Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/62461
Title: Machine learning-based strength prediction for refractory high-entropy alloys of the Al-Cr-Nb-Ti-V-Zr system
Authors: Klimenko, D.
Stepanov, N.
Jia Li
Qihong Fang
Zherebtsov, S. V.
Keywords: technique
metal science
alloys
high entropy alloys
machine learning
prediction
strength
structure
Issue Date: 2021
Citation: Machine learning-based strength prediction for refractory high-entropy alloys of the Al-Cr-Nb-Ti-V-Zr system / D. Klimenko, N. Stepanov, Jia Li [et al.] // Materials. - 2021. - Vol.14, №3.-Art. 7213.
Abstract: The aim of this work was to provide a guidance to the prediction and design of high-entropy alloys with good performance. New promising compositions of refractory high-entropy alloys with the desired phase composition and mechanical properties (yield strength) have been predicted using a combination of machine learning, phenomenological rules and CALPHAD modeling
URI: http://dspace.bsu.edu.ru/handle/123456789/62461
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Klimenko_Machine Learning-Based_2021.pdf1.02 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.