Данное обследование позволяет оценить функциональное состояние зубочелюстного аппарата до начала ортопедического лечения по данным компьютерной стабилометрии, в процессе проведения стоматологического лечения и после его завершения.

Аномалии зубочелюстной системы негативно влияют на поддержание позы и показывают объективную возможность с помощью стоматологического лечения положительно влиять на постуральный статус человека.

Выводы.

- 1. Регистрация постурального баланса пациентов даёт объективную информацию о состоянии постуральной системы и её влияния на зубочелюстную систему.
- 2. Компьютерная стабилометрия позволяет выявить восходящий и нисходящий тип постуральной адаптации индивидуально у каждого больного.

Заключение. При выявлении значимых постуральных нарушений, причина которых лежит вне стоматологической сферы, в дальнейшем потребуется консультации врача остеопата или врачей других специальностей. Предварительное устранение соматических, висцеральных и краниальных нарушений, улучшение функционирования постуральной системы позволяет улучшить фоновые условия для проведения стоматологического лечения, минимизировать дискомфорт и риски осложнений, а также способствовать стабилизации и улучшению психоэмоционального фона пациента. И в результате в целом повысить качество его жизни.

Гайворонская $A.A.^{1}$, Войтяцкая $И.В.^{2,3}$, Черногаева $E.A.^{4}$ НАРУШЕНИЕ ФУНКЦИИ СЛУХОВОГО АНАЛИЗАТОРА ПРИ ЧАСТИЧНОЙ УТРАТЕ ЗУБОВ (СОСТОЯНИЕ ВОПРОСА)

¹«Стоматологическая поликлиника №20» Кировского района, г. Санкт-Петербург ²Санкт-Петербургский государственный университет, г. Санкт-Петербург ³Медицинский институт НИУ «БелГУ», г. Белгород ⁴Санкт-Петербургский педиатрический медицинский университет, г. Санкт-Петербург

Введение. Слуховой анализатор (слуховая сенсорная система) является вторым по значимости дистантным анализатором человека. Слух играет важнейшую роль у человека в связи с возникновением членораздельной речи.

Основная его функция – улавливание и переработка звуковой информации различного характера: шумы, речь человека, различные звуки и др. Звук распространяется в виде звуковых волн посредством колебания воздуха с разной частотой и силой. Акустические звуковые сигналы возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего, сенсорная информация передаётся в слуховую область коры большого мозга (височный отдел) через ряд последовательных структур.

На сегодняшний день врачам различных специальностей известно множество причин повреждения различных элементов слухового анализатора, которые проявляются следующими симптомами: шум в ушах, ослабление слуха, головокружение и другие.

В стоматологической практике наиболее часто встречающимся является — симптом «шум в ушах», который необходимо дифференцировать с патологией лор органов. Шум в ушах и слуховые расстройства могут возникать при повреждении любого участка слуховой сенсорной системы восприятия звуков.

Более пятнадцати лет на кафедре ортопедической стоматологии медицинской академии последипломного образования Санкт-Петербурга под руководством профессора

А.В. Цимбалистова проводились научные исследования, связанные с изучением опосредованного влияния различных стоматологических заболеваний на функцию зрения, равновесия, церебральной гемодинамики. Сегодня на профильных кафедрах Белгородского государственного университета и Санкт-Петербургского государственного университета продолжаются исследования о влиянии частичной потери зубов различной локализации и протяжённости на функцию слуха.

Цель исследования: изучить современное состояние вопроса о влиянии утраты зубов, сопровождающейся уменьшением межальвеолярного расстояния на слуховой анализатор по обзору отечественной и зарубежной литературы.

Материал исследования. Обзор отечественной и зарубежной литературы, в котором представлены основные стоматологические заболевания, сопровождающиеся окклюзионными нарушениями, изменениями в элементах височно-нижнечелюстного сустава и наличии шума в ушах у пациентов данной группы.

Состояние вопроса. Сенсорной системой, или анализатором, называют часть нервной системы, осуществляющей формирование ощущений и восприятий раздражителей внешнего и внутреннего мира. Ощущение — это субъективное отражение отдельных свойств, качеств реальных объектов объективной реальности. Восприятие — это субъективное отражение целостного объекта объективной реальности, формирующееся на основе суммации отдельных ощущений.

Анализаторы (сенсорные системы) представляют собой системы ввода информации в мозг и анализа этой информации, что, в свою очередь, является необходимым условием развития и функционирования ЦНС.

Эта информация используется для регуляции гомеостаза, адаптации, поведения и процессов познания. По И.М. Сеченову, ощущения являются корнями, из которых развиваются мысли: «...Отрывать разум от органов чувств — значит отрывать явление от источника, последствия от причины. Мир действительно существует помимо человека и живёт самобытной жизнью, но познания его человеком помимо органов чувств, невозможно, потому что продукты деятельности органов чувств суть источники всей психической жизни».

Учение об анализаторах было создано И.П. Павловым. Анализатором И.П. Павлов считал совокупность нейронов, участвующих в восприятии раздражений, проведении возбуждения, а также анализе его свойств клетками коры больших полушарий.

Анализатор рассматривался И.П. Павловым как единая система, состоящая из 3 основных отделов.

Периферический отдел анализатора – представлен рецептором, воспринимающим только адекватный раздражитель. Например:

- палочки и колбочки сетчатки начало зрительного анализатора;
- волосковые клетки кортиева органа внутреннего уха рецепторы слухового анализатора;
- волосковые клетки полукружных каналов и отолитового аппарата начало вестибулярного анализатора;
 - вкусовые сосочки языка рецепторы вкусового анализатора;
 - обонятельные рецепторы носовой полости начало обонятельного анализатора.

Проводниковый отдел анализатора — представлен проводящими путями, которые делятся на: специфические и неспецифические. Специфический путь анализатора включает в себя спинно— и черепно-мозговые нервы, восходящие пути и подкорковые центры, которые заканчиваются в определённом участке коры головного мозга. Например: специфический путь зрительного анализатора включает в себя зрительный нерв — верхние бугры четверохолмия в среднем мозге - латеральные коленчатые тела в таламусе.

• Специфический путь слухового анализатора состоит из слухового нерва - нижних бугров четверохолмия среднего мозга — медиальных коленчатых тел таламуса;

- специфический путь вестибулярного аппарата слуховой нерв вестибулярные ядра продолговатого мозга промежуточный мозг;
- специфический путь вкусового анализатора тройничный и языкоглоточный нервы ядра продолговатого мозга промежуточный мозг;
- специфический путь обонятельного анализатора обонятельный нерв обонятельные луковицы обонятельный тракт;
- специфический путь осязательного анализатора нервы от кожи спинной мозг продолговатый мозг промежуточный мозг.

Неспецифический путь анализатора проходит от рецепторов к ретикулярной формации, а оттуда оказывает активирующее влияние на всю кору больших полушарий.

Центральный отдел анализатора – это конкретный участок коры головного мозга, который отвечает за формирование ощущения. Например:

- зрительный анализатор затылочная доля коры;
- слуховой анализатор и вестибулярный аппарат височная доля коры;
- обонятельный анализатор гиппокамп и височная доля коры;
- вкусовой анализатор теменная доля коры;
- осязательный анализатор (соматосенсорная система) задняя центральная извилина (соматосенсорная зона);
 - двигательный анализатор передняя центральная извилина (моторная зона).

«Шум», с точки зрения акустики, это беспорядочный набор гармонических колебаний, не связанных между собой кратной цифровой связью. С точки зрения профпатолога, шум является нежелательным звуковым элементом, самые разнообразные, часто отрицательные, воздействия на организм (Lubcke E.,1935), L.L. Beranek (1971) считают, что звук становится шумом тогда, когда он вредит здоровью человека, мешает общению, затрудняя разборчивость обращённой речи, ухудшает выполнение работы, нарушает сон, вызывает чувство беспокойства, что сказывается на личной жизни.

В медицине под определением Тиннитус (Tinnitus), или стойкий шум в ушах, «ушной шум», «шум в ушах» подразумевают слуховое ощущение, как правило, вызванное причинами, локализующимися в самом организме. Именно поэтому эти шумы называют «эндогенными», в отличие от акустических сигналов (в том числе и шумов), которые формируются вне организма человека, и воспринимаются им извне и называются «экзогенные шумы». Звон или шум в ушах, возникающий без внешнего акустического стимула, может характеризоваться пациентами как гул, шипение, свист, звон, шум падающей воды, стрекотание кузнечиков.

R. Coles (1984) [2]. и А. Davis (1989) [3]. дали следующее определение: "Тиннитус – ощущение звука без его очевидного источника, которое длится более 5 минут и не следует сразу после воздействия интенсивного шума".

P. Jastreboff (1990) [4].: тиннитус это «слуховые ощущения, являющиеся исключительно результатом активности нервной системы и не связанные с механическими и колебательными процессами в улитке».

Объективный шум в ушах – слуховое ощущение от реально происходящих в организме звуковых феноменов, чаще пульсирующее. Такой шум может быть зафиксирован аускультацией или с помощью различной аппаратуры с поверхности головы или наружного слухового прохода и возникать вследствие наличия у пациента с нарушениями гемодинамики.

С 2017 года проводился Всемирный конгресс по лечению тиннитуса.

Представленные заболевания отображены в МКБ 10 (Международной Классификации Болезней 10 пересмотра) под индексом: H83.3 — Шумовые эффекты внутреннего уха, H93.1 — Шум в ушах (субъективный), H93.2 — Другие аномалии слухового восприятия.

Разнообразие описанных вариантов шума в ушах представлены в классификации, используемой в клинической практике.

По классификации, предложенной Е.Р. Fowler (1947 г.), выделяют два основных типа ушного шума:

- -вибраторный (*объективный*), возникающий вследствие вибраций различных участков тела;
- -невибраторный (*субъективный*) вследствие раздражения слухового нерва биомеханического характера.

Классификация, приближенная к практике оториноларингологов, классифицирует шум в ушах по его этиологии: сосудистый- наружного и среднего уха, мышечный, периферический и центральный нейросенсорный (сенсоневральный).

В современной медицинской литературе используется классификация, базирующаяся на понятиях объективного и субъективного шума. Объективный шум в ушах может быть зарегистрирован с помощью аускультации и других инструментальных методов обследования пациента. Субъективный шум, и именно его чаще всего называют «тиннитус», возникает при отсутствии реального источника звука.

Объективный шум характерен для тех редких заболеваний, при которых появляется шум, слышный постороннему наблюдателю.

Субъективный шум в ушах возникает у всех пациентов, которые ощущают звук, не поддающийся оценке со стороны.

Этиология и патогенез. В основе патогенеза шума в ушах, по современным представлениям, лежит теория самовыслушивания соматических звуков организма в результате сложившихся патологических условий и возникновения слуховых ощущений [5].

Шум в ушах может быть обусловлен разнообразными причинами и не всегда рассматривается как патологическое состояние. Существуют эндогенные соматические звуки, которые возникают при сокращении мышц, движении суставов, связок, токе крови.

Обычно эти звуки маскируются звуками окружающей среды и не приводят к патологическим состояниям. Однако в подавляющем большинстве случаев шум в ушах является симптомом различных патологических состояний [6].

Причины возникновения объективного шума.

- Нейромышечные причины: миоклонус (непроизвольные кратковременные сокращения определённых групп мышц челюстно-лицевой области, возникающих как при движениях, так и в состоянии покоя) мышц среднего уха и мягкого неба, зияние слуховой трубы [7,8].
 - Мышечно-суставные: патология височно-нижнечелюстного сустава [9].
- Сосудистые причины: опухоли среднего уха, артериовенозные шунты, стенозы артерий, венозные шумы, пороки сердца, аномальное расположение [10,11].

Причины возникновения субъективного шума в ушах.

- Метаболические причины: атеросклероз сосудов, гепатит, сахарный диабет, гипогликемия, гипо- и гипертиреоз.
- Заболевания наружного, среднего, внутреннего уха: серная пробка, экзостозы наружного слухового прохода, наружный отит, средний отит, отосклероз, опухоли барабанной полости, лабиринтиты, сенсоневральная тугоухость, акустическая и баротравма, болезнь Меньера.
 - Опухоли: мостомозжечкового угла, головного мозга, невринома VIII п.
 - Интоксикация: ототоксические лекарственные препараты, бензол, метиловый спирт.
 - Патология шейного отдела позвоночника: остеодистрофические изменения,
 - нестабильность.
 - Вибрация, шум как производственные факторы.
 - Психоневрологические заболевания: рассеянный склероз, шизофрения,
 - депрессивные состояния.
 - Травма [12].

Практических стоматологов интересуют возможные причины возникновения шума в ушах, связанных с течением основных стоматологических заболеваний: дисфункция височно-нижнечелюстного сустава, частичная и полная утрата зубов, генерализованная форма заболеваний тканей пародонта, повышенная стираемость тканей зубов.

Тесная связь между патологией височно-нижнечелюстного сустава (ВНЧС) и шумом в ушах, описана многими исследователями (И.В.Войтяцкая (2017), (М.Г. Гайворонская, (2019, Т.А. Лопушанская 2020).

Таким образом, на основании изученной нами литературы следует, что для успешного оказания врачебной помощи пациентам предъявляющих жалобы на шум в ушах на фоне течения основных стоматологических заболеваний, необходимо разработать комплекс лечебно- диагностических мероприятий для проведения реабилитации пациентов данной категории. Научно исследовательская работа проводится с врачами различных специальностей (невролагами, остеопатами, отоларинголагами и другими)

Заключение. Комплексная диагностика состояния зубочелюстного аппарата и слухового анализатора позволяет выявить изменения слуха на фоне течения основных стоматологических заболеваний, сопровождающихся уменьшением межальвеолярного расстояния; обосновать необходимость междисциплинарного подхода в полноценной реабилитации стоматологических больных с данной проблемой, выбрать оптимальный план лечения, для достижения стойкого положительного клинического эффекта и оптимальной реабилитации стоматологического пациента.

Литература

- 1. Солдатов И.Б. Шум в ушах как симптом патологии слуха И.Б. Солдатов, А.Я. Маркин, Н.С. Храппо. М.: Медицина, 1984 231 с.
 - 2. Coles R. Epidemiology of tinnitus: (1) prevalence. J Laryngol Otol Suppl. 1984; 9: 7-15.
- 3. Davis A. The prevalence of hearing impairment and reported hearing disability among adults in Great Britain. Int J Epidemiol. 1989 Dec; 18(4):911-7.
- 4. Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. J Neurosci Res. 1990 Aug; 8(4):221-54.
- 5. Морозова С.В., Павлюшина Е.М., Аксенова О.В. Шум в ушах: основные принципы диагностики и лечения. Consilium medicum, 2006, т.8, №10, с.5-10.
- 6. Лопотко, А.И. Шум в ушах А.И. Лопотко, Е.А. Приходько, А.М. Мельник; под ред. А.И. Лопотко. СПб, 2006 278 с.
- 7. Abdul-Baqi K. Objective high-frequency tinnitus of middle-ear myoclonus / K. Abdul-Baqi J. Laryngol. Otol. 2004 Vol. 118, № 3 P. 231-233.
- 8. Brosch S. Myoclonus of the middle ear. A rare, differential diagnosis for objective tinnitus / S. Brosch, H. Riechelmann, H.S. Johannsen. HNO. 2003 Vol. 51, № 5 P. 421-423.
- 9. Clinical Practice Guideline: Tinnitus. / Otolaryngology-Head and Neck Surgery 2014, Vol. 151 (2S) S1-S40.
- 10. Благовещенская Н.С. Отоневрологические симптомы и синдромы. М.: Медицина, 1990.
- 11. Бабияк В.И., Гофман В.Р., Накатис Я.А. Нейрооториноларингология: Руководство для врачей. СПб: Гиппократ, 2002 728 с.
- 12. Chen J. et al. Temporal bone fracture and its complications. Chin J Traumatol. 2001 May;4 (2):106-9.