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Abstract: The interest in nitride coatings based on high-entropy alloys (HEAs) has increased rapidly
in the last decade. According to a number of papers, such high-entropy nitride (HEN) coatings have
a single-phase structure and properties that significantly exceed those of simpler nitride systems.
These properties include high hardness, wear resistance, oxidation resistance and thermal stability. It
is believed that these distinctive properties are due to the high entropy of mixing, which increases
with an increase in the number of elements in the composition. However, comparison with various
binary and ternary systems shows that better properties are not typical of each HEA-based coating,
and the effect of the number of elements competes with other factors that can make even more
pronounced contributions to the structure and properties of the coating. Because of fragmentation of
data on the structure and properties of high-entropy coatings, a unified concept of alloying is needed.
This review compares the methods for obtaining HEN coatings, describes their structural features
and analyzes the main properties, such as hardness, wear resistance and oxidation resistance, in
order to establish an understanding of the influence of the number of elements and their role in the
composition of coatings.

Keywords: high-entropy alloys; coatings; thin films; nitrides; PVD; structure; hardness; tribological
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1. Introduction

Nitride coatings obtained by PVD methods are widely used in machine tool [1] and
aerospace industries [2] due to their high hardness and excellent wear and oxidation
resistance. Examples include the wear-resistant coating for high-speed cutting tools and
erosion-resistant coatings for compressor blades of gas turbine engines.

There is a wide range of nitride coatings that improve the functional properties of
metal and non-metal materials [3]. The basis of this class of materials are mononitrides
such as TiN [4], ZrN [5], CrN [6], etc. Such coatings have a hardness of 20-25 GPa [7]
and high wear resistance but relatively low oxidation resistance (up to ~550-600 °C) [8].
One of the strategies to improve their thermal stability, oxidation resistance, and mechan-
ical and tribological characteristics is the transition to multicomponent nitrides [9]. For
example, the addition of transition metals, such as Al or Si (e.g., TIAIN [10], TiSiN [11],
CrAlN [6], TiAISIN [12] or TiAICrYN [13]), can significantly improve physical and me-
chanical properties (hardness, wear resistance, oxidation resistance, etc.) of the coatings.
Usually, a binary or ternary nitride of Al and/or transition metals (groups IV-VI of the
periodic table) with carefully selected concentrations of elements are used to ensure optimal
performance [9,14-17]. The concentration of the additional elements can be rather high for
transition metals and/or Al or low in the case of Si (<10%) or Y (in the order of several %)
due to possible property deterioration at higher concentrations [18,19]. Maximum hardness
of some coatings can reach 30-50 GPa [6,10-13]; however, their service temperature does not
exceed 900 °C because of the insufficient oxidation resistance at higher temperatures [13],
which significantly limits potential application areas of the coatings.
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One of the possible ways to improve properties of multicomponent coatings is associ-
ated with the concept of high-entropy alloys (HEAs). Usually, HEAs are defined as alloys
that contain at least five main components; the percentage of each species can vary from
5 to 35 at. % [20]. Due to high entropy of mixing (which increases with an increase in the
number of elements), a stable single-phase solid solution can be expected to form in the
alloy [21]. In fact, HEAs have the single-phase solid solution structure in only a limited
number of systems [22]. According to various papers [23-25], some HEAs show very good
combinations of strength, hardness, heat resistance and corrosion resistance in comparison
with dilute alloys.

High-entropy nitride (HEN) coatings can also have a single-phase structure and
properties that significantly exceed those of simpler nitride systems [26-33]; these properties
include, for example, oxidation resistance [34], thermal stability [35], hardness [36] and
wear resistance [37]. However, comparison with various binary [38—40] and ternary [41-43]
nitrides suggests that increasing the number of components per se does not guarantee
improvement in properties. Apparently, other factors such as the choice of the constitutive
elements and/or deposition method and process parameters can have pronounced effects
on the structure and properties of the coatings [44—48]. Note that the structure of HEN
coatings can be more complex than random solid solutions [44,45]. However, despite the
large number of published works, the links between the preparation methods, composition,
structure, and properties of HEN coatings still have not been fully established. This review
aims to provide valuable insight into the composition-structure—properties relationships in
multicomponent nitride coatings.

2. Methods of Preparation of High-Entropy Nitride Coatings

The choice of deposition method that ensures the uniformity of composition, single-
phase structure and high quality of a high-entropy nitride coating is a challenge. Among
many options of physical vapor deposition (PVD), vacuum-arc deposition [49] and mag-
netron sputtering [46,50,51] are the most effective and wide-spread approaches. In these
methods, metal targets are sputtered in a nitrogen atmosphere or in an Ar + N, gas mixture.
Several types of targets can be used: sputtering of a solid multicomponent target [52],
simultaneous sputtering from several elementary targets [53] and sputtering of mosaic tar-
gets (applicable for the magnetron method) [54,55]. High-entropy alloys” multicomponent
targets are usually fabricated by vacuum-arc melting [56] or using powder metallurgy meth-
ods, including cold or hot pressing [57,58], spark plasma sintering [59] and some others.

Two groups of metals can be distinguished depending on their inclination towards
nitride formation in HEN coatings obtained by sputtering targets: (i) low (Mn, Fe, Co, Ni)
or zero (Cu) tendency [57,60-62] and (ii) high tendency (transition metals of IV-VI groups
(Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W)) [63-65]. HEN coatings of metals of the first group usually
show poor mechanical properties and a tendency to form an amorphous or bce structure.
These properties can be related to an insufficient nitrogen content, low strength of the
metal-nitrogen bond and thermodynamic instability of such nitrides [58,62,66]. Transition
metals of groups IV-VI in the coatings provide higher strength of the metal-nitrogen bonds,
a tendency to form a crystal structure of the NaCl type and high hardness. Both Al and Si
can also form strong covalent bonds with nitrogen, but in multicomponent coatings, these
elements promote the formation of additional phases with an hcp [67] or amorphous [68]
structure. Coatings based on transition metals of groups IV-V (Ti, Zr, Hf, V, Nb, Ta) are
promising due to high hardness levels [36]. In addition, they also have good mutual
solubility of binary nitrides promoted in the formation of a single-phase structure stable up
to temperatures above 1300 °C [69].

The structure and hardness of HEN coatings based on groups IV-V metals signif-
icantly depend on the method of deposition (Table 1). The Ti-Zr-Hf-V-Nb-N system
coatings [36,44,63,70,71] were obtained using either magnetron sputtering of three ele-
mentary targets (Hf, Ti, V) and one mosaic Nb/Zr [44], or vacuum-arc sputtering of a
multicomponent cathode [36,63,70,71]. The compositions of coatings obtained by the
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vacuum-arc method significantly depended on the deposition parameters (nitrogen pres-
sure, bias potential on the substrate). The nitrogen content in [63] varied in the range from
36 to 51 at. %. The percentage of other components also varied significantly (C; = 16-25 at.
%, Cy =1-6 at. %, Cz, = 6-17 at. %, Cnp = 6-18 at. %, Cyyf = 4-11 at. %), probably due to
secondary selective sputtering [72] or chemical inhomogeneity of the initial HEA target.
However, the usage of several magnetrons with elemental targets has allowed the ability
to produce coatings with the desired compositions. For example, the content of Hf in the
coating obtained by magnetron sputtering [44] varied from 0 to 18 at. % (due to different
Hf target currents), while the ratio of other metal elements did not change significantly.
For example, in a coating with Cyy¢ = 3 at. %, the concentration of other elements was
Cri =14 at. %, Cy =13 at. %, Cz, = 17 at. % and Cyp, = 10 at. %, and in the coating with
Cys = 18 at. % was Cpy = 10 at. %, Cy = 10 at. %, Cz, = 13 at. % and Cyp, = 6 at. %. The
nitrogen content in both coatings was 43-44% at.%.

Despite the differences in chemical composition, the phase composition of the coatings
was rather similar. In the coatings reported in [36,63,70,71], only one face-centered cubic
(fcc) phase was found for all compositions, while in [44] the coatings are shown to have
either a single-phase fcc structure or two-phase fcc + bet (body-centered tetragonal) one,
depending on the Hf content. However, since the bct and fcc phase peaks at the X-ray
diffraction (XRD) pattern can overlap each other, precise identification of the phase com-
position requires more detailed structural characterization. That is why in some coatings
described in the literature as single-phase ones, additional phases can be present. These po-
tentially multiphase structures should be taken into account when analyzing the structure
and properties of the coatings.

The structure of the coatings also depends significantly on the preparation method
(Table 1). Coatings obtained by the magnetron method [44] have a fine-grained structure
(tens of nanometers) nearby the interface with the substrate; a coarse columnar structure
(several hundreds of nanometers height x 100 nm width) forms towards the coatings
surface. The average grain size measured by X-ray diffraction analysis was several tens
of nanometers. A similar structure was observed in coatings obtained by the vacuum-arc
method [70]. The transition from a fine-grained structure to the columnar one was observed
at a distance of 2 pm from the substrate (the total coating thickness was 10-12 um). The
average grain size calculated from X-ray diffraction for these coatings was 1842 nm. For
each deposition method, the structure of the coatings is mainly determined by parameters
of the process, i.e., temperature of the substrate, bias potential or nitrogen pressure. De-
pending on the exact process parameters, HEN coatings can have both a homogeneous
structure (columnar [73], equiaxed [69] or amorphous [66]) or gradient structure comprising
amorphous or fine-grained and columnar layers [65,74].

Despite the similarity in the HEN coatings’ structure obtained by different methods
and with different parameters (i.e., [44] or [70]), their hardness can vary significantly
(Table 1). Moreover, indentation methods also have a pronounced effect on the obtained
hardness values. For example, in [63], microindentation returned hardness values of
21-27 GPa depending on the deposition parameters, while nanohardness values were in the
range of 3644 GPa. Similarly, in [44] (the coating was obtained by magnetron sputtering)
and [70] (vacuum-arc sputtering), the respective maximum micro- and nanohardness values
were 19 GPa [44] and 53 GPa [70]. Meanwhile, the maximum nanohardness of the coatings
obtained by the vacuum-arc method in [63] reached 44 GPa, which is significantly higher
than the values (19 GPa) of coatings produced by the magnetron method [44].

Residual stresses can significantly affect the hardness of the coatings [75,76]. Coatings
obtained by the vacuum-arc method in [63,70] have relatively high compressive stresses
(up to —3.7 GPa), while those in coatings produced by the magnetron method [44] did not
exceed —0.23 GPa. Residual stresses depend on the specific substrate/coating couple [77]
and deposition parameters. For example, bias potential applied to the substrate or high-
energy ion bombardment also increases residual stresses in the coatings. An increase
in the bias potential from —50 V to —200 V during vacuum-arc sputtering increased
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the hardness values of (TiZrHfVNDb)N coatings from 21 to 28 GPa [63]. Another factor
influencing the level of residual stresses is the partial pressure of nitrogen during the
deposition process. For instance, the residual stresses in (TiZrHfVTa)N coatings obtained
by magnetron sputtering varied in the range from —1.6 GPa to —2.5 GPa depending on
the Ar/IN2 ratio [69]. The hardness of coatings correlated with the residual stresses and
increased from 30 GPa to 34 GPa, respectively.

Coatings obtained by the vacuum-arc method show the highest hardness (Table 1).
It is known [78] that a high degree of gas ionization during vacuum-arc deposition leads
to densification of the growing film due to the increased mobility of adsorbed atoms,
which ensures high mechanical properties of the coatings. However, during deposition of
(TiVCrZrHf)N HEN coatings using magnetron sputtering [65], an amorphous structure was
formed near the interphase boundary due to heating of the substrate and a corresponding
increase in the mobility of adsorbed atoms; a dense columnar crystalline structure was
observed close to the substrate surface. Such a coating has a maximum hardness of 48 GPa,
which is comparable to the hardness of some coatings obtained by the vacuum-arc method
(Table 1). Thus, for both the vacuum-arc and magnetron methods, a significant difference
in the structure and properties of coatings was mainly caused by different parameters of
the deposition process.

3. Structure of High-Entropy Nitride Coatings

HEN coatings are based on interstitial nitrides of groups IV-VI metals [79]. In addition,
covalent nitrides of Al and Si can be presented [80]. A complex combination of covalent
and metallic bonds is typical of interstitial nitrides. Structure and electronic properties
of ternary nitrides Ti Ta;_xN and TixZr;_yN were calculated in [81]. Despite the similar
crystal structure of ternary compounds TixMe;_4N and TayMe;_yN (Me = Ti, Zr, Hf, Nb,
Ta, Mo, W), the configuration of valence electrons significantly affects the bond with
nitrogen. The charge density of Ti5oZr50N exhibits metal-like features, as in TiN or ZrN,
while TispTasgN is rather characterized by a directional bond between Ti and Ta atoms,
suggesting covalent bonds and higher material hardness. Incorporating Ta in Tij_TaxN
and Ta;_,ZryN leads to a shift of the bonding state region away from the Fermi level,
suggesting a stronger covalent bonding. This results in a considerably higher bulk modulus
of TaN (B = 330-370 GPa) in comparison with TiN (B = 270 GPa) or ZrN (B = 245 GPa) [82].
The hardness of TixTa;_xN and Ta;_ZryN coatings reported in [82] reaches 42 GPa and
32 GPa, respectively, while the hardness of TiyZr;_4IN does not exceed 25 GPa. However,
one must keep in mind that the microstructure of the coating can also affect the hardness.
In contrast to interstitial nitrides, differences in electronegativity and atomic size between
nitrogen and another element in covalent nitrides are small, and their bond is essentially
covalent [80].

The common structural element of fcc nitrides of groups IV-V transition metals is
a MgN octahedron with a nitrogen atom in the center [83] (Figure 1a). Stability of the
octahedron depends on the ry /1) ratio (radii of nitrogen and metal atoms, respectively),
since changes in this value result in transformation into trigonal prismatic group MgN. Due
to the formation of structural elements other than the MgN octahedron, the fcc structure of
nitrides gradually destabilizes with an increase in the group number or with an increase
in the periodic number within the group. For example, group IV nitrides (TiN, ZrN
and HfN) form a NaCl-type structure. In group V all three metals (V, Nb, Ta) also form
stoichiometric nitrides with an fcc lattice. However, fcc-VN below —68 °C transforms
into the tetragonal modification, fcc-NbN below ~1320 °C turns into the hexagonal (hcp)
modification and fcc-TaN at temperatures below 1920 °C congruently transforms into
the hexagonal modification [83]. In group VI (Cr, Mo, W), fcc nitrides gradually become
less stable. Face-centered cubic CrN is a compound with a very narrow homogeneity
range around stoichiometric composition and reduced thermochemical stability at low
temperatures. Below ~7 °C, CrN transforms into a tetragonal compound [83]. Molybdenum
nitride with an fcc lattice forms at only a stoichiometry close to Mo,N and then transforms
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between 400 and 850 °C (depending on the composition) into a tetragonal modification
with an ordered arrangement of nitrogen atoms in interstices. The stable forms of covalent
Al and Si nitrides are phases with an hcp lattice [83].

Figure 1. Face-centered cubic structure of (a) binary and (b) high-entropy nitrides.

However, in the case of multicomponent nitride coatings, as shown earlier, the NaCl-
type phase with a disordered metal fcc sublattice is predominantly formed [84] (Figure 1b).
An addition to the metal sublattice of various metallic elements with different electronic
structures and atomic radii causes local distortions in HEN coatings’ lattices (like that in
high-entropy alloys) [85] and influences mechanical properties significantly [86]. Mean-
while, there are rather limited data on the structure of high-entropy nitrides and the
contributions of various types of chemical bonding [26-33].

Yet, some results for high-entropy carbides were obtained using first-principle cal-
culations [87]. It worth noting that among all compounds formed by atoms of transition
metals and light elements (H, B, C, N, O), only carbides have crystal structures, phase
relationships, bond types, electrical and magnetic properties like those of nitrides. This
proximity can be caused by similar electronic structure, size and electronegativity of carbon
and nitrogen atoms. Local lattice distortions, stability, electronic structure, bulk elastic
modulus and thermodynamic properties of multicomponent (NbTaZr)C, (NbTaTiZr)C,
(NbTiVZr)C, (HfNbTaTiZr)C and (MoNbTaVW)C carbides were studied in [87]. It was
shown that the crystal lattice distortions do not depend on the number of elements but
rather increase with an increase in the mismatch of atomic sizes for carbides of groups
IV-V metals (the carbides can also contain some group VI metals (Mo, W) that usually do
not form carbides with a stable NaCl structure). The covalent bond was found to become
stronger from Zr/Ti-C to V/Nb/Ta-C [87]. This result, together with the analysis of the bulk
elastic modulus for binary and multicomponent carbides, suggests a more pronounced
influence of electronic interaction on mechanical properties of carbides and nitrides in
comparison with the effects of solid solution strengthening caused by lattice mismatch.
Calculations also show that lattice distortion results in a negative enthalpy of mixing for
most high-entropy carbides [87]. Therefore, these high-entropy carbides can be stabilized
by enthalpy solely. This conclusion differs from many other works, in which a decisive
contribution of the configurational entropy to the stabilization of a single-phase state was
stated [86,88-90].

The effect of the number of elements on the structure of high-entropy nitrides was stud-
ied in [89,91] for 8-component (TiVZrNbMoTaAlISi)N and 11-component (TiVCrZrNbMo-
HfTaWAISi)N coatings. A multi-phase structure would be expected to form in these alloys
containing elements with different atomic sizes and types of chemical bonds. The metallic
elements also form mononitrides with different types of crystal lattice. However, like high-
entropy coatings with fewer elements, these coatings had a single-phase structure with an
fec lattice (in the 11-component coating (TiVCrZrNbMoHfTaWAISi)N with a nonstoichio-
metric nitrogen composition, an insignificant amount of the hcp phase was also formed).
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This effect was ascribed to a large lattice mismatch among binary nitrides (eg, AIN and
ZxN) that creates high mixing enthalpy of many complex nitride compounds and promotes
phase separation [92]. According to XRD results, the coatings still have one fcc phase
without traces of the hcp phase when the nitrogen content in the coating reaches 42.1 at.%.
Therefore, the single-phase structure of HEN coatings can survive even in 11-component
systems; however, it is still unclear if it remains stable at elevated temperatures.

The thermal stability of high-entropy coatings (Tig 19Zr¢ 18Hfp 22 Vo.18Tag2)N was stud-
ied during annealing in vacuum at temperatures up to 1500 °C [69]. The coatings contained
only interstitial nitrides of groups IV-V metals, which are most prone to the formation
of a single-phase structure of the NaCl type. Atom probe tomography (APT) revealed a
random distribution of the elements in the coating (Figure 2). According to first principles
calculations, at temperatures above 1029 °C, the Gibbs energy of fcc-(Hf,Ta,Ti,V,Zr)N is
lower than those of the competing components considered in this case (i.e., fcc-(Hf,Zr)N
and fcc-(Ta,Ti,V)N) (Figure 3). Experiments showed that the single-phase state with the
fcc structure and uniform distribution of all elements is retained even after annealing at
1300 °C. However, TaN and VN readily lose nitrogen during annealing in vacuum at higher
temperatures [93,94], resulting in the formation of phases with a hexagonal structure. Thus,
the onset of fcc-(HfTaTiVZr)N decomposition with the formation of hcp-(Ta, V)N can be
suggested at ~1350 °C. Moreover, after vacuum annealing at 1500 °C, the appearance of
(Ta,V)-enriched regions with N concentrations <38 at. % was reported (Figure 2). Thus, it
can be suggested that as long as nitrogen loss is prevented, even higher thermal stability
can be achieved for such coatings.
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Figure 2. Local chemical composition of our (Hf,Ta,Ti,V,Zr)N prepared with fN, = 45% at the
nanometer scale. (a) Reconstruction of Hf, Ta, Ti, V, Zr and N atomic positions after vacuum annealing
at 1300 °C. (b) Concentration profile of the cylindrical region indicated in (a). (c) Reconstruction of
Hf, Ta, Ti, V, Zr and N atomic positions after vacuum annealing at 1500 °C. (d) Concentration profile
of the cylindrical region indicated in (c). Reproduced from [69].
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Figure 3. Schematic G-versus-T curves for a high-entropy metal-sublattice fcc-(Hf,Ta,Ti,V,Zr)N and
the possible products (fce-(Hf,Zr)N, fce-(Ta,V)N and fce-TiN and fee-(Hf,Zr)N and fec-(Ta, Ti, V)N).
Reproduced from [69].

The effect of Al (which has covalent bonds with nitrogen) on the structure and sta-
bﬂity of high—entropy (A10.17Tio_41V0.14Cr0.04Nb0.24)N and (Alog,lTi0.34V0.12C1'0.06Nb0_17)N
coatings obtained by vacuum-arc sputtering was examined in [67]. Hexagonal AIN readily
dissolves in an fcc lattice. For example, (AITi)N solid solutions have an fcc lattice until
~70% of AIN and an hcp lattice above 70% of AIN [95]. The (AITiVNDbCr)N coatings had
the fcc NaCl-type structure with positive enthalpy of mixing (0.06 eV /atom). Ab initio
calculations have demonstrated higher thermodynamic stability of the synthesized (Al-
TiVNDbCr)N solid solutions with respect to their constituent binary compounds, thereby
suggesting entropy-caused stabilization at temperatures above 727 °C. However, during
high-temperature annealing, multicomponent (AITiVNbCr)N solid solutions show limited
thermal stability and decomposed into equilibrium mixtures of wurtzite B4 AIN and cubic
B1 (TiVNDbCr)N phases (Figure 4).

Figure 4. APT reconstruction (5 nm thin slice) revealing elemental distribution after annealing at
1100 °C, 2 h for (a) (Alp.17Tip.41V0.14Cr0.04Nbg 24)N and (b) (Alg31Tip34V0.12Cr0.06Nbo.17)N. For Al,
APT analysis also shows isoconcentration surface at 25 at.%. Reprinted with permission from ref. [67].
Copyright 2017 Elsevier.

The results obtained suggest the metastability of the homogeneous solid solution
structure in HEN coatings. In addition, the solid solution was not stabilized by entropy of
mixing, which should increase with temperature. Moreover, differential scanning calorime-
try showed that the temperatures corresponding to hcp-AIN precipitation are rather similar
for both (Al 17Tig 41 V.14Crg.04Nbg24)N and TiggAlgoN, despite their significant difference
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in configurational entropy (1.41 and 0.5 Kg/atom, respectively, where Kg is the Boltz-
mann constant). These results further emphasize that the thermodynamic stability of a
multicomponent solid solution is not determined by the entropy value [96].

The effect of Si on the phase composition and microstructure of HEN coatings was
studied in [68,97-100]. The solubility of silicon in fcc nitrides is limited in simple systems
like TiSiN [101] as well as in high-entropy coatings. According to [97], the formation of
a single-phase structure in (AlCrTaTiZrSi)N coatings obtained by magnetron sputtering
was observed when Si percentage was <7.9 at.%. At 7.9 at. % of Si, an amorphous covalent
SiNx phase was formed along the crystallite boundaries (Figure 5a). When the silicon
content reaches 10.2 at. %, a dual-phase nanocomposite structure of fcc nanocrystalline and
amorphous phases (Figure 5b) is observed. Layers of the amorphous phase separate nitride
grains and restrict their growth [68]. The threshold concentrations of Si required for the
nanocomposite structure formation varies [68,97-100] depending on solubility of silicon in
different nitrides [98,102-104]. In addition, the amorphous phase was not observed in some
Si-containing systems [89,91,105] probably due to small thickness amounts that complicate
identifying by such methods as EDS and EELS.

. growing <7

ion:

(a) G

Figure 5. HRTEM lattice images of two nitride films with Si contents: (a) 7.9 at. % and (b) 10.2 at. %
(A: amorphous region; C: crystalline region). Reprinted with permission from ref. [97]. Copyright
2011 IOPScience.

Thermal stability of (AICrNbTaTi)N and (AICrNbTaTiSi)N coatings (Si concentration
was 6.4-15.0 at. %) was studied in [100]. The second coating had a single fcc phase structure
at Si concentration < 9.8 at.%, similar to the first one. Segregations of silicon at the crystallite
boundaries in the (AICrNbTaTiSi)N coating with Si > 9.8 at.% can indicate the formation
of an amorphous phase. Annealing in vacuum at temperatures up to 900 °C for 10 min
did not change the structure of the coatings. Annealing of the (AICrNbTaTi)N coating at
1000 °C resulted in the formation of a covalent hcp-AIN nitride in the initial fcc phase.
In the silicon-containing (AICrNbTaTiSi)N coating, the structure was more stable. The
decomposition of the solid solution was observed only at 1200 °C in samples containing
12.0 and 15.0 at.% of Si (at lower amounts of Si coating delaminated). The formation of
hep-AIN, Nbg 16Tip g4 and Al Ti intermetallics, TisSi silicide and nitrogen-depleted Cr,N
and Nb,N phases was found. The tendency of CrN and TaN mononitrides to release Nj
and form CryN at temperatures above 900 °C and Ta;N at 1100 °C was supposed to be the
main factor limiting the phase stability of both coatings [94,106].

Thus, HEN coatings can retain a single-phase structure with an increase in the number
of metallic elements up to 11 [89]. However, the available literature data do not allow any
conclusions on the effect of configurational entropy on the stabilization of the coatings’
structure. The stability of such solid solutions at high temperatures is mostly limited by
the nitrogen evaporation temperatures. These temperatures are directly related to the
temperatures of nitrogen loss in the corresponding mononitrides. Thus, thermal stability of
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HEN coatings should not exceed that of similar triple or quadruple nitride coatings. When
Al or Si, which have strong covalent bonds with nitrogen, are added to the coatings, the
formation of amorphous and/or hcp phases is expected. The major requirement for the
formation of a stable solid solution is the usage of metallic elements of groups IV-V, which
tend to form MeN nitrides with a NaCl-type structure.

4. Properties of High-Entropy Nitride Coatings
4.1. Hardness

HEN coatings can offer significant improvements in properties when compared with
binary and ternary nitrides [27-37], especially high hardness and elastic modulus.

An analysis of the available literature data suggests that the hardness and elastic
modulus increase of the nitride coatings tend to increase with the number of compo-
nents (Figure 6). Indeed, hardness of high-entropy coatings was found to be higher than
those of binary and ternary nitrides [36,55,63,66,88,107]. Examples of HEN coatings with
very high hardness are (AICrTiVZr)N—42 GPa [55], (TiZrNbAIYCr)N—47 GPa [107] and
(TiHfZrVNDb)N—65 GPa [36]. However, as noted above (Section 2), this situation is typical
for coatings composed of nitride-forming elements; alloying with non-nitride-forming
elements decreases the hardness. In the latter case, the hardness of HEN coatings can be
even lower than that of binary nitrides [60,108]. The effect of elements that are not prone to
nitride formation (Mn, Fe, Co, Ni, Cu) on hardness of high-entropy coatings is shown in
Table 2. The first four metals form intermediate nitrides that decompose readily due to low
chemical stability [109]. Copper does not react directly with nitrogen up to extremely high
pressures and temperatures [110]. For comparison, coatings containing nitride-forming ele-
ments solely are shown in Table 3. Obviously, the addition of even one non-nitride-forming
element (such as Ni) leads to a significant decrease in hardness. Meanwhile, (TiZrNbTaFe)N
coatings have a high hardness of 36 GPa, exceeding that of many binary nitrides. This result
may be caused by (i) the prevalence of strong nitride-forming elements (Table 2) and (ii)
the formation of dense nanocrystalline structures with high residual stresses due to high-
energy ion bombardment [76]. It should be noted that the separation based on the presence
of non-nitride-forming elements is valid for any nitride coatings. Thus, the maximum
hardness of (CrFeCo)Ni coatings was found to be 11 GPa [111], which is approximately
two times lower than the hardness of binary CrN [16,38,112].
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Figure 6. Hardness ranges of binary, ternary, high entropy and nanocomposite multilayer nitride
coatings. The horizontal lines mark some hardness values given in different publications [15-193].
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Table 1. Structure and hardness of coatings based on groups IV and V metals, depending on the method of deposition.

. - Material/Temperature of . .
System of Coating Method of Deposition Target Substrate, °C/Bias, V Thickness, pm Structure of Coating Hardness References
elemental - o 1
(TiZrHFVND)o.56No 44 DC magnetron HE, Ti, V + mosaic §i, 810z, a-Al O3 °/520 12 FCC + BCT 9-19 GPa 2 [44]
sputtering Nbq <7 C/100 V
0.5410.5 )
(TiZrHfVND); _«Nx g ) -, - o T Steel AISI 1045/400 N 36-44 GPa
X = 0.36-0.5 cathode-vacuum-arc deposition HEA Ti-Zr-Hf-V-Nb °C/50—230 V 4-5 FCC 19-30 GPa 3 [63,71]
(TiZrHfVNDb)N cathode-vacuum-arc deposition HEA Ti-Zr-Hf-V-Nb Steel 12XI8HOT (AISI 6 FCC 57-66 GPa 3 [36]
321)/40—200 V
(TIU'WZ,E']SH)I&OT'ZZVO']S DC magnetron equiatomic HEA Si, a-Al,O3 1, low alloy 9947 FCC + undetermined 30-34 GPa 2 [69]
0.23 ; : ° L -
Cy = 47-50 at. % sputtering Ti-Zr-Hf-V-Ta steel /440 °C/50 V phase (low content)
. DC magnetron elemental Ti, Zr, Nb, o 3
(TiZrHfNbTa) 5Ny 5 sputtering HF, Ta Steel C45 and M2/300 °C/100 V 2 FCC 33 GPa [143]
(T10'21ZI§%26I{)%19V0'12 cathode-vacuum-arc deposition HEA Ti-Zr-Hf-V-Nb 200V 10-12 FCC 53 GPa? [70]
0.22
. RF magnetron equiatomic HEA Py o _ 3
(TiVCrZrHf) N sputtering Ti-V-Cr-Zr-Hf p-Si (100)/RT—450 °C/100 V 1-1.2 FCC 30-48 GPa [65]
2 nanoindentation. 3 microindentation.

1 the substrate was used to measure the hardness.
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Table 2. The effect of elements with a low tendency to form nitrides (Mn, Fe, Co, Ni, Cu) on hardness
of high-entropy coatings.

Composition of

Elements with a Low  Elements with a High

High-Entropy Hardness, GPa Tendency to Form Tendency to Form References
Coatings Nitrides Nitrides

(A10.5CoCrCuFeNi)59N41 10 Co, Cu, Fe, Ni Al, Cr [60]
(AlCoCrCu0.5FeNi)N 10 Co, Cu, Fe, Ni Al, Cr [108]
(AICrMnMoNiZr)N 12 Mn, Ni Al, Cr, Mo, Zr [185]
(FeCoNiCuVZrA)N 12 Fe, Co, Ni, Cu V, Zr, Al [61]
(FeCoNiCrCuAIMn)N 12 Fe, Co, Ni, Cu, Mn Al, Cr [60]
(AICrNiSiTi)82N18 15 Ni Al, Cr, Si, Ti [186]
(CoCrCuFeNi)N 15 Co, Cu, Fe, Ni Cr [57]
(AICrMoNiTi)Nx 15 Ni Al, Cr, Mo, Ti [58]
(TiZrHfNiCuCo)N 17 Ni, Cu, Co Ti, Zr, Hf [188]
(FeMnNiCoCr)N 17 Fe, Mn, Ni, Co Cr [62]
(Al0.5CrFeNiTi0.25)Nx 21 Fe, Ni Al Cr, Ti [187]
(TiZrNbTaFe)N 36 Fe Ti, Zr, Nb, Ta [76]

Table 3. Hardness of coatings containing only elements with a high tendency to form nitrides.

System of Coating Hardness, GPa References

CrN 18-27 [16,38,112]
ZrAIN 24 [189]
(TIAICH)N 28 [191]
(TiZrHHN 32 [192]
CrAIN 36 [16]
(AICTSi)N 40 [190]
VAIN 41 [43]
(AITiS))N 50 [190]

In general, the hardness increases with an increase in the number of components. This
effect was demonstrated for coatings obtained using the same procedures. For example,
in [15], binary TiN, CrN and ZrN and ternary TiCrN, TiZrN, TiAIN and TiVN nitride
coatings were obtained using the same deposition parameters with the identical percentages
of Ti and other metals in cathode material. The hardness levels of binary nitrides were
TiN—2000 HV, CrN—1400 HV and ZrN—1500 HV. The hardness levels of triple nitrides
were significantly higher: TiCrN and TiZrN—3000 HV, TiAIN—3100 HV and TiVN—
2400 HV. The further increase in the number of elements was considered in [14], where
a series of coatings with different numbers of elements were produced: TiN, TiAIN and
TiAICrN. Their hardness levels were 1222 HV, 1916 HV and 3033 HV, respectively. Such an
increase in hardness is not only due to stronger solid solution strengthening, but also can
be attributed to the stronger covalent bonds introduced by Al [16]. Moreover, the formation
of a nanocomposite amorphous-crystalline microstructure can also result in a significant
increase in hardness, as it was shown for CrAIN coatings with ~5 nm crystallites uniformly
distributed in the amorphous matrix [113].

In HEN coatings, the hardness varies in a wider range (Figure 6). Probably, with an
increase in the number of elements in the system, the number of combinations of different
factors (different radii of metal atoms, the tendency to form nitrides, types of the chemical
bonding) that determine the properties of coatings also increases. The overlapping of
these factors with different methods (or even different parameters) for the deposition
can result in considerably different compositions and structures of the coatings. For
example, the hardness of (TiZrHfVNDb)N coatings, obtained by various methods, varied
from 9-19 GPa [44] to 3644 GPa [63] and 60-65 GPa [36]. However, the hardness of 65 GPa
(the record-breaking hardness values for nitride coatings) claimed in [36] is significantly
different from all the other results and needs additional confirmation. Low hardness values
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(£ 20 GPa) were mostly associated with a significant decrease in the nitrogen content
and/or the formation of an amorphous structure [47,48].

The comparison between the hardness of high-entropy coatings and multilayered
coatings is also of interest. In the latter case, hardness improves due to the alternation
of nanosized layers of different nitrides [114-126]. Both binary [114-123,193] and multi-
component (including high-entropy) nitrides [72,125,126,193] can be used in multilayer
coatings. The highest hardness was observed in multilayer coatings based on (i) multi-
component nitrides (e.g., (TIAICrY/Zr) /(TiAICrYN /ZrN)—68 GPa [126]) or (ii) coatings
comprising Si-containing nitrides with a nanocomposite structure (see Section 2) (e.g.,
(Ti,Al)N/(Ti,5))N—58 GPa [125]). However, it should be noted that the hardness of high-
entropy and multi-layer coatings is rather similar (Figure 6).

4.2. Tribological Properties

Another important property of HEN coatings is high wear resistance. Tribological
properties of HEN coatings were discussed in many papers [37,63,76,127-134]. However,
the analysis of the obtained results is complicated by the fact that data for the comparison
are usually limited to the coatings of one system produced using different deposition
parameters [76,129-133] or to coatings without nitrogen [76,132]. Meanwhile, the com-
parison of wear resistance with those of binary and ternary systems is missing in many
articles [76,129-132,134]. Some limitations are also associated with using different schemes
and parameters of tribological tests.

In the most systematic study [37], wear resistances of binary TiN, ternary TiAIN and
high-entropy (AICrNbSiTi)N coatings deposited on WC/Co milling inserts were compared.
The hardness levels of the TiN, TiAIN and (AICrNbSiTi)N coatings were 20, 30 and 36
GPa, respectively. In dry machining of SKD11 (260 HV) (Figure 7a) and 304 stainless steel
(190 HV) (Figure 7b), the wear of the inserts coated with (AICrNbSiTi)N was found to be
minimal. Cutting of the 304 steel under severe conditions (cutting speed of 160 m/min)
(Figure 7c) also suggests less pronounced wear depth of the HEN-coated milling inserts
in comparison with those coated by TiN and TiAIN (by 23% and 25%, respectively) [37].
Under such conditions, the temperature at the contact point between the workpiece and
tool increased considerably. The improved wear resistance of (AICrNbSiTi)N coatings was
ascribed to both higher hardness and better thermal stability and oxidation resistance.

Apparently, wear resistance of HEN coatings is dependent on hardness, which, in turn,
depend on composition, structure and deposition parameters, as was discussed in the previ-
ous section. The dependence of the wear resistance and hardness of nitride (TiZrNbTaFe)N
coatings obtained at different N/ Ar ratios on hardness is shown in Figure 8 [76]. The
coating with the nitrogen content of 17 at.% had an amorphous structure, similar to
the TiZrNbTaFe metallic coating deposited without nitrogen. At the nitrogen content
of 32-39 at.%, a single-phase fcc crystal structure was formed. The hardness of the coatings
varied from 22 to 36 GPa. The wear rate of the coatings was inversely proportional to
hardness, which is fully consistent with the Archard law [135].

The effect of magnetron sputtering parameters (such as the N,/ Ar ratio or bias po-
tential on the substrate) on the wear resistance of high-entropy (CrAITiNbV)N coatings
was comprehensively studied in [130,131]. An increase in the nitrogen flow and the bias
potential resulted in the formation of a finer and denser structure with higher hardness
and a better wear resistance. Meanwhile, as the nitrogen flow rate increased to a maximum
value of 48 sccm [130], the hardness and wear resistance of coatings dropped sharply due
to the crystallite growth.
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In order to improve the tribological properties of HEN coatings, some elements (e.g.,
Mo, V or W) can be added, by analogy with conventional multicomponent nitrides, to re-
duce the friction coefficient and wear rate [136]. The addition of these elements results in the
formation of the Magneli phase [137], a layered crystal structure of which reduces the fric-
tion coefficient [138,139]. For example, the formation of MoOs in coatings containing molyb-
denum at temperatures above 600 °C yields a self-lubricating surface [140,141]. In [129],
the effect of Mo on (AICrTaTiZr)N coatings was examined. The (AICrMoTaTiZr)N coatings
had an excellent wear resistance of 2.9 x 107 mm3/N X m as compared with the Mo-free
(AICrTaTiZr)N coatings (wear rate was in the range of 3.7-6.5 107 mm3/N x m) [129].
Lower wear and friction coefficient in this case was associated with the formation of a lubri-
cating layer during friction due to Mo addition. Tribological properties of Mo-containing
(AICrNbSiTiMo)N coatings were studied in [142] at room and elevated temperatures. Dur-
ing tests at room temperature and 700 °C, the friction coefficients of the coatings were 0.68
and 0.48, respectively. In addition, the value of the friction coefficient gradually decreased
during wear at 700 °C, thereby suggesting the lubricating effect of molybdenum oxides
found on the surface using X-ray photoelectron spectroscopy.

The wear resistance of coatings also depends on their oxidation resistance. At high
friction rates, the temperature in the contact zone can reach 1000 °C due to local heating.
As a result, deterioration in the wear resistance of the coatings can happen because of
(among some other possible reasons) the onset of the oxidation process. Tribological tests of
(CrAINDSiV)N coatings were performed using a “ball-to-disk” scheme with a 6 mm Al,O3
counterbody at room temperature and at 600 °C [128]. The wear rate was 2 x 107 mm3
N~ m™1, i.e., much lower than that of the (AICrTaTiZr)N [133], (AICrMoTaTiZr)N [129]
and (TiZrNbHfTa)N [143] coatings (Table 3). The relatively low wear rate was ascribed to a
high value of the H3/E? (hardness to elastic modulus) ratio of about 0.52 at the hardness of
35 GPa. At 600 °C, more pronounced oxidation (the oxygen concentration ~50 at.%) was
observed in the friction zone in comparison with the area next to the wear trace (7-8 at.%).
This difference can be associated with (i) some additional increase in temperature in the
friction zone, (ii) an increase in the depth of oxygen penetration due to the formation of
cracks and (iii) depletion of aluminum in the coating due to wear and thinning of the surface
oxide layer. Although the oxide layer reduced the friction coefficient from 0.88 to 0.63, the
wear rate slightly increased (up to 5.4 x 107 mm3 N~! x m~!). However, oxidation does
not lead to complete degradation of the coating, since nitrogen was still found inside the
wear scars that indirectly suggests good oxidation resistance. It is also important to note
that at 600 °C, this high-entropy coating had a lower wear rate than that of the binary
nitride CrN [144], ternary nitrides CrAIN [145] and TiAIN [146] and quaternary nitrides
CrAlSiN [145] and TiAlSiN [147] under similar test conditions (Table 3). Thus, the good
wear resistance of this system at elevated temperatures is most likely associated with the
presence of Al, Cr and Si that improves the oxidation resistance due to the formation
of protective oxide layers [34]. It was shown in [148-151] that the addition of the above
elements to ternary and quaternary nitrides improves their resistance to oxidation. Thus,
oxidation resistance of high-entropy coating (TiVCrZrHf)N [152], which does not contain
Al and Si, is close to that of a simple binary nitride TiN [153]. Annealing in air for two
hours resulted in the onset of oxidation of the coating at 400 °C and in almost complete
oxidation at 600 °C. At the same time, the (AICrNbSiTi)N coating [34], containing the above
elements, remains resistant to oxidation even at 1300 °C. Thus, good wear resistance of
high-entropy coatings is associated with high hardness, high H? /E? ratios, lower friction
coefficients at elevated temperatures and good oxidation resistance. Coatings containing
both elements that reduce the friction coefficient (e.g., Mo, V) and those which improve the
oxidation resistance (e.g., Al, Si) are the most promising for tribological applications. For
example, the (AICrNbSiTiMo)N coating [142] combines a low wear rate and a low friction
coefficient at elevated temperatures (Table 4), approaching the corresponding values of
binary MoN [165].
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Table 4. Tribological properties of binary, ternary, quaternary and high-entropy nitride coatings.

Testing

Thickness of

Coefficient of

Wear Rate,

System of Coating Counterbody Temperature, °C Coating, um Friction %x10-6 mm3® N-1 x m—1 References
TiN sapphire, 6 mm ball RT 2.1 0.84 4.4 [143]
CrN Al,O3, 6 mm ball 600 3.3 0.46 12 [144]
RT 0.4 16
MoN Al,O3, 6 mm ball 600 1.65 04 70 [165]
TiAIN SiC, 6 mm ball 600 5.86 0.5 10 [146]
RT 05 0.6 [145]
CralN Al203, 6 mm ball 600 22 completely worn completely worn
) RT 06 0.25 [145]
CrAISiN Al,Os, 6 mm ball 600 21 completely worn completely worn
TIAISIN AlLO3, 6 mm ball 600 1.8 0.6 10 [147]
(CrAINDSiV)N AL, O3, 6 ball RI 0.8 088 2
’ ! 208, & mm ba 600 - 0.63 5.4
) 100Cr6 (AISI 52100) steel,
(AICrTaTiZr)N 6.35 mm ball RT 1.0-1.3 0.76 3.65 [133]
) 100Cr6 (AISI 52100) steel,
(AICrMoTaTiZr)N 6.35 mm ball RT 1.2-15 0.74 2.8 [129]
(AICTNBSITIMo)N AL,Os, 6 mm ball RT 1 068 y [142]
223 700 0.48 12
(TiZrNbHfTa)N sapphire, 6 mm ball RT 2.0 0.96 29 [143]
(TiZrNbTaFe)N WC-6 wt% Co, 6 mm ball RT 0.9 0.69 2.65 [76]

5. Conclusions

High-entropy nitride coatings have several highly attractive features: high stability of a
single-phase structure, high hardness up to 60 GPa, and excellent oxidation resistance up to
1300 °C. These features are often related to high mixing entropy, yet these claims are mostly
not supported with solid evidence. The performed analysis has revealed that the coatings
composed of groups IV-V metals are prone to the formation of the NaCl-type MeN nitrides
with stable solid solution structure. The stability of such coatings at high temperatures is
ultimately limited by the temperatures at which nitrogen evaporates. The addition of Al
or Si, which usually form hcp covalent nitrides, destabilizes the solid solution and leads
to the formation of amorphous and/or hcp phases. The microstructure and hardness of
HEN coatings depend mainly on parameters of the deposition processes. Under similar
deposition parameters, an increase in the number of components results in an increase
in hardness of the coatings. Improved tribological properties can be achieved by adding
elements (Mo or W) that reduce friction coefficients. The addition of Al and Si increases
oxidation resistance due to the formation of protective oxide layers. Thus, comprehensive
properties profiles can be achieved by tailoring the composition of HEN coatings. The
most promising industrial application of HEN coatings is the protection of parts operating
under friction and erosive wear at high temperatures. However, there is currently a lack of
systematic studies on the effect of chemical composition on the properties of the coatings
produced using similar deposition conditions. This crucial disadvantage must be overcome
to produce the all-around alloying concept. In addition, theoretical studies on various
thermodynamic aspects of behavior of HEN coatings are required.
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