectly predicts the absence of an actual phase.

F1-score (F1) is calculated from the precision and recall of the test, 
where the precision is the number of true positive results divided by the 
number of all samples predicted to be positive, including those not 
identified correctly, and the recall is the number of true positive results 
divided by the number of all samples that should have been identified as 
positive (Eq.(3)). 

F1=
2TP

2TP + FP + FN
(3) 

Δ is the difference between the true positive rate (TRP) and the false 
positive rate (FRP) (Eqs. (4)–(6)). TPR is the probability that an actual 
positive will test positive and FRP is the probability that a false alarm 
will be raised – that a positive result will be given when the true value is 
negative. 

Δ=TRP − FRP (4) 

TRP=
TP

TP + FN
(5) 

FRP=
FP

FP + TN
(6) 

The machine-learning models were checked by 6-fold cross- 
validation on the validation sets.

In addition to the feature cutoff threshold, a significant impact on the 

accuracy of the model is exerted by the classifier cutoff threshold, the 
value on the basis of which the continuous output values from 0 to 1 of 
machine learning models are converted into discrete values of binary 
classification (0 - non-ductile or 1 - ductile). Therefore, for all machine 
learning models, ROC curves (receiver operating characteristic curves) 
were constructed, where for each value of the feature cutoff threshold, 
the TPR and FPR values were calculated for different classifier cutoff 
threshold values. Also, as an accuracy metric, AUC (area under the 
curve) was calculated for each ROC curve.

Based on the AUC values, the optimal feature cutoff value (and the 
set of features for training, respectively) was selected, and based on the 
maximum delta value for this curve, the classifier cutoff threshold value 
was selected for each machine learning algorithm. Next, a model was 
selected by comparison among various machine learning algorithms, 
which was subsequently used for experimental testing.

2.3. Phenomenological models for predicting plasticity

Several phenomenological models have been proposed for plasticity 
prediction. We used Pettifor and Pugh [61], Valence Electron Concen-
tration (VEC) [62] and Rice and Thomson models [63] to compare with 
our DDML model (see Fig. 1).

Senkov and all [65] suggested that alloys with compress deformation 
to failure more than 30 % are considered ductile. We argue that this 
phenomenological threshold is not optimal. To optimize this parameter, 
we varied its value from the minimum to the maximum in the dataset 
with an increment of 0.1. For each criterion value, balanced accuracy, 
f1-score, TPR and FPR were calculated according to the above equations. 
Fig. 3 shows, using an example of the Pettifor and Pugh model, how the 
input data were determined for calculating accuracy metrics. As a result, 
the threshold of 10 % (instead of 30 %) was established as optimal for 
dividing into ductile and non-ductile alloys. The accuracy metrics 
calculated for both threshold values are presented in Table 2. For the 
calculations, we used a dataset on the compressive deformation of alloys 
with calculated parameters for these models, given in Ref. [65]. It 
should also be noted that the phenomenological models used for com-
parison were developed for single-phase alloys, and so their applica-
bility for predicting the plasticity of multiphase alloys is a debatable 
issue. For that reason, accuracy metrics were calculated separately for 
single-phase and multiphase alloys, as well as for all systems without 
dividing them by phase composition.

2.4. Experiment

The model alloys were produced by vacuum arc melting, using 
proper mixtures of pure metals with purities of better than 99.9 wt%, in 

Fig. 1. Scheme for determining input data using the example of the Pettifor and 
Pugh model [61].
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Ti-gettered argon atmosphere. The nominal compositions of the model 
alloys are listed in Table 4, the actual compositions are listed in Sup-
plementary materials (Fig. S3 and Table S2). The alloys were remelted 
five times to improve their homogeneity. Samples for compression tests 
and microstructure investigations were cut out using an electric 
discharge machine.

The phase composition was studied using X-ray diffraction (XRD) on 
a BRUKER D2 PHASER diffractometer with CuKα radiation. SEM in-
vestigations were carried out using either FEI Quanta 600 FEG or Nova 
NanoSEM microscopes; both instruments were equipped with back- 
scattered electron (BSE) and energy-dispersive X-ray spectroscopy 
(EDS) detectors. Specimens for structural investigations were finished 
with OP-S suspension (the abrasive particle size of 0.04 μm). The 
chemical composition of the alloys was measured using SEM-EDS with a 
scanning area of 2 × 2 mm2.

Cylindric specimens measured Ø4 × 6 mm3 were compressed using 
an Instron 300LX testing machine equipped with a radial heating 
furnace. The tests were carried out at 25, 600 or 800 ◦C with an initial 
strain rate of 10− 4 s− 1 till 50 % of height reduction (or till fracture). 
Temperature was measures by thermocouple attached to the side surface 
of the specimen; tests at 600 or 800 ◦C started after 10 min holding at the 
desired temperature.

3. results and discussion

3.1. The accuracy metrics of phenomenological models

Accuracy metrics obtained by phenomenological models with the 
dataset and threshold from Ref. [51] are given in Table 2 in the 
“Ductility alloys ≥30 %” column. As can be seen from the presented 
data, the models with such criteria show low accuracy for both 
single-phase and multi-phase alloys. The models are characterized by a 
strongly biased assessment towards predicting ductile alloys.

Also, as part of this work, the model was adjusted for the case when 
the threshold for separating “ductile” and “non-ductile” alloys is taken to 
10 %. ROC-curves for all three models are given in the Supplementary 
materials. It has been established that the models have the best pre-
dictive force for this plasticity threshold with the following parameters: 

Fig. 2. General scheme for preparing the model of plasticity prediction.

Fig. 3. Rate of ductile alloys from alloys with a fixed content of the corre-
sponding element (other elements vary within specified limits) for the Al-Cr- 
Nb-Ti-V-Zr system.
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VEC≤ 5.2, G/B ≤ 0.4, GB/γ ≤ 7.75. The accuracy metrics calculated at 
these values are given in the table in the “Ductility alloys≥10 %” col-
umn. The tune of the models has been improved accuracy metrics, in 
some cases quite significantly. For example, the Rice and Thomson 
model [63] shows good results for single-phase alloys. However, even 
being improved, the models have highly biased estimates; the accuracy 
of prediction for non-ductile alloys is much worse than for ductile alloys. 
For multiphase alloys or mixed phase compositions, all models, even 
after tuning, demonstrate low accuracy.

3.2. Selection ML model for plasticity prediction

The general scheme for developing ML model for plasticity predic-
tion is shown in Fig. 2. The accuracy metrics were calculated for the all 
used machine-learning models (trained at the all datasets).

During training of models based on various machine learning algo-
rithms, many graphs were obtained (AUC and ROC curves for all vari-
ants of training data sets). In order not to clutter the text with similar 
graphs, they are all presented in additional materials. Table 3 shows the 
models that showed the best accuracy metrics for each machine learning 
algorithm, as well as the parameters under which these values were 
achieved.

With minimal difference in accuracy metrics, SVC shows the best 
values of accuracy metrics. When combined with a classification cutoff 
threshold value of 0.47, SVC exhibits AUC = 0.992, Δ = 0.866, BA =
0.784, and F-score = 0.824. The features that were used to train each of 
the models presented above are shown in Table S1. The selected ma-
chine learning model shows significantly better accuracy metrics 

compared to the phenomenological models discussed above.
It was the SVC model with the cutoff thresholds listed above that was 

used further to predict plasticity.

3.3. Selection the model alloy

In order for model alloys, along with good ductility at room tem-
perature, to show high strength, in addition to the model described 
above, we also used our previously developed model for predicting the 
yield stress at room and elevated temperatures [86]. Our model for 
prediction phase composition was also used for selection model alloys.

The model alloys were selected from array of Al-Cr-Nb-Ti-V-Zr al-
loys. The atomic concentrations of Nb, Ti, V and Zr were varied from 0 to 
45 % with step 5 %, for Al and Cr the interval 0–15 % at with step 1 %. 
was used. According to the widely used definition of HEAs, the con-
centrations of elements are in the range of 5–35 %. To provide a wider 
coverage of the compositional space, we slightly expanded this range to 
45 % for all elements except chrome and aluminum. The limitation for 
Al and Cr concentration is associated with our experience with alloys of 
this system. When the Al and Cr content is more than 15 %, most alloys 
have low deformation before failure, up to failure in the elastic region. 
Therefore, alloys with high Cr and Al content were excluded from 
consideration. The total number of potential alloys was ~30 000.

In the first stage, the model of plasticity prediction was applied and 
“non-ductile” alloys were excluded from the next calculation. To eval-
uate the main trends of the influence of each element on plasticity, the 
rate of “ductile” alloys at fixed values of the elements (Al, Cr, Nb, Ti, V or 
Zr) was analyzed (Fig. 3). The general feature for all elements is the 
parabolic-like dependence of rate of “ductile” alloys on the content of 
elements. But, for niobium, titanium, and vanadium, we see increasing 
the rate of “ductile” alloys with increasing concentration. The rate of 
“ductile” alloys demonstrates minimum at element concentrations of 
0.1–0.15 followed by monotonous growth. The additions of small con-
centrations of zirconium lead to a significant decrease in ductility. 
Indeed, in the absence of zirconium, almost all alloys are predicted to be 
ductile, while with a zirconium content of 0.2 the proportion of ductile 
alloys is approximately 10 %. A further increase in the zirconium con-
tent does not lead to a significant change in the proportion of ductile 

Table 2 
Accuracy metrics for phenomenological models for plasticity prediction.

Phase composition Accuracy metrics Ductility alloys ≥30 % Ductility alloys≥10 %

VEC G/B GB/γ VEC G/B GB/γ

Single-phase alloys BA 0,628 0,523 0,616 0,656 0,641 0,712
F1 0,652 0,594 0,645 0,872 0,874 0,875
TPR 1000 1000 1000 0,962 0,981 0,925
FPR 0,744 0,953 0,767 0,650 0,700 0,500

Multiphase alloys BA 0,588 0,579 0,588 0,563 0,604 0,545
F1 0,254 0,250 0,254 0,635 0,659 0,619
TPR 1000 1000 1000 0,931 0,931 0,897
FPR 0,825 0,842 0,825 0,806 0,722 0,806

All alloys BA 0,608 0,551 0,602 0,609 0,622 0,629
F1 0,453 0,422 0,450 0,754 0,766 0,747
TPR 1000 1000 1000 0,947 0,956 0,911
FPR 0,784 0,898 0,796 0,728 0,711 0,653

Table 3 
The best values of accuracy metrics and model parameters at which they are achieved for all machine learning algorithms used.

ML 
algorithm

Set of feature Balancing 
technique

Feature cutoff 
threshold

Classification cutoff 
threshold

AUC Δ BA F1

KNN ΔVA, ΔCPM, ΔXMB, ΔSmix, ΔVEC, ΔMC, 
ΔNCE, ΔCE, ΔEA

SMOTE 0.4 0.5 0.972 0.824 0.711 0.758

GNB ΔVA, ΔCPM, ΔXMB SMOTE 0.8 0.5 0.91 0.74 0.718 0.758
AB ΔVA, DVE, ΔCPM, ΔSmix, ΔNCE, XMB, WF, 

ΔEV
ADASYN 0.3 0.5 0.982 0.982 0.72 0.786

SVC ΔVA, DVE, ΔCPM ADASYN 0.6 0.47 0.992 0.866 0.784 0.824

Table 4 
Chemical composition and predicted yield strengths for model alloys.

Chemical composition 
in % at.

Predicted σ0.2 

at 20 ◦C,MPa
Predicted σ0.2 

at 600 ◦C,MPa
Plasticity at 
20 ◦C

A1 Al4Cr1Nb20Ti35V5Zr35 885 800 Ductile
A2 Al9Cr1Nb40Ti25V25 1226 800 Ductile
A3 Al2Cr13Nb40Ti5V40 1043 717 Ductile
A4 Al1Cr9Nb35Ti5V40Zr10 1265 812 Ductile
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alloys. Concentration dependencies for aluminum and chromium reveal 
steps distorting their shape. But the general trend for these elements 
(especially the dependence on their common concentration) is similar to 
that for zirconium: the rate of “ductile” alloys decreases with 
concentration.

After plasticity prediction, the values of yield strength at 20 ◦C and 
600 ◦C were calculated using the model we developed earlier [86]. Yield 
strengths for both temperatures were rescaled by min-max normaliza-
tion. The sum of rescaled yield strengths for each alloy was used as 
effective strength, it was assumed that an alloy with a higher effective 
strength is preferable. Then, the clusters with similar compositions in 
phase space were selected by our model for phase composition predic-
tion. Euclidian distance in composition space between each alloy and 
the center of its cluster were calculated. Based on the assumption that 
the precision of phase composition prediction on the cluster border’s 
might be less than that in the central area, the alloys with small 
Euclidian distance in composition space were more favored. Four model 
alloys were selected as those with maximal values of the following 
quantity: Θ = σYEdCE,where σYE− effective strength, dCE - Euclidian 
distance in composition space.

Table 4 presents data on the chemical composition of selected alloys, 
predicted yield strength at 20 ◦C and 600 ◦C and plasticity at room 
temperature for model alloys.

3.4. Microstructure and mechanical properties of model alloys

SEM images of the microstructure of the as-cast model alloys are 
shown in Fig. 4. The Al4Cr1Nb20Ti35V5Zr35 (Fig. 4a) and Al2Cr13Nb40-

Ti5V40 (Fig. 4c) alloys had coarse grained (D ~100–500 μm) micro-
structure. According to the XRD results (Fig. S4), the alloys had bcc 
structure. The Al9Cr1Nb40Ti25V25 (Fig. 4b) alloy has dual-phase struc-
ture, particles of the second phase are located at triple junctions and 
along the grain boundaries of the main phase. The XRD shows a single 
peak that does not belong to the bcc phase. This confirms the presence of 
the second phase, but does not allow its identification. The 
Al1Cr9Nb35Ti5V40Zr10 (Fig. 4d) shows dendritic two-phase structure 
composed of BCC and Laves phases (Table S2). After clarifying the 
chemical composition, the predicted values (yield strength and plas-
ticity) were recalculated taking into account the actual chemical 
composition. The ductility forecast for all alloys has not changed. The 
predicted values of the yield strengths also did not show significant 
changes (Table 5).

The model alloys were tested at room and elevated temperatures. 
The engineering stress-strain curves at room temperature are shown in 
Fig. 5a. The values of experimental yield strength and plasticity (strain 
to fracture) are listed in Table 5.

As stated above, the model alloys were selected from “ductile” alloys 
group (fracture strain eF ≥10 % at room temperature). The three model 

Fig. 4. SEM-BSE images of the Al4Cr1Nb20Ti35V5Zr35(a), Al9Cr1Nb40Ti25V25(b), Al2Cr13Nb40Ti5V40 (c) and Al1Cr9Nb35Ti5V40Zr10(d).

Table 5 
Fracture strain (eF), experimental (σEY) and predicted (σPY) yield stress for model alloy at 25, 600 and 800 ◦C. Predicted yield strengths were recalculated for actual 
chemical composition of the model alloys.

Alloys 25 ◦C 600 ◦C 800 ◦C

σEY , MPa σPY , MPa eF ,% σEY , MPa σPY , MPa eF ,% σEY , MPa eF ,%

A1 Al4Cr1Nb20Ti35V5Zr35 782 915 >50 550 770 >50 93 >50
A2 Al9Cr1Nb40Ti25V25 1040 1241 >50 680 800 >50 750 >50
A3 Al2Cr13Nb40Ti5V40 890 1073 >50 860 731 >50 780 >50
A4 Al1Cr9Nb35Ti5V40Zr10 1090 1289 14.7 873 825 6.9 920 >50
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alloys (A1, A2, A3) not fractured until 50 % height reduction, the 
Al1Cr9Nb35Ti5V40Zr10 alloy fractured the fracture strain eF = 14.7 %. 
The experimental results coincide with the prediction for all four model 
alloys, which confirms the high accuracy of the model on validation and 
test datasets. But alloy A4 showed a twofold decrease in ductility when 
the temperature increased to 600 ◦C and deformation up to 50 % 
without failure at 800 ◦C. Thus, despite the high accuracy of the pre-
diction of ductility at room temperature, the model cannot guarantee 
that an alloy will be ductile over the entire temperature range.

For all fabricated model alloys, the actual yield strengths are lower 
than the forecasted values, average error is 18.7 %. The maximum yield 
strength of 1090 MPa at room temperature is demonstrated by 
Al1Cr9Nb35Ti5V40Zr10 (A4). Alloy A2 turned out to be slightly softer 
(σEY = 1040 MPa). The A1 and A3 alloys had yield strengths below 1000 
MPa (782 MPa and 890 MPa, respectively). At 600 ◦C (Fig. 5b) 2 alloys 
show experimental yield strength that is higher than predicted value, 
average error is about 19 %. The strongest alloy at this temperature is A4 
(σEY = 873 MPa), which is slightly higher than predicted value (σPY =

825 MPa). The A3 alloy is slightly softer than the A4. Note that the A3 
alloys shows negligible softening when the testing temperature increases 
from 22 to 600 ◦C, and the experimental yield strength is higher than the 
predicted one at 600 ◦C. For the A2 alloy, an increase in testing tem-
perature from 22 ◦C to 600 ◦C leads to a 35 % decrease in strength (σEY 
= 680 MPa), which is significantly less than the predicted yield strength 
(σPY = 800 MPa). As at room temperature, alloy A1 showed the lowest 
yield strength at 600 ◦C (σEY = 550 MPa), which is also significantly less 
than the predicted yield strength (σPY = 770 MPa).

With a further increase in temperature to 800 ◦C (Fig. 5c) for alloy 
A1, strong softening is observed, and the yield strength decreases to σEY 
= 93 MPa. For alloy A3, an increase in temperature does not lead to such 
a catastrophic drop in strength and respectable level of σEY = 780 MPa is 
maintained. For the other two alloys, an unexpected increase in the yield 
strength with increasing test temperature is observed. For alloy A2, the 
yield strength at 800 ◦C is σEY = 750 MPa. Alloy A4 remains the stron-
gest among the model alloys and its yield strength is σEY = 920 MPa, 
which is slightly less than its yield strength at room temperature. Since 
this work is devoted to the prediction of the plasticity of alloys, the 
reasons for the anomalous temperature dependence of strength of A2 
and A4 alloys are not clarified here but rather will be subject of the 
further studies.

4. Conclusions

1) In comparison with existing phenomenological models for predicting 
plasticity, our machine learning model shows significantly better 
accuracy. The use of machine learning approaches allows us to 
obtain a model that predicts the ductility of HEAs at room temper-
ature with high accuracy. For four model alloys in agreement with 
the prediction, the failure strain exceeded 10 % (three alloys did not 
fail at deformation up to 50 %).

2) The combined use of a plasticity prediction model with previously 
developed models made it possible to obtain alloys with a good 
strength-ductility ratio both at room temperature and at elevated 
temperatures.

3) The fabricated Al1Cr9Nb35Ti5V40Zr10 alloy reveals the best combi-
nation of strength and ductility both at room temperature (σEY =

1090 MPa, eF = 14.7 %) and at 800 ◦C (σEY = 920 MPa, eF >50 %).
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