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In trod u ction . S e ttin g  th e  P rob lem

We consider the following Cauchy-type problem in a Banach space E:

D au( t ) =  A u ( t ) +  F(t ,  B( t)u( t ) ) ,  t  > 0, (1)

lim D a~ 1u(t) = Uo, (2)
t—>o

where 0 <  a  <  1,
t

D a~ l u(t)  =  I 1~au( t ) =  — - f (t — s )~au (s ) ds
T(1 -  a) J 

o
is the left-side fractional Riem ann-Liouville integral of order 1 — a  (for a  = 1, we assume th a t 11 "

d
is the identity operator), D au(t) = — I l ~au(t)  is the left-side fractional Riem ann-Liouville derivative

of order a,  T(-) is the gamm a-function, A  is a linear closed densely defined operator, B(t)  is a linear 
closed densely defined operator depending on t  (no assum ptions about the boundedness of B(t)  are 
imposed), and F ( t ,w )  is a nonlinear operator acting in E  for any t  >  0; the la tte r operator is treated  
as a perturbation  of the operator A.

The results presented below are related to  the perturbation  theory of generators of semigroups 
(see [8, Chap. 9]). We add to  problem (1), (2) a term  with a nonlinear operator subordinated in a way 
to  the operator A  and investigate how this affects the solvability of the problem. Sufficient conditions 
providing the solvability of the problem with the perturbed  operator A  are presented.

In [5], solvability results for equations w ith fractional Riem ann-Liouville derivatives perturbed 
by a linear closed operator B( t)  are obtained. The study of problems of th a t kind is m otivated by



numerous applications of fractional-order differential equations in physics and m athem atical modelling 
(see, e.g., [18, Chap. 8], [13, Chap. 5], and [9, Chap. 8]).

A part from problem (1), (2), consider the following problem w ithout perturbations (assuming th a t 
/3 > a):

D^u(t)  = Au(t) ,  t  > 0, (3)

lim D ^ ~ lu(t)  =  «o- (4)
t —s-o

D efin itio n  1. A function u(t)  is called a solution of problem (3), (4) if it is continuous for t  > 0, takes 
values in D(A)  (here D(A)  is the dom ain of the operator A), / 1_/3-u(i) is continuously differentiable 
for t  > 0, and u(t)  satisfies (3) and (4).

D efin itio n  2. We say th a t problem (3), (4) is uniformly well posed if there exist an operator-valued 
function Tp(t)  defined on E  and comm uting with A,  a positive M i, and a real uj such th a t, for any 
uo € D(A) ,  the function Tp(t)uo is the unique solution of problem (3), (4) and

II Tfi{ t ) \ \ < M ^ - l e ^ .  (5)

According to  Definition 2, problem (3), (4) is uniformly well posed if its solution exists, is unique,
and continuously depends on the initial d a ta  uniformly w ith respect to  t  from any compact set of
(0, oo). The la tte r property follows from (5). A part from those standard  requirem ents, Definition 
2 includes additional information about the behavior of the solution as t  —> 0 and t  —> oo (see 
inequality (5)).

C o n d itio n  1. There exists (3 e  [a, 1] such that problem (3), (4) is uniformly well posed anduo belongs 
to D(A) .

In [4, 6, 10], the uniform well-posedness of problem (3), (4) is studied for 0 <  (3 <  1. If /3 = 1, then
the uniform well-posedness of the Cauchy problem requires th a t the operator A  be a generator of a
Co-semigroup.

C o n d itio n  2. (i) The domain of  the operator B(t) ,  denoted as D,  does not  depend on t and
D(A)  c  D.

(ii) Let x  e  D. Then either the funct ion w(t)  =  B ( t ) x  belongs to C((0 ,oo ) ,E) ,  is absolutely 
integrable at the origin, and takes values in D ( A ) and the funct ion Aw(t)  belongs to C ( ( 0, oo) ,E )  
and is absolutely integrable at the origin or the funct ion I 1~aw ( t ) =  I l ~aB ( t ) x  is continuous 
f o r t  > 0, continuously differentiable for  t > 0, and D aw(t) is absolutely integrable at the origin.

(iii) For any x  e  E,  there exist M 2 > 0, 7  e  (0 ,1), and w e R  such that T ^ { t ) x  g D  ( the smoothing 
effect) and

\ \B( t )Tp(T)x \ \  < M 2T - ' 1ebJT\\x\\, t , T  e  (0, 00). (6)

Note th a t if the operator —A  is strongly positive in the sense of [11], i.e., if

I K A I - A ) - 1!! <  Re A >  0, M 3 >  0,
1 +  | A |

then we can assign (3 = 1 in Condition 1. In this case, uj = 0 and inequality (6) means th a t the 
operator B{t)  is subordinated to  the fractional power (—A )7 (see [11, p. 298]).

If the operator B(t)  is bounded and the operator A  satisfies Condition 1, then  inequality (6) is valid 
for 7  =  1 — (3.

The operators A  and B{t)  are not assumed to  commute.

C o n d itio n  3. (i) The funct ion F  acts from  (0, 00) x E  to E;  i f  a funct ion w(t)  =  B{t)x ,  x  e  D,
satisfies i tem (ii) of  Condition 2, so does w\( t)  = F ( t ,w ( t ) ) .

(ii) The following inequality is valid for  w = 0: ||F(t ,  0 ) || <  Cq{1 +  t ^ ~ l ), m u  > 0, Cq > 0.



(iii) The operator F ( t ,w )  satisfies the following Lipschitz condition uniformly with respect to t > 0:

IIF  ( t ,w 2) — F  ( t ,w  1) || <  L \\w2 — wi\\ for  all w i , w 2 € E.

C o n d itio n  4. The Banach space E  possesses the Radon-Nikodym property (see [1, p. 15]), i.e., any 
absolutely continuous funct ion F  : R + — > E  is differentiable almost everywhere.

For example, reflexive Banach spaces possess th a t property (see [1, Corollary 1.2.7]), while the 
spaces Li(a,  b), C[a, b], and the space Co of sequences converging to  zero do not (see [1, Exam ple 1.2.8 
and Propositions 1.2.9 and 1.2.10]).

We will show below th a t Conditions 1-4 guarantee the unique solvability of problem (1), (2).
The following function (see [7, p. 357]) is needed for the proof:

{ <7+̂ 00

I  e x p ( te - r 2")<fa, ( > 0 ,  (7)

(7—io o

0, t < 0 ,

where a  >  0, r > 0, 0 <  z/ <  1, and the branch of the function z v is chosen to  satisfy the inequality 
R e /  >  0 for R e z  >  0. This branch is a one-valued function on the complex z-plane cut along the 
negative part of the real axis. The convergence of the integral in (7) is guaranteed by the factor 
exp ( - r / ) .

Below, we present certain properties of the function f TV{t) (see also [7, p. 358-361, Propositions 1- 
3]).

Consider the integral defining the function f T,v(t) and replace the line of integration R ez  =  a > 0 
by the contour consisting of the rays 2 =  r e x p ( —iff) and 2 =  r e x p ( i0), where 0 <  r < 00 and 
7r/2  <  9 <  7r. This yields the following representation of the function f T,v(t) for t > 0:

OO

frv{ t )  = — /  exp (tr cos 9 — r r "  cos vO) sin (tr  sin 9 — r r "  sin vQ +  9) dr. (8)
7T J 

0

The function f T,v(t) is nonnegative, and the following relations are valid:

OO

j  f T,v ( t )d t  = 1 (9)
0

OO

exp (—t \ v) =  J  exp (—At) f T,v(t) dt, r  >  0, A >  0, 0 <  v < 1. (10)
0

We also note th a t the function f T,v(t) can be expressed via the W right function (see [9, p. 54]) for 
t  > 0 : f r A t ) = t  V ( - ^ 0; - r t  v) , c/)(a,b]z) =

k\ T(ak  +  b) 'k=0

Another representation via the more general W right-type function (see [16, Ch. 1]) is valid as well:

zk
T(ak + n) T(5 — fik)f r A t )  = t ~ ‘e “  ( - T  t - )  , e Z f c )  = J 2  r l n t  . , , f  m  (11)

k = 0

where fi < 1, 5 +  fi > 0, max{0; /3} < a  < 2, a  +  fi < 2, and /j,,z € C.



1. C au ch y-T yp e P rob lem s for F ractional-O rder E quations: In h om ogen eou s E q u ation s

The following theorem  establishes conditions under which the uniform well-posedness of problem
(3), (4) implies the uniform well-posedness of the corresponding Cauchy-type problem for the equation
of order a,  where 0 <  a  < /3 < 1.

T h eorem  1.1. Let a  < (3 < 1, Conditions 1 and 4 be satisfied, and uj = 0 in inequality (5). Then 
the problem

D au{t) = Au{t),  t  > 0, (1.1)

Mm D a~ l u(t) = uq (1.2)
t—s-0

is uniformly well posed and its resolving operator is of  the form
CO

Ta (t)u0 = J  fr,v ( t)T^(T)u0 dr, (1.3)
o

where v  =  a / /3 and the funct ion f T>v (t ) is defined by relation (7).

Proof  The following is proved in [4]. If problem (3), (4) is uniformly well posed and uj = 0 in 
inequality (5), then  A  ̂ belongs to  the resolvent set p(A)  of the operator A  for Re A >  0, the resolvent 
R(\P )  = (AP i - A ) - 1 is representable in the form

+  CO

R ( \ ^ ) x  = j  exp(—At )Tp ( t )xd t  (1.4)
o

for any x  G E,  and the following inequalities are valid for any nonnegative integer n:

dnR  (X13) M T (n +  13)

(Re A)r

If the Banach space E  possesses the R adon-N ikodym  property, then  the validity of inequalities (1.5) 
(even for real positive A) is a sufficient condition for the uniform well-posedness of problem (3), (4). 
The resolving operator for this problem is of the form (see [4, formula (13)])

Tfi(t)v,o = -D1-/3^ — J  \ ^ ~ l exp(At)E(A/3)uo d \ ,  ujo > 0 . (1 .6)
(jjo—ico

Taking into account (1.4), (10), and (5), for v  =  a/(3, we have
CO CO CO

R ( p a ) x  = J  e x p ( —fjut )T f j ( t )xd t  = J  Tfi( t )xdt  J  exp (—r/x) f t ,v ( r)  dr.
o o o

In (8), we take 9 e  [7r / 2 , 7r] such th a t co s9 < 0 and cosv9 >  0. To achieve th a t, we actually take it 
from the interval ( 7 r / 2 ,  min{7r / ( 2z/); 7r}).

Hence, by virtue of (8), (9), and the theorem  on the differentiability of integrals with respect to  a 
param eter, the following inequalities are valid:

<  ^  VMI +7 > R e A > 0 .  (1.5)



CO

=  M 5 ||a;|| J  r n~ 1+a exp (—rR e  /x) dr =
M qT (n +  a)  ||a;|

n-\-a(Re n)
o

This proves the uniform well-posedness of problem (1.1), (1.2).
Due to  (1.6), (1.4), (7), and (11), the resolving operator for this problem is of the form

<7+̂ 00

Ta ( t ) u 0 = D l ~a —  f  A" -1 exp (At) R  (A") uq d \
2m  J

OO < 7 + 2 0

' J  Tp(T)uod,T-^—: J  A" -1 exp(Ai — \ ut )  d \

OO

: j  t~ae[Au~a ( - T t ~ v)Ti3(T)u0 dr. (1.7)

<7 —  2 0 0

OO < 7 + 2 0 0

D i-»

o

D
o

The following relation (implied by [16, formula (1.1.13)]) for the Laplace transform ation was used:

x—a „1,1—0:L t ae1’u a (—r t  V)',X =  A" * e x p (—t \ v)

Now we use the following relation for the fractional derivatives of W right-type functions (see [16, 
formula (1.2.12)]):

B 1- “ =  t - ' e l H - T t - n  = f TJ t ) .

Combining it w ith the limit relation

lim x) = — lim e\ ,v(—x) = 0a?—)>+oo ’ x^+oo ’

(see [16, formulas (1.2.3) and (1.2.6)] and note th a t this relation and the estim ate in (5) guarantee the 
convergence of the integral in (1.3) for uj = 0) and using (1.7), we obtain (1.3). This is the required 
representation. □

R em ark  1.1. Consider the particular case where v  =  a/(3 = 1/2. Then (see [7, p. 369, formula 
(32)])

f r 'l !2it )  = w s e x p { - i ) -
Thus, the relation in (1.3) takes the form

° °  2

2>/2 ( t ) u 0 = J  r e x  p Tfi(T)u0 dT. (1.8)
o

The representation in (1.8) can provide the smoothing effect (see item  (iii) in Condition 2) for the 
resolving operator T@/2 (t) in the case where this effect for the operator Tp (t ) is absent. For example, 
this takes place if A  and B  are differential operators.

The following assertion is the solvability theorem  for the Cauchy problem for the inhomogeneous 
equation.

T h eorem  1.2. Let /3 < 1, and let Condition 1 be satisfied. Let one of the following two conditions 
hold:

(a) a funct ion h(t) belongs to C  ((0, oo) ,E ) ,  is absolutely integrable at the origin, and takes values in 
D(A)  and the funct ion Ah( t)  belongs to C  ((0, oo), E)  and is absolutely integrable at the origin;



(b) a funct ion h(t) is such that the funct ion 1 1 ^h(t)  is continuous for  t > 0 and continuously 
differentiable for  t > 0 and D@h(t) is absolutely integrable at the origin.

Then the problem
D^u{t)  =  Au( t)  +  h(t), t  > 0 , (1.9)

lim D ^ ~ 1u(t) = uo (1-10)
t—s-o

has a unique solution, which is defined by the relation
t

u(t) = T/3(t)u0 + J  Tp ^ t -g )  h(£) d£. (1.11)
o

Proof. It suffices to  check th a t the function
I

v (t) = J  Tf3 ( t - £ ) h  ( 0  d(
o

satisfies Eq. (1.9) and condition (1.10), which is the zero initial condition. 
Let condition (a) be satisfied. Then, for t > 0, we have

t

Dl3v (t) =  J  -  T) 13 dr  J  T/3 (t  -  0  h ( 0  d£
0 0

t  t

=  m l— ) i t  f *  l ( t - r ) - 0T A r - i ) H Q d r
0 ?

t  t — £

1 d J  d£ J  ( t - £ - x )  fiTp(x)h{^)dx.
r  (1 — /3) dt

o o
Since the integrand (with respect to  £) is a continuous function of the variable t  — £, it follows th a t

t - i

= T { 1 \  J1™ /  ( t - t -  x ) ~ %  (x ) h ( 0  dx
o

t  t — §

+  T ( l - f 3 )  / d^ J t  /  dx

I

= lim (t - O h  (£) +  [  I) ’ , (t - O h  (£)
t -z - > + o  J

o
t

= h( t )  + j  Tf3 (t -  0  Ah(£) d£ = h (t) +  Av(t).
o

Hence, the function v(t)  satisfies Eq. (1.9).
Further, we check th a t the function v(t)  satisfies condition (1.10). We have

t  T

W  =  r ( i + )  i T  ! T^ -  «>
0 0



Since Tp (t ) satisfies the estim ate in (5), it follows th a t

t  T

J  ( t -  t ) - 13 dr  J  Tf3( T -  £) h(£) dg 
0 0

t

< M  J  ( t - r ) - P  dr  J  (T - 0 ^ l \ \ h m  d i  = M  J  ||fc (OH <%,
0 0 0 

for t  £ [0,1], where £>(•, •) is the beta-function. Hence, the function v( t ) satisfies condition (1.10). 
Now, let condition (b) hold. Then

t  t  £

D^v{t) = D fi J  Tfi(T)h(t - r ) d T =  T̂ _ ̂ J t J  (t ~ dg J  Tp (T)h(£ -  r) dr
0 0 0

t  t —T

= T ( T ^ p ) J t  J T^ dr f  { t - T - x ) - ^ h { x ) d x  
0 0

t  — T  t  t  — T

=  Tp(t) l i m ^ Y ^ y  J  ( t - r -  x )~ fih{x) dx  +  J  T ^ ( t )  d r - |  J  {t -  t  -  x )~ fih {x )  dx
0 0 0 

t  t

= Tfi (t ) D fi~l h (0) + Jrfi (r) D fih (t - r ) d r  = Tfi( t )D ?- lh(0) + J  Tfi(t -  0 D ? h ( 0  <%. (1.12) 
o o

On the other hand, it follows from the relation

I 13D^h{x)  =  h(x) — —^ ^ - x 13-1, 0 <  /3 < 1 (1-13)
\ P  )

(see [18, formula (2.61)]), th a t

t  t

v(t) = j  Tfi{t -  0  ^  -  O D ^ K  o)
0 0 

t  £ t

+ J  Tfi{t - Q < %  J  (£ -  r f - l D^h{T) dr  = J  ( t -  r f - % {r ) D ^ )  dr
o

t  t — T

1
+

m
0 0

Using (1.13) and the closedness of the operator A  again, we obtain

t  t

J  { t - r f ~ lTfi{T)vodT = J  { t - r f - l D ^ T fi{r)vodr
0 0

J  dr  J  ( t - T - g ) 13 1D l3h(g)d£.  (1.14)

=  I ^ D % ( r ) v 0 = T ^ t ) v 0 ~  0)vo = T ^ t ) v 0 ~  ^ v 0. (1.15)

It follows from (1.13)—(1.15) th a t



t

Av(t) = Tß{t)Dß~lh{0) -  ^ ^ - ^ ( 0) + J  ( Tß{t - 0Dßh(0 - {t~  ̂ V h(fl) dC
o

= Tp (t) Dl3~1h(0) -  0) + J  T ^ t -  0 D ? h ( 0  dg -  h{t) +  ^ ^ - ^ ( 0) =
o

D^v(t)  — h(t).

Hence, the function v(t)  satisfies Eq. (1.9).
To verify th a t the function v(t)  satisfies condition (1.10) if condition (b) is satisfied, one should 

represent D@v(t) as follows:
I

D ß~ l v{t) = J  Tß( s ) I l ~ßh(t  -  s ) ds.

□
2. C au ch y-T yp e P ro b lem s for P ertu rb ed  F ractional-O rder E q u ation s

We pass to  the investigation of the perturbed  problem (1), (2). In the sequel, we use the following 
function of the Mittag-Leffler type (see [2, Chap. III-IV]):

E ß , p ( z ) —  ^
f c 0 r  {uk + pY

T h eorem  2.1. Let a  < (3 < 1, Conditions 1 and 2 be satisfied, and uj = 0 in inequalities (5) and 
(6). Let Conditions  3 and  4 be satisfied. Then problem (1), (2) has a unique solution satisfying the 
estimate

u  N +  c QM i r +  c 0M 1m r ^ ) ta+u_ 1
-  r ( a )  1 ™  +  T (a  +  1) 1 + T{a + fjL)

+ L M 1M 2T(p)T(6 /u )  [ ta+s~ 1Esta+s (-L M 2T(6 /u ) t s

+Cota+sEsya+s+i ( L M 2T{5/u ) ts)  +  C0T(n)ta+s+^ - l E &ta+&+̂  ( l M 2T (5 /v ) t s) )  , (2 .1) 

where 5 = v ( l  — 7 ).

Proof. Taking into account Theorems 1.1 and 1.2, we reduce problem (1), (2) to  an integral equation. 
By virtue of (1.3) and (1.11), this integral equation can be w ritten  as follows:

OO t  OO

u(t) = J  fT,v{t)Tp(7)uQ dT + J  J  frAt-s)Tp(T)F(s’B(s)u(s))dTds, (2.2)
0 0 0

where uo, Tp (t )uq € D(A)  C D  and v  =  a / (3. Denoting B ( t ) u ( t ) by w(t),  we obtain
OO t  OO

w(t) = J  f T,v(t )B(t)Tp{r)uo dr  +  J  J  f TA t  ~  s )B(t )T p(T)F(s ,w(s) )  drds.  (2.3)
0 0 0

To solve Eq. (2.3), we use the iteration m ethod, assigning
t  OO

wo(t) = 0, wi( t)  = J  f r A t ) B ( t ) T ß ( T ) u 0 dr  +  J  J  f T A t -  s )B ( t )Tß (T)F(s,Ö) drds,
0 0



wn+i(t) = J  f T,v(t )B(t)Tfi(T)uo dr  + J  J  f i - A t  -  s )B {t)TA T)F (s i wn(s)) drds, n e  N.
o o

Using inequality (6) and item  (ii) of Condition 3, we estim ate the norm
t  CO

0 0 0 
Taking into account th a t the function f T,v(t) is defined by relation (7) and using [15, integrals 2.3.4.1

< 7 + 2 0 0  CO

J
0

< 7 + 2 0 0

\\wi(t)\\ < M 2 \\u0\\ J  U A t )T 1 dT + M 2C0 J  J  f r A t - s ) T  7(1 + s^ l )d rds .  (2.4)

3 account the 
and 2.3.3.4], we obtain

CO

J  f r A ^ ) T~1 dr  = J  ezt dz J  T-7  e x p ( - r ^ )  dr
0  <7 —  2 0 0  0

< 7 + 2 0 0

=  r ( 1 ~ 7) [  e^ - K i - 7 )  dz  =  ^(1 -  7) t K i-7 )- i  t > 0 . (2.5)
2iti J  r(z/(l — 7 ))

<7 —  2 0 0

Applying relation (2.5) to  (2.4) twice and com puting the obtained integral, we have

'■■«>' s  m A 1*'-'" * » « ' • r i a i S S i

* « » " ‘ n T S i r 1 «  S j T  ( ' “ • w - " ) -
Using item  (iii) in Condition 3, we estim ate (in the same way) the norm of the difference

t  CO

\\w2(t) -  wi(t)\\ <  J  J  f T A t - s ) \ \ B ( t ) T p ( T )  (F(s,  w\)  — F{s,  0)) || drds  
0  0

t  00

s  j  ,1» , ,  ! J , - ,  ..... .

Taking into account (2.6), for n  £ N ,  by induction, we obtain the inequality

. . .  M  ... MU ,  V ' U }  n w  I, . Co m  f t n « f ) T O . W , \
| K ( i ) - a . „ - i ( t ) | | < -------- ^ ---------[ t  I M  +  ^ i  +  r ( n i  +  „ )  ‘ ) '  {2J)

Hence, the series
CO

£ > n ( * )  -  Wn- i ( t )) 
n =  1

uniformly converges on any segment [io,£i], 0 <  to <  t \ .  Therefore, wn (t) uniformly converges to  a 
function w(t)  on the same segment, where w(t)  is continuous on [to,^i] and satisfies Eq. (2.3). By 
virtue of (2.7), the following estim ate holds for th a t function:



^  L kM k+lTk+l(5/v) /  j k+1)s_i  H H Co ,(k+i)s | CoT((k +  l)ô)T(^) (k+1)s+ l̂_ 1 
- 2 r f f b  + u f t  \ l  l|Mo|l +  f t 4 i ^  +  r ( ( h  + i U- i - i A 1T ( ( k  +  1 ) 5 )  V  ( k  +  l ) 5  T ( ( k  + l ) 5  +  i^)

<5-1 1 7  f  T i\,r -T-fx / , , \ + S \  \\„. i l  , n + S v  ( t  t v s  /,.\+<5=  M 2r ( V ^ )  ( r -1 ^  ( I M 2r ( W  ) IKII + C o f E s>s+1 [ L M 2T ( 5 /v ) td

+CoT{p)t&+i1- l E ëtë+ll ( L M 2T{5 /v ) t& ) ) , (2.8)

where E aA ' )  is a function of the Mittag-Leffler type, t  e  [io,ti], 0 <  to <  t \ .
Since the segment [to, ^i] is chosen arbitrarily, it follows th a t the function w(t)  is a solution of 

Eq. (2.3) continuous on (0, oo) and satisfying inequality (2.8) on (0, oo), i.e., w(t)  is absolutely inte­
grable at the origin. Moreover, from relation (2.3), we conclude th a t the function w( t ) satisfies item 
(ii) in Condition 2.

Finally, using relation (2.2) and Theorem  1.2, we obtain the following representation of the solu­
tion u ( t ) of problem (1), (2):

t CO

u ( t )  =  J  f r , v ( t ) T fi(T) u0 d r  + J  J  f T,v { t -  s)T/3 ( t ) F ( s , w ( s ) )  d r d s .  

o o o
By virtue of (5), (2.8), (2.5), and item  (ii) in Condition 3, it satisfies the inequality

CO

IHt)H < [  f r A t ) l|2>(r)«o|| d r

0
t CO t CO

+ J  J  fr,v(t -  s)\ \Ti3( t )F(s ,0) \ \  drds  +  J  J  f T A t - s ) \ \ T p ( T ) ( F ( s , w ( s ) )  -  F(s,0)\\  drds  
o o  o o

^ t a ~ l ...........C0M1r(/5)r C0M1r(/5)r(/x)r+^-1
S    Mo H------- 777------!  H

+

r(a) r(a; + l) T ( a  +  fi)

L M i M 2T(/3)T(1 -  7 )
j \ t -  s )" “ V “ 1^  ( l M 2T ( ô /v ) s 5^ ds

+

T(a)
o

CqL M i M2T(P)T(5/ v) f u  ^  Sjp , s\ ,
----------------------------------  J  ( t  -  s)a Ls°Es,s+i [ L M 2T(6/ v)s°J ds

0
t

C0L M l M 2T{f i)T{5/u)T{n)

T(a)
Therefore, the solution satisfies the estim ate

J ( t -  s T ~ l s&+» - l E SMll  ( L M 2T ( S / v )ss)  ds.

<  +  C o M iT W V *  +  C'0M 1r(/5 )r(/x )ta+^ - 1
r(a) r(a; + l) T (a  + /j,)

+ L M 1M 2T(p)T(ô /u )  ( ta+&- l E s>a+s ( l,M2T{6 /v ) t&



+ C 0t a+sE s,a+s+1 ( L M 2T ( 5 / v ) t s )  + C 0T ( n ) t a+s+^ - l E &ta+&+̂  [ L M 2T ( 5 / v ) t s 

The following relation was used:

I a (tp~ l E a>p (cta)) = ta+p~ l E a>a+p (cta) , a, a, p > 0

(see [18, p. 141, formula (23)]).
To establish the uniqueness of the solution of problem (1), (2), we assume, to  the contrary, th a t 

there exists another solution. We denote it by U( t ) .  Then, by virtue of Theorems 1.1 and 1.2, we have
CO t  OO

U ( t )  =  J  f T>u( t )Tp( T)uo  d r  +  J  J  f T>u(t  ~  s)T[3 ( t ) F ( s , W ( s ) )  d r d s ,

o o o

where W (t )  satisfies Eq. (2.3).
Let us prove the uniqueness of the solution of Eq. (2.3) in the class of functions continuous on (0, oo) 

and satisfying the estim ate

\\W(t)\\ <  M i5_ 1ewt, M  >  0, w >  0, (2.9)

where 5 = v ( l — 7) < 1. Note th a t the functions satisfying estim ate (2.8) belong to  the specified class 
due to  the following asym ptotic behavior of the Mittag-Leffler function for 0 <  n  < 2 (see [2, p. 134]):

1 U 1 /  1 \
E,v U )  = - ^ - ^ e x p  ( ,* /- )  -  g  + O ( ^  , ,  e  R, t ^  + 00. (2.10)

Let b > 0 and t  e  (0, b]. Set
m  = sup ( t ^ e - ^ W W i t ) - w ( t ) | |) .

*€[0,6]
The suprem um  is finite because we consider the class of functions satisfying inequality (2.9).

The difference W (t )  — w( t ) satisfies Eq. (2.3) for uq =  0. Therefore, taking into account rela­
tion (2.5), we have

t

\ \ W ( t ) - w ( t ) \ \  < LM2p ^  ^  J ( t - s f - ' W W i s )  - w ( s ) \ \ d s

0

= LM2r(l  -  7 ) l \ \ \ W ( t )  -  ™(*)||). (2.11)

Hence, the following inequality holds:
t

\ \ W ( t ) - w ( t ) \ \  < LM 2T^ r. 7 ^m f  (t — s)s~ 1ss~ 1eUJS ds = L M 2T(1 — j ) m  I s (ts~ 1eujt). (2.12)
r W  J

0

Substitu ting (2.12) into (2.11), we obtain the inequality

\\W(t) - w ( t ) \ \  < L 2M f r 2( l  -  7 ) m /2V 1ew*)- 

Continuing this procedure, we arrive a t the inequality

k k k *
\ \ W ( t ) - w ( t ) \ \  < L kM%Tk(l  - 7 ) m /fc<5(t‘5- 1ewt) =  L *M 2^ ( 1  ~  7 )m  f  ̂  ^

1 (kd) J 
0

< LfcM2fcr^(1 - t (k + l )S - l  u,t f all k e N ' (213) 
T((k + 1)5)



Taking the supremum, we obtain the inequality

771 -  T( (k  + 1)6)

The factor
LfcM2fcr fc( l - 7 ) r f f l  kS 

T((k + 1)5)
is the common term  of the series defining the Mittag-Leffler function (cf. (2.8)). Therefore, it vanishes 
as k —> oo. Thus,

m  = sup ( t ^ e - ^ W W i t )  -  w (t)||) =  0 .
*€[0,6]

Since the positive num ber b was chosen arbitrarily, it follows th a t W (t )  = w ( t ) for t  > 0. This 
completes the proof of the uniqueness. □

Note th a t estim ate (2.1) contains a detailed dependence of the solution on the d a ta  of the problem. 
This dependence can be used in further research. If only the behavior of solution of problem (1), (2) 
as t  —> 0 and i —>• oo is investigated, then, taking into account (2 .10), one can represent estim ate (2 .1) 
as follows:

\\u(t)\\ <  M ia _ 1ewlt||«o||, M  > 0, wi >  0. (2.14)
Theorem  2.1 establishes the solvability of problem (1), (2) for any a  provided th a t 0 <  a  < /3 < 1, 

Conditions 1-4 are satisfied, and uj = 0 in inequalities (5) and (6). Let us prove th a t if 0 <  a  = /3 < 1, 
then similar results can be obtained w ithout the requirem ent uj = 0 in inequalities (5) and (6) and 
w ithout Condition 4.

T h e o re m  2.2. Let Conditions 1-3 be satisfied, and let a  =  /3 < 1. Then problem (1), (2) has a 
unique solution satisfying estimate (2.14).

Proof. Taking into account Theorem  1.2, we reduce problem (1), (2) to  the integral equation
t

u( t ) =  Ta (t)u0 +  J  Ta ( t -  s )F  (s, B ( s )u ( s )) ds. (2.15)
o

Introducing w ( t ) =  B(t)u( t ) ,  we obtain the equation
t

w(t) = Ta (t)u0 + j  B ( t )T a (t -  s )F (s ,w ( s ) )d s .  (2.16)
o

To solve it by the iteration m ethod, we set
t

wo(t) = 0, wi( t)  = Ta (t)u0, wn+i(t) = Ta (t)u0 +  J  B ( t )T a (t -  s ) F ( s ,w n (s)) ds, n e N .
o

Using inequalities (5) and (6) and item  (iii) in Condition 3, we estim ate the norm  of the following 
difference:

t

I\w2(t) -  wi(*)|| <  L M 2 J ( t -  s Y ^ e ^ - ^  |K ( s ) | |  ds < L M \ M 2T(1 -  7 )eMtI l ^ ( t a- 1) | K | | . (2.17)
o

Taking into account (2.17), by induction, we obtain the relation

\\wn (t) - w ra_i(t) | |  <  M \ L n~ l M 2 ~ l Tn~ l (I — 7 )ewt/ ( ra-1)(1-7) (t“ - 1) l^oll



k M I I S M . r - e -   r ( a  +  * ( l - 7 ))

_  M . L - 1 M r  T t a l r - H l -  7 ) „ - m i- - , )c„,,, ,, №
r ( a + ( n - l ) ( l - 7 ) )  "

Further reasoning regarding the existence of a unique solution is similar to  the proof of Theorem  2.1. 
The following estim ate holds for the solution w(t)  of Eq. (2.16):

+  r(rv +  fcn -  Vrt -  0 1

(2.18)
where Md >  0 and ujq > uj.

Using (2.18), we deduce estim ate (2.14) of the solution u(t)  of problem (1), (2) from relation 
(2.15). □

R em ark  2.1. An assertion similar to  Theorem  2.2 is also valid for a  = fi =  1, but item  (ii) in 
Condition 2 should be replaced by the following assum ption: for any x  € D,  either the functions 
B ( t ) x  and A B ( t ) x  belong to  C([0, oo) ,E )  and the function B ( t ) x  takes values in D(A)  or the function 
B ( t ) x  belongs to  C 1([0, oo), E).

The following assertion is a theorem  on the continuous dependence of the solution of problem (1), 
(2) on the initial data.

T h eorem  2.3. Suppose that the conditions of  Theorem 2.1 are satisfied and un (t) is the sequence of  
solutions of  the problem

D aun (t) = A u n (t) +  F  (t, B ( t ) u n (t) ) , t >  0, (2.19)

lim D a~ lun (t) = gn e  D(A).  (2.20)
t —s-o

I f  9n ► uo G D(A) ,  Agn —> Auo, and B{t)gn —> B(t)uo uniformly with respect to t  e  (0, 6] for  any
positive b, then the sequence un (t) of  the solutions of  problem (2.19), (2.20) converges to a solution u{t)
of problem (1), (2) uniformly with respect to t  e  [to, b] for  any to € (0 , b).

t a ~  ^
Proof. Consider the sequence Un (t) = un (t) — gn , which satisfies the problem

T(a)
-̂Oi— 1 \  f,a~ ̂

D a Un (t) =  AUn (t) + F  ( t ,  B( t )Un (t) +  Y { a ) B<yt^9n)  +  f ( a ) A9n’ ('2'21')

l\m D a~ Un (t) = 0. (2.22)
t —s-0

By Theorems 1.1 and 1.2, the function Un (t) satisfies the integral equation

t  OO 1 1

Un(t) = j  j  f r A t  -  s)Tp{r) ( f  ^s,  B (s )Un (s) +  yA g ^ j drds.
0 0

Setting W n (t) =  B(t)Un (t), we obtain (as in the proof of Theorem  2.1) th a t

t  OO 1 1

Un(t) = j  j  f r A t  -  s)Tp{r) ( f  ^s,  W n (s) +  ^ J a ) A 9n^J drds,  (2.23)
0 0

where W n (t) satisfies the integral equation

t  OO 1 1

Wn (t) = J  J  f r A t  -  s)B{t)Tp{r)  (f ̂ s ,  W n (s) +  Y ^ B (s )9n^j + Y ^ A 9 n j  drds.  (2.24)
0 0



Let n  and k  be sufficiently large positive integers and e > 0. Taking (2.24) into account, we obtain 
(as in the proof of Theorem  (2.13)) th a t

t

IIW n (t) -  W ki t )II <  L M^ / v )  j { t -  s )“5- 1! ! ^ )  -  w k {s)\\ ds
0

M 2 T ( 5 /v  *
+  r ( 5) r ( a )

o

J ( t -  s)s 1 sa 1 (\\Agn -  Agk \\ +  L \\B(s)gn -  B (s )gk \\) ds

and
m =  sup ( t1 se u t \\Wn (t) -  W k{t)\\) < M 0m  +  e, M 0 <  1. 

te[o,&]

Hence, m  <  -----— . Then, by virtue of the completeness of the space E,  the sequence t 1_<5e~ujtW n (t)
1 — Mo

converges to  a function i 1-<5e~ujtW ( t )  continuous on [0,6] uniformly w ith respect to  t  € [0,6]. Thus, 
W n (t) converges to  a function W (t )  uniformly w ith respect to  t  e  [to, 6], 0 < to < b, where W (t )  
satisfies inequality (2.9) and item  (ii) in Condition 2.

Relation (2.23) implies the uniform (with respect to  t  € [to, 6]) convergence of Un (t) to  the function

t  OO 1 1

U(t) = j  j  U A t  ~  s )Tfi(T) ( f  W (s ) +  B ( s )u 0 ĵ +  drds,
o o

t a - 1
which satisfies problem (2.21), (2.22). Finally, u n (t) converges to  the function u ( t )  =  U ( t )  H r ^ u o

r ( a )
uniformly w ith respect to  t  € [to, 6], while u( t )  satisfies problem (1), (2). □

R em ark  2.2. An assertion similar to  Theorem  2.3 on the continuous dependence of the solution of 
problem (1), (2) on the initial d a ta  can also be form ulated and proved for a  =  /3 < 1.

In the particular case where the operator B  does not depend on t and is bounded and Condition 4 
is satisfied, the part of Theorem  2.2 regarding the unique solvability contains [6 , Theorem  8]. In [6], 
it is proved th a t (in the specified particular case) for a  =  /3 < 1, the resolving operator Ta (t, A  +  B)  
for problem (1), (2) is of the form

Ta ( t , A  + B)  = Y , S n (t),
n = 0

where S'o(t) =  Ta (t, A)  is the resolving operator for problem (3), (4) for /3 = a  and
t

Sn (t) = J  Ta ( t - s , A ) B S n- i ( s ) d s ,  n  = 1, 2, . . . .  
o

In [3], the perturbation  theorem  is proved for an equation which, unlike Eq. (1), contains the Caputo 
fractional derivative, provided th a t the operator A  is a generator of an analytic semigroup and (3 = 1. 
The following example is given in [3].

E xam p le  2.1. Let E  = L 2 (Mra). Then Condition 4 is satisfied (see [1, p. 20]). We define the operator 
A  on the set D(A)  =  W ^ m (Kra) as follows:

, , . , d Pl+'"+Pnu( t ,x )
A u ( t , x )  = ^  ap(x ) dxv i . . . dxvn >

\ p \= 2 m  1 U



where
£  ap( x ) e  > ( - i ) m+1M 0iei2m

\p \= 2 m

for all x, g G M™ and the coefficients ap(x), |p| =  2m, satisfy the Holder condition uniformly in R™. It
is known from [3] th a t the operator A  satisfies Condition 1 if (3 = 1 and oj = 0.

We define the operator B( t)  on D  = (Kra) D D(A)  as follows:

x , x v -  , , d Pl+- +Pnu( t , x )  f  , _,dPl+- +Pnu ( t , 0  1A
B{ t )u{ t ,x )  = 2 ^  av ^ x ) dx^ . . . d x ^  +  J  Z_> bp& X ’O d£pi ■■■()№ ^

\p \< 2 m — 1  ̂ U q  \ p \< 2 m —l  ^ n

where Q C  M™, the coefficients ap( t , x ) are continuous and bounded with respect to  x  G M™ for any 
\p\ < 2m — 1 and any t  > 0 and satisfy the Holder condition w ith respect to  t  w ith power /x >  a
uniformly w ith respect to  x  G M™, the coefficients bp(t ,x ,g )  are continuous,

J  J \ b P (t, x,  £)|2 dgdx < +oo,
I "  n

and
/  /  \bp (t2 ,x ,£ )  - b p ( t i , x ,g ) \ 2 dgdx < C \ t 2 - h f ,  n  > a, C  > 0.

Rn Q

It is known from [3] th a t there exists 7  e  (0,1) such th a t the operator B( t)  satisfies Condition 2 for 
w =  0 .

Let the operator F(t ,  w)  satisfy Condition 3. Then, by virtue of Theorems 2.1 and 2.3, problem (1),
(2) (the Cauchy-type problem for an integrodifferential equation) is well posed and uniquely solvable
for uo(x)  G Wr22m (Kra) and a  < 1.

3. L oaded F ractional-O rder D ifferen tia l E q u ation s

Consider the following Cauchy-type problem in a Banach space E:

D au(t)  =  Au(t)  +  g(u(t))p, t  > 0, (3.1)

lim D a~ 1u(t) = Uo, (3.2)
t —s-o

where 0 < c k <  l , c / i s a  nonlinear continuous functional defined on E, A  is a linear closed densely 
defined operator, and p is a fixed element of the space E.

Problem  (3.1), (3.2) is a particular case of problem (1), (2) for F(t ,  B(t)u( t ) )  = g(u(t))p.  Equa­
tion (3.1) contains the functional g depending on the sought solution u(t).  Hence, it is natural to  call 
it a loaded differential equation (see the definition of a loaded differential equation, e.g., in [12, Chap. 
2 ])-

C o n d itio n  3.1. (i) I f  the funct ion I l ~au(t) is continuous for  t > 0 and continuously differentiable
for  t > 0, then the funct ion D ag(u(t )) belongs to C((0,  00), E) and is absolutely integrable at 
the origin.

(ii) For any u , v  G E, there exists a positive L  such that

\g(u) -  g(v)\ < L\\u -  v\\. (3.3)

Theorems 2.1 and 2.2 imply the validity of the following assertions.

T h eorem  3.1. Let a  < (3 < 1, Condition 1 be satisfied, and uj = 0 in inequality (5). Let Conditions 
4 and 3.1 be satisfied. Then problem (3.1), (3.2) has a unique solution satisfying the estimate

||-u(i)|| <  M ia - 1eWlt||-uo||, M  > 0, (3.4)

T h eorem  3.2. Let a  = (3 < 1 and Conditions 1 and 3.1 be satisfied. Then problem (3.1), (3.2) has 
a unique solution satisfying estimate (3.4).



The above solvability theorem s for the Cauchy-type problem for loaded abstract equations can be 
used for the investigation of inverse coefficient problems for fractional-order equations.

4. Inverse P ro b lem s for F ractional-O rder D ifferen tia l E q u ation s

Consider the problem of finding a pair (w(t),<p(t)) satisfying the following conditions:

D^w{t)  =  Aw(t)  +  <p(t)p, t  > 0 , (4.1)

lim D ^ ~ 1w(t) = Uo, (4.2)
t —s-o

f(w(t)) =ip(t), (4.3)
where 0 <  (3 <  1, p  and uq are fixed elements of D(A) ,  f  is a linear continuous functional over E  (i.e., 
/  belongs to  the adjoint space E*),  and ip(t) is a given scalar function.

For example, a problem to  reconstruct the dependence of the pertu rbation  on the time, using an 
additional observation at a space point, is a particular in terpretation of the considered inverse problem.

D efin itio n  4 .1 . A pair (w(t),<p(t)) is called a solution of problem (4.1)-(4.3) if w(t)  is an abstract 
function and <p(t) is an absolutely integrable function such th a t w(t)  satisfies Eq. (4.1) and Condi­
tions (4.2) and (4.3).

In [14], one can find a review of publications devoted to  inverse problems for abstract integer-order
differential equations. In [17], their particular im plem entations can be found. The inverse problem
(4.1)-(4.3) for fractional-order equations was not considered before.

C o n d itio n  4 .1 . (i) 0 <  /3 <  1 and p £ D(A) ,  where D ( A ) is the domain of the operator A.
(ii) /  € E* and f (p)  /  0 ( the nondegeneracy condition).

(iii) The scalar funct ion  I 1-^ ^ )  is continuous for  t > 0 and continuously differentiable for  t > 
0, the fractional derivative D^ip(t) is absolutely integrable at the origin, and the conjugation 
condition

/ M  =  l i m ^  V ( t)
t —s-0

is satisfied.

In particular implem entations, the nondegeneracy condition f (p)  /  0 means th a t a reconstructable 
source acts a t the observation point (see [17]).

T h eorem  4.1 . Let Conditions 1 and  4.1 be satisfied. Then problem (4.1)-(4.3) has a unique solution. 

Proof. A solution of problem (4.1)-(4.3) is sought in the form

w(t) = 6(t)p + u(t),  (4.4)

where
0(t) = I ^ ( t ) .  (4.5)

It is easy to  verify th a t the function u(t)  satisfies the equation

D ^ u ^ )  = Au(t)  +  6(t)Ap, t  > 0,

and the initial condition
lim D ^ ~ lu(t)  =  Uo- (4.6)
t —s-0

Taking into account condition (4.3), we obtain the following linear equation for the function 0(t):

m  = m f ( p ) + f « t ) ) .  (4.7)

Thus, to  solve inverse problem (4.1)—(4.3), it suffices to  find a solution of the loaded equation

D@u(t) = Au(t)  +  g(u(t))q, t  > 0, (4.8)



9 W t »  =  « _ « ! !

is a continuous functional (its linearity is not assumed).
By assum ption, the operator A  satisfies Condition 1. Obviously, the functional g(u(t))  satisfies 

Condition 3.1. By virtue of Theorem  3.2, the Cauchy-type problem (4.8), (4.6) has a unique solution 
u(t).

The function ip(t) can be uniquely found from relations (4.5) and (4.7). It is of the form

vi f )  = -  f  ( V u m ) ) .

Finally, the function w(t)  is defined by relation (4.4). □

A ck n ow led gem en t

This work was supported by the Russian Foundation for Basic Research (project 07-01-00131).

R E F E R E N C E S

1. W. A rendt, C. Batty, M. Hieber, and F. N eubrander, Laplace Transforms and Cauchy Problems, 
Birkhauser-Verlag, B asel-B oston-B erlin (2001).

2. M. M. Dzhrbashyan, Integral Transformations and the Presentation of  Functions in a Complex 
Domain  [in Russian], Nauka, Moscow (1966).

3. M. M. El-Borai, “Some probability densities and fundam ental solutions of fractional evolution 
equations,” Chaos, Solitons and Fractals, 14, 433-440 (2002).

4. A. V. Glushak, “On the Cauchy-type problem for abstract fractional-order differential equations,” 
Vestnik Voronezh. Univ. Ser. Fiz. Mat., No. 2, 74-77 (2001).

5. A. V. Glushak and H. K. Avad, “On perturbations of abstract fractional differential equations,” 
Dokl. Adyg ( Cherkes) Int. Akad. Nauk,  10, No. 1, 25-31 (2008).

6. A. V. Glushak and Yu.V . Povalyaeva, “On properties of solutions of Cauchy-type problems for 
abstract fractional differential equations,” Spectral and Evolution Problems, 14, 163-172 (2004).

7. K. Iosida, Functional Analysis  [Russian translation], Mir, Moscow (1967).
8. T. K ato, Perturbation Theory for  Linear Operators [Russian translation], Mir, Moscow (1972).
9. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Application of  Fractional Differential 

Equations,  Elsevier Science B.V., A m sterdam  (2006).
10. V. A. Kostin, “The Cauchy problem for an abstract differential equation w ith fractional deriva­

tives,” Russian Acad. Sci. Dokl. Math., 46, No. 2, 316-319 (1992).
11. M. A. Krasnosel’skii, P .P . Zabreiko, E. I .  P u sty l’nik, and P. E. Sobolevski, Integral Operators in 

Spaces of Summable Functions [in Russian], Nauka, Moscow (1966).
12. A.M.  Nakhushev, Equations of Mathematical Biology [in Russian], Vysshaya Shkola, Moscow 

(1995).
13. A.M.  Nakhushev, Fractional Calculus and Applications [in Russian], F izm atlit, Moscow (2003).
14. A .I. Prilepko, D.G.  Orlovsky, and I. A. Vasin, Methods for  Solving Inverse Problems in Mathe­

matical Physics, Marcel Dekker, New York-Basel (2000).
15. A. P. Prudnikov, Yu. A. Brychkov, and O.I.  Marichev, Integrals and Series. Elementary Functions 

[in Russian], Nauka, Moscow (1981).
16. A. V. Pskhu, Boundary-Value Problems for  Fractional-Order and Continual-Order Partial Differ­

ential Equations  [in Russian], Kabardino-Balkar Scientific Center, N al’chik (2005).
17. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for  Solving Inverse Problems of  

Mathematical Physics, W alter de Gruyter, Berlin (2007).

satisfying condition (4.6), where q = Ap  e  E  and



18. S.G.  Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and 
Some of Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).

Hamed K am al’ Avad 
Belgorod State University 
M athem atical Analysis D epartm ent 
Alexandr Vasil’evich Glushak 
Belgorod State University 
M athem atical Analysis D epartm ent 
E-mail: a leg lu @ m ail.ru

mailto:aleglu@mail.ru

