Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/64153
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFirsanova, V. I.-
dc.date.accessioned2024-12-17T08:12:27Z-
dc.date.available2024-12-17T08:12:27Z-
dc.date.issued2024-
dc.identifier.citationFirsanova, V.I. A graph-based approach to closed-domain natural language generation / V.I. Firsanova // Научный результат. Сер. Вопросы теоретической и прикладной лингвистики. - 2024. - Т.10, №3.-С. 135-167. - Doi: 10.18413/2313-8912-2024-10-3-0-7. - Библиогр.: с. 162-167.ru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/64153-
dc.description.abstractThe paper introduces a novel NLP architecture, the Graph-Based Block-to-Block Generation (G3BG), which leverages state-of-the-art deep learning techniques, the power of attention mechanisms, distributional semantics, graph-based information retrieval, and decentralized networksru
dc.language.isoenru
dc.subjectlinguisticsru
dc.subjectapplied linguisticsru
dc.subjectlanguage generationru
dc.subjectlanguage understandingru
dc.subjectgenerative artificial intelligenceru
dc.subjectlarge language modelsru
dc.subjectdecentralized networksru
dc.subjectdata encodingru
dc.subjectdistributional semanticsru
dc.subjectclosed-domain systemsru
dc.titleA graph-based approach to closed-domain natural language generationru
dc.typeArticleru
Appears in Collections:Т. 10, вып. 3

Files in This Item:
File Description SizeFormat 
Firsanova_Graph-based_24.pdf1.94 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.