получено. Это значит, что мнение о том, что женщины страдают дисфункцией чаще, не подтверждено.

Заключение. Профилактические мероприятия лечения дисфункций ВНЧС многофакторны. Первичной профилактикой для предотвращения дисфункции височнонижнечелюстного сустава является рациональное своевременное лечение дефектов зубного ряда и зубочелюстных аномалий. Также необходима своевременная коррекция вредных привычек (сжимание челюстей во время эмоционального напряжения, жевание ручек и карандашей, жевание на одной стороне челюсти и т.д.), способствующих возникновению патологии. Если рассматривать дисфункцию ВНЧС как психосоматическую патологию, необходимо включать в профилактику и лечение психологические методы (аутотренинги). Вторичная профилактика направлена на предотвращение ухудшения состояния больного, что включает в себя профилактику повторных мышечных спазмов и профилактику спаечного процесса.

Оганесян А.И., Разиньков П.Н. МЕХАНИЗМ ВЛИЯНИЯ САХАРНОГО ДИАБЕТА НА ТКАНИ ПАРОДОНТА

Медицинский институт НИУ «БелГУ» кафедра стоматологии общей практики, г. Белгород

Актуальность. Сахарный диабет – распространённое эндокринное заболевание, которое относится к факторам риска для развития изменений в тканях пародонта. Актуальным является детальное изучение состояния кислотно-основного равновесия в полости рта у больных СД. В возникновении воспаления тканей пародонта играют роль изменения местного иммунитета в полости рта. Нарушается фагоцитоз моноцитамимакрофагами микроорганизмов полости рта. Содержание лизоцима в слюне у больных сахарным диабетом снижается в полтора раза по сравнению со здоровыми. Происходит увеличение содержания иммуноглобулинов А и С наряду с уменьшением содержания иммуноглобулина М в слюне. Снижение содержания лизоцима и увеличение содержания IgA и IgG говорят о дисбалансе неспецифических (лизоцим) и специфических (иммуноглобулины) факторов местного иммунитета полости рта у больных сахарным диабетом. Уменьшается стойкость капилляров и увеличивается проницаемость сосудов. На фоне гипоксии и снижения устойчивости тканей пародонта к действию местных неблагоприятных факторов возрастает роль микроорганизмов, а высокая концентрация глюкозы в десневой жидкости у больных сахарным диабетом способствует размножению микроорганизмов и быстрому образованию зубного камня.

Цель исследования: изучение состояния полости рта у больных сахарным диабетом путем изучения кислотно-основного равновесия ротовой жидкости.

Материалы и методы. В Межрегиональном Центре Стоматологических Инноваций им. Б.В. Трифонова НИУ «БелГУ» были изучены результаты стоматологических обследований 60 больных сахарным диабетом. Все пациенты были распределены на 2 группы: основная и группа сравнения. В основную группу входило 38 пациентов с сахарным диабетом 1 типа, а группу сравнения составили 22 пациента с сахарным диабетом 2 типа. Возрастной диапазон пациентов составили исследуемые в возрасте от 40 до 60 лет.

Результаты исследования и их обсуждение. Изменения полости рта у больных сахарным диабетом определялись недостаточностью выработки инсулина или нарушением взаимодействия инсулина с клетками тканей организма и вследствие этого постоянным избытком глюкозы в крови. Известно, инсулин активно участвует в обмене глюкозы в организме человека, участвует в процессах гликолиза, липолиза, протеолиза, активирует Na, $K-AT\Phi$ -азу — способствует обратному всасыванию Na и H_2O .

Сахарный диабет 1 типа (инсулинозависимый диабет) — поджелудочная железа не вырабатывает инсулин, возникает гипергликемия с нехваткой глюкозы в тканях. Сахарный диабет 2 типа (инсулинонезависимый) — нарушение взаимодействия инсулина с клетками тканей организма, клетки теряют чувствительность к инсулину, возникает гипергликемия с нехваткой глюкозы в тканях.

При сахарном диабете основным патогенетическим фактором является гипергликемия – состояние, при котором в крови и моче уровень глюкозы увеличен, в то время как в тканях организма имеет место катастрофическая нехватка глюкозы. При повышенном содержании сахара и глюкозы в крови с одновременной нехваткой в клетках тканей органов имеет место глюкозурия, полиурия, дегидратация, характерным является снижение функции слюнных желез – гипосаливация, отмечается сухость слизистой полости рта.

В начальных стадиях имеет место компенсаторный местный ацидоз со смещением рН смешанной слюны в кислую сторону до 6,17+0,04; при усугублении болезни наступает стойкое нарушение кислотно-щелочного баланса в полости рта. В результате изменений ферментативной активности крови, тканевой жидкости, слюны, десневой жидкости увеличивается уровень щелочной фосфатазы в 5,8 раза; возрастает активность альфаамилазы. В слюне повышается уровень ионов кальция, понижается уровень ионов фосфата, что приводит к резорбции и деминерализации костной ткани.

Сосудистые осложнения приводят к нарушению микробиоценоза в полости рта и кандидозу. Изменения в полости рта при СД характеризуются: наличием микроангиопатий и повышенным содержанием глюкозы в слюне, что оказывает негативное влияние на ткани пародонта и снижает его репаративную функцию. Гипергликемия и скачки уровня глюкозы в крови в течение суток часто приводят к подавлению саливации, ощущению сухости в полости рта. Содержание глюкозы в слюне при пародонтите на фоне СД колеблется в пределах 0,15—0,23 ммоль/л. Снижение слюноотделения на фоне гипергликемии создает благоприятные условия для развития дисбактериоза в полости рта с активацией пародонтопатогенной и грибковой микрофлоры. РН слюны у больных диабетом имеет тенденцию к смещению в кислую сторону, и составляет в среднем рН 6,17+0,04 ед. Амплитуда тестовой кривой рН после карбамидной нагрузки достоверно больше, чем у обследованных без СД и составляет 0,94±0,05 ед.

Больные СД более склонны к развитию заболеваний пародонта, дисфункции слюнных желез, кариесу зубов, также они подвержены значительно большему риску осложнений при проведении местной анестезии, а также при хирургических вмешательствах в полости рта. Изменения полости рта при сахарном диабете связаны с воспалительными заболеваниями пародонта, десен, грибковыми инфекциям полости рта и кариесом.

Наиболее распространенными патологическими изменения полости рта при СД являются пародонтит, глоссит, гингивит, кариес, кандидоз и трофические язвы полости рта. Самое частое осложнение сахарного диабета — пародонтит обусловлен высоким уровнем сахара в крови, недостаточностью функции слюнных желез, снижением бактерицидных и увлажняющих свойств слюны, и в результате воспаления отмечается сухость во рту, жжение слизистой и неприятный запах изо рта. Оголенные шейки зубов начинают реагировать на горячее, холодное или кислое. Глоссит, гингивит, стоматит — воспалительные явления всей слизистой рта или некоторых ее участков. Характеризуется нарушением барьерных качеств слизистой, инфицированием, уменьшением выделения слюны, развитием дисбактериоза. Жалобы больных на болевые ощущения при употреблении пищи, особенно твердой и горячей. При осмотре отмечается слизистая сухая, воспалена, могут быть эрозии и кровоизлияния.

При СД дисбаланс кальциево-фосфорного обмена, нехватка кальция и фтора приводит к трещинам эмали, которые заполняются остатками пищи приводит к кариесу. Гипергликемия приводит к снижению саливации и снижению бактерицидных возможностей, вследствие чего увеличиваются патогенные бактерии и развивается пульпит и другие осложнения. Кандидоз является грибковым заболеванием слизистой полости рта,

вызванной грибами Candida albicans. Повышенный уровень глюкозы в крови приводит к увеличению концентрации глюкозы в слюне и повышению размножения кандид в ротовой полости пациента. Без нормализации сахара крови и слюны сложно устранить грибковое поражение слизистой рта.

Заключение. Основным методом профилактики заболевания полости рта при СД является нормогликемия. При нестабильной гипергликемии имеется высокий риск развития пародонтита и выпадения здоровых зубов, кандидозного воспаления слизистой и кариеса. Таким образом, стоматологический статус больных с СД зависит от уровня глюкозы в крови, слюне и десневой жидкости, поэтому меры по нормализации глюкозы крови являются одновременно и профилактикой всех изменений полости рта.

Олесова Э.А.¹, Заславский Р.С.¹, Абакаров С.И.², Агами М.Б.¹ БИОМЕХАНИЧЕСКИЕ ФАКТОРЫ РИСКА ПРИ ОПОРЕ МОСТОВИДНОГО ПРОТЕЗА НА ЗУБЫ И ИМПЛАНТАТЫ

¹Медико-биологический университет инноваций и непрерывного образования ФГБУ ГНЦ «Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА, г. Москва ²ФГБОУ ДПО «Российская медицинская академия непрерывног профессионального образования» МЗ РФ г. Москва

Актуальность. Несмотря на теоретические предпосылки негативного воздействия нагрузки на костную ткань вокруг имплантата, если он является опорой мостовидного протеза наряду с естественным зубом, не все стоматологи разделяют это мнение. На современном этапе недостаточно научных сведений, показывающих степень снижения клинической эффективности мостовидных протезов с опорой на зубы и имплантаты по сравнению с опорой только на имплантаты.

В связи с возможностями трёхмерного математического моделирования функциональных напряжений в костной ткани появляется возможность сопоставить величину напряжений вокруг имплантата и зуба, являющихся опорой мостовидного протеза, в условиях математической модели [1].

Цель исследования: экспериментальное сравнение величины и распределения функциональных напряжений вокруг зуба и имплантата, являющихся опорой мостовидного протеза.

Материал и методы. Математическое моделирование осуществлялось при приложении в средину окклюзионной пверхности мостовидного протеза с опорой на имплантат и зуб нагрузки 150 Н в вертикальном и наклонном направлениях. Моделирование протеза окружающей кортикальной и губчатой ткани производилось в программе Abaqus/CAE (ТЕСИС). Размеры протеза из трёх единиц, имплантата, зуба, сегмента нижней челюсти соответствовали естественным (длина имплантата 11 мм, диаметр 3 мм, длина корня зуба 17 мм, диаметр в области шейки 5,5 мм, толщина кортикальной костной ткани 1,1 мм по альвеолярному гребню, толщина кортикальной лунки 0,42 мм, толщина кортикального базального края челюсти 2,1 мм). Физикомеханические свойства моделированных тканей и материалов соответствовали литературным данным, в частности, модуль упругости кортикальной и губчатой кости, керамики, титана, дентина был 20500 МПа, 3500 МПа, 200000 МПа, 116000 МПа, 23300 МПа; коэффициент Пуассона 0,32; 0,34; 0,22; 0,32; 0,31 соответственно. В данном случае описаны интегральные напряжения по Мизесу.

Результаты исследования и их обсуждение. Результаты математического моделирования раскрыли неблагоприятную для опорного имплантата картину напряжённо-деформированного состояния в сравнении с опорным зубом (таблица 1).