Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/4310
Title: On prime numbers of special kind on short intervals
Authors: Motkina, N. N.
Keywords: mathematics
theory of numbers
sprime number
Riemann hypothesis
Chebyshev function
zeta function
Abel integral transformation
Issue Date: 2006
Citation: Motkina, N.N. On prime numbers of special kind on short intervals / N.N. Motkina ; Belgorod State University // Mathematical notes. - 2006. - Vol.79, N6.-P. 848-853. - doi: 10.1007/s11006-006-0095-6
Abstract: Suppose that the Riemann hypothesis holds. Suppose that ψ₁(x) = ∑ Λ(n), n≤x {(1/2)n¹/ᶜ}<1/2, where c is a real number, 1 < c ≤ 2 . We prove that, for H >N½⁺¹⁰ᵋ, ε > 0 , the following asymptotic formula is valid: ψ₁(N +H) - ψ₁(N) = H/2(1 + O(1/ Nᵋ) )
URI: http://dspace.bsu.edu.ru/handle/123456789/4310
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Motkina_On prime numbers.pdf93.73 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.