Поле DC | Значение | Язык |
dc.contributor.author | Mashinets, A. A. | - |
dc.contributor.author | Vasilyev, A. V. | - |
dc.contributor.author | Vasilyev, V. B. | - |
dc.date.accessioned | 2024-03-29T10:19:25Z | - |
dc.date.available | 2024-03-29T10:19:25Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Mashinets, A.A. On discrete neumann problem in a quadrant / A.A. Mashinets, A.V. Vasilyev, V.B. Vasilyev // Lobachevskii Journal of Mathematics. - 2023. - Vol.44, №3.-P. 1018–1028. - Doi: 10.1134/S1995080223030216. - Refer.: p. 1028. | ru |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/61809 | - |
dc.description.abstract | We study a discrete analogue on the Neumann boundary value problem for elliptic pseudo-differential equation in a quadrant. This approach is based on a special factorization of an elliptic symbol which permits to construct a general solution for a discrete pseudo-differential equation in discrete analogues of Sobolev-Slobodetskii spaces. The discrete Neumann boundary conditions are considered in the paper. Unique solvability of discrete Neumann boundary value problem is proved and a comparison between discrete and continuous solutions is given | ru |
dc.language.iso | en | ru |
dc.subject | mathematics | ru |
dc.subject | function theory | ru |
dc.subject | digital operator | ru |
dc.subject | discrete pseudo-differential equation | ru |
dc.subject | discrete boundary value problem | ru |
dc.subject | integral equation | ru |
dc.subject | projectional method | ru |
dc.subject | unique solvability | ru |
dc.title | On discrete neumann problem in a quadrant | ru |
dc.type | Article | ru |
Располагается в коллекциях: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)
|