DC Field | Value | Language |
dc.contributor.author | Dyomochkina, V. V. | - |
dc.contributor.author | Gruzdev, D. Yu. | - |
dc.contributor.author | Lukyanova, E. V. | - |
dc.date.accessioned | 2024-12-17T06:54:28Z | - |
dc.date.available | 2024-12-17T06:54:28Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Dyomochkina, V.V. Machine translation in hindsight / V.V. Dyomochkina, Gruzdev D.Yu., E.V. Lukyanova // Научный результат. Сер. Вопросы теоретической и прикладной лингвистики. - 2024. - Т.10, №2.-С. 21-45. - Doi: 10.18413/2313-8912-2024-10-2-0-2. - Библиогр.: с. 43-45. | ru |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/64144 | - |
dc.description.abstract | The paper expands on the analysis of key projects adoring the machine translation hall of fame and their role in addressing practical tasks. The most successful initiatives suggest that the fledgling MT was contingent on the level of entropy, a.k.a. random nature of natural languages: the lower the indicator, the higher the predictability of the text, and by implication the efficiency of the system | ru |
dc.language.iso | en | ru |
dc.subject | linguistics | ru |
dc.subject | translation | ru |
dc.subject | machine translation | ru |
dc.subject | tagging | ru |
dc.subject | annotation | ru |
dc.subject | quality | ru |
dc.subject | entropy | ru |
dc.title | Machine translation in hindsight | ru |
dc.type | Article | ru |
Appears in Collections: | Т. 10, вып. 2
|