PLANT GENETICS

Chromosomal Location of the *b-Amy-A1* Gene and Distribution of Its Alleles in a Winter Common Wheat Culture

V. P. Netsvetaev^{a, b, *}, Ya. O. Kozelets^a, A. P. Ascheulova^{a, b}, A. V. Petrenko^a, and O. V. Akinshina^a

^a Belgorod Federal Agrarian Scientific Center, Russian Academy of Sciences, Belgorod, 308001 Russia
^b Belgorod State University, Belgorod, 308015 Russia
*e-mail: v.netsvetaev@yandex.ru

Received January 10, 2023; revised February 6, 2023; accepted February 7, 2023

Abstract—The chromosomal location of the b-Amy-A1 gene, which controls the synthesis of wheat beta-amylase isoenzymes, was analyzed by assessing the linkage with the B1 (Awnless) marker gene located in the long arm of chromosome 5A. The results are based on an F_2 and $F_{\rightarrow\infty}$ Delta \times Selection 2092 study. The b-Amy-A1 locus showed $6.55 \pm 2.10\%$ linkage to the B1 gene. In parallel, alleles of the Rht8 locus, which causes dwarfing of plants, were identified and its linkage to the C gene (Compact spike) was established in 22.59 \pm 6.28% (F_2) and 24.22 \pm 1.18% ($F_{\rightarrow \infty}$) of recombination in chromosome 2D. The Delta cultivar carries the Rht8a allele, and the Selection 2092 accession carries the Rht8c allele. A collection of winter common wheat cultivars created and released in the Russian Federation was studied. The selected cultivars carried identical b-Amy-B1a and b-Amy-D1a alleles of the 4B and 4D chromosome loci. At the same time, the most common b-Amy-A1a and b-Amy-A1b alleles of chromosome 5A differed. It was found that in the direction from south to north in European Russia, the frequency of the b-Amy-A1a allele increases from 24.2% (Northern Caucasus) to 72.50% (Moscow–Ulyanovsk oblasts). Accordingly, the frequency of the alternative allele b-Amy-A1b decreased from 75.8% (North Caucasus) to 25.0% (Moscow-Ulyanovsk oblasts). In Rostov oblast, the ratio of the occurrence of alleles b-Amy-A1a to b-Amy-A1b was 42.5-57.5%. At the same time, already in the Central Chernozem region, significant dominance of the b-Amy-A1a allele over b-Amy-A1b was manifested. Using the collection of cultivars as a population of $F_{\to\infty}$ demonstrated the linkage of b-Amy-A1 with B1 value in $5.56 \pm 1.90\%$ recombination.

Keywords: common wheat, beta-amylase, isoenzymes, genetic control, chromosomal location, marker genes **DOI:** 10.1134/S1022795423070074

INTRODUCTION

Isoenzymes A and B of beta-amylase are the most frequent in winter common wheat cultivars [1]. The isoenzymes of beta-amylase are controlled by three loci: *b-Amy-A1*, *b-Amy-B1*, and *b-Amy-D1*, which are located on chromosomes 5AL, 4BL, and 4DL, respectively [2–5]. Differences in isoenzymes A and B were monogenic [1]. Later it was shown that differences in the slow-migrating band on beta-amylase zymogram patterns occur due to alleles of the *b-Amy-A1* gene [6]. Therefore, we first aimed to establish the chromosomal control that determines the differences between zymotypes A and B of beta-amylase. Another goal was to identify patterns in the distribution of alleles controlling variants A and B of this enzyme in the varieties of European part—in Russia.

MATERIALS AND METHODS

The *B1/b1* genes (awnless/awn) of chromosome 5A were used as marker genes in order to identify the chromosome responsible for the synthesis of A and B

beta-amylase isoenzymes. Awnlessness is controlled by the dominant *B1* gene located on the long arm of chromosome 5A [7, 8]. Winter wheat cultivars Delta and Selection 2092 were used as the parents. The maternal form Delta is 92 cm in height and has a loose spike with awns. The paternal parent Selection 2092 is 85 cm in height and has a compact spike without awns. According to the isoenzyme composition of beta-amylase, the parents differ as shown in Fig. 1. Accordingly, Delta has isoenzyme A, and Selection 2092 has isoenzyme B.

Since the parental forms differed in other qualitative characteristics, their genetic control was also evaluated. It is known that the spike density in wheat is controlled by the dominant C gene, which is localized on the long arm of chromosome 2D [9, 10]. Rht genes control reduced height in wheat; dwarfing alleles include gibberellin-insensitive Rht-B1, Rht-D1 and gibberellin-sensitive Rht4-Rht22 loci [2].

Beta-amylase was extracted from mature grains that were preliminary crushed with pliers. 250 μL of 3% Na_2SO_3 solution was added to test tubes with

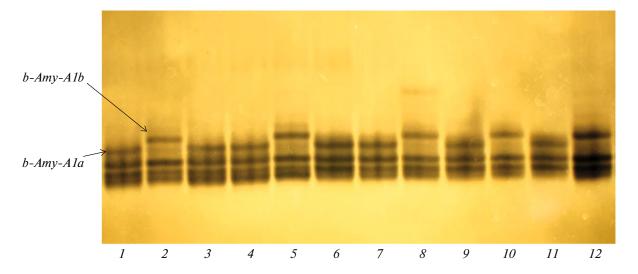


Fig. 1. Types of beta-amylase zymograms for parents Delta (1) and Selection 2092 (2), homozygous generation $F_{\to\infty}$ obtained from cross of the parents (3–12). The arrows indicate beta-amylase isoenzymes that are controlled by chromosome 5A. Alleles b-Amy-A1b (Selection 2092) and b-Amy-A1a (Delta).

crushed grains and left overnight. After grinding the grains in test tubes with a stainless steel rod, the resulting suspension was centrifuged for 4 min at 10000 rpm. Then, 10 uL of the supernatant fluid were taken into clean test tubes, and 10 µL of a solution containing 2% β-mercaptoethanol, 40% sucrose, and 0.03% bromophenol blue were added. 5 µL of extract were brought to the starting line of the zymography gel. The conditions of electrophoresis and the composition of the gel components are similar to those previously described for barley [11]. The separating gel contained acrylamide 4.88 g, methylenebisacrylamide 130 mg, tris 162.5 mg, glycine 0.98 g, ammonium persulfate 41 mg, distilled water-up to 65 mL, and TEMED 24 µL. The running buffer (1 L, pH 8.3) contained 1.2 g of tris and 5 g of glycine. The applied voltage for electrophoresis was 300 V. The electrophoretic separation was stopped-after the release of bromophenol blue 1.5 times (1.5 h). Amylase was incubated in an acetate buffer, pH 5.7. The acetate buffer contained 2.7 g of sodium acetate, 50.3 mL of 0.2 M acetic acid and was brought to 300 mL with water. 3-5 g of hydrolyzed potato starch was added to this solution, and the suspension was brought to a boil with constant stirring. Incubation time was 20–25 min. All the procedures were performed at room temperature. At the end of incubation, the gels were washed with running water and stained with iodine-potassium iodide solution containing KI, 2.5 g; I (crystalline), 1.3 g; TCA, 25.2 g; and water, up to 500 mL.

Linkage was estimated using the χ^2 test [12, 13]. The recombination fraction in a segregating population was estimated by the maximum likelihood method [14]. Linkage within homozygous populations of $F_{\to\infty}$ generations was estimated using the formulas presented previously [15, 16].

The frequencies of alleles were estimated as follows: 1 for a cultivar that has two identical alleles, and if a cultivar is heterozygous and the alleles are different, then quantity of each allele is 0.5. Errors in allele frequency estimates were calculated for diallelic distribution [12]. Difference significance was estimated using Student's test [12].

RESULTS AND DISCUSSION

Table 1 shows the results of genetic analysis for some morphological traits in F_2 Delta \times Selection 2092.

It is seen that plant height (Rht/rht) was inherited independently of the trait that determines awned and awnless spike (B1/b1). Similarly, the traits of compact or loose spike (C/c) were also inherited independently. Fig. 2 illustrates the manifestation of these traits.

Meanwhile, the traits that determine plant height and spike density revealed genetic linkage. Hence, the *rht* locus is located on chromosome 2D at a distance of $22.59 \pm 6.28\%$ recombination from the *C* gene (compact spike). Based on a list of the genes that determine wheat height [2], this segregation is associated with differences in the alleles of the *Rht8* gene located on the short arm of chromosome 2D [17, 18]. Taking into account the phenotypic manifestation of plant height based on the results of genetic analysis, it is concluded that the Delta cultivar carries the *Rht8a* gene in chromosome 2D. The Selection 2092 parent carries the *Rht8c* allele, which reduces wheat height by approximately 7 cm [19].

This combination of cross was also investigated in subsequent generations after self-pollination $(F_{\to \infty})$. The results are shown in Table 2.

Alleles	Phenotypical classes in F_2 (study of F_3)				Sample size	$\chi^2_{ m L}$	Recombination,
$\frac{A}{a} \times \frac{B}{b}$		ВВ	Bb	bb	Sample size	λL	%
$\frac{Rht}{rht} \times \frac{B1}{b1}$	A- aa	10 3	19 4	13 7	56	2.13	Independent
$\frac{Rht}{rht} \times \frac{C}{c}$	A- aa	6 9	22 4	14 1	56	13.81	22.59 ± 6.28
$\frac{B1}{b1} \times \frac{C}{c}$	AA Aa aa	4 5 6	7 10 9	2 8 5	56	1.75	Independent

Table 1. Morphological features of F_2 Delta \times Selection 2092 cross

Self-pollinating populations are more convenient because they are homozygous, and the lack of heterozygotes eliminates possible errors in the classification of phenotypes. Furthermore, the lack of heterozygotes improves informativity of such samples. This genetic analysis confirmed linkage between the C and Rht8 genes. The linkage value between the C and Rht8 genes (24.22 \pm 1.18%) is close to the linkage in the F_2 analy-

sis (Table 1), i.e., $22.59 \pm 6.28\%$. The population $F_{\to\infty}$ Delta × Selection 2092 confirmed that the *B1* and *Rht8a* genes as well as *B1* and *C* are inherited independently (Table 2).

Since beta-amylase isoenzymes differ in the parental forms Delta and Selection 2092 (Fig. 1), we analyzed the inheritance of these enzyme variants. The allele that is responsible for a component of beta-amy-

Fig. 2. Segregation according to spike types in $F_{\to\infty}$ Delta \times Selection 2092 (1-4): 1, type of spike specific for Selection 2092; 4, type of spike specific for Delta cultivar.

Alleles	Alleles Phenotypical classes in F ₄					
$\frac{A}{a} \times \frac{B}{b}$	BB bb		Sample size	χ^2 L	Recombination, %	
$\frac{C}{c} \times \frac{Rht8a}{Rht8c}$	AA aa	35 20	11 29	95	11.47	24.22 ± 1.18
$\frac{B1}{b1} \times \frac{Rht8a}{Rht8c}$	AA aa	25 30	17 23	95	0.01	Independent
$\frac{B1}{b1} \times \frac{C}{c}$	AA aa	19 27	23 26	95	0.27	Independent
$\frac{B1}{b1} \times \frac{b - Amy - A1a}{b - Amy - A1b}$	AA aa	38 7	4 46	95	56.10	6.55 ± 2.10

Table 2. Genetic analysis of $F_{\to\infty}$ Delta \times Selection 2092 generation

lase, which migrates faster in the slow-migrating band of the zymogram, was designated as b-Amy-AIa, and the slower migrating component in this band was designated as b-Amy-AIb. The ratio of homozygous phenotypes in $F_{\to\infty}$ by the b-Amy-AIa and b-Amy-AIb alleles was 45 : 50 (Table 2), which corresponds to monogenic inheritance ($\chi^2_{1:1}$ = 0.16; P > 0.50). These zymotypes revealed linkage to the BI gene. Thus, phenotypes carrying the b-Amy-AIb allele were usually awnless; in contrast, carriers of the b-Amy-AIa allele had awns more frequently. The linkage value of the b-Amy-AI and BI loci was 6.55 \pm 2.10% (Table 2).

Therefore, the differences in beta-amylase isoen-zymes carrying zymotypes A and B are associated with the *b-Amy-A1a* and *b-Amy-A1b* alleles of chromosome 5A, which controls the synthesis of this enzyme.

In winter common wheat, the *b-Amy-A1a* and *b-Amy-A1b* alleles are the most common. The cultivars were less diverse by the remaining loci controlling the synthesis of beta-amylase. Typically, carriers of the *b-Amy-A1a* and *b-Amy-A1b* alleles carried the same alleles at the remaining loci designated here as *b-Amy-B1a* and *b-Amy-D1a*. Therefore, it is possible to evaluate the zonal distribution of the *b-Amy-A1a* and *b-Amy-A1b* alleles of chromosome 5A in carriers of the

b-Amy-B1a and *b-Amy-D1a* alleles of chromosomes 4B and 4D.

To establish the features of the zonal distribution of the b-Amy-Ala and b-Amy-Alb alleles when the b-Amy- genes on chromosome 4B and 4D are the same, we investigated genotypes of winter common wheat cultivars used as crops in agricultural production [20] that carry only the indicated alleles (Table 3). Therefore, this combination of cultivars was selected twice by the environmental conditions of the respective regions. First, selection in regional breeding centers and, secondly, selection as a result of official trials conducted in these regions. Among this combination of cultivars, several contained a new allele designated as b-Amy-A1c that controls the synthesis of the least mobile isoenzyme in the slow band of the beta-amylase zymogram. The remaining components of the zymogram of this enzyme were identical to the carriers of zymotypes A and B (Fig. 3).

Winter common wheat cultivars were sorted out into the groups created in the regions of the European part of Russia from south to north. The estimates for the *b-Amy-A1a* and *b-Amy-A1b* allele frequencies in these groups are shown in Table 4.

It is seen that in the south of European Russia (region I, North Caucasus), the *b-Amy-A1b* allele that

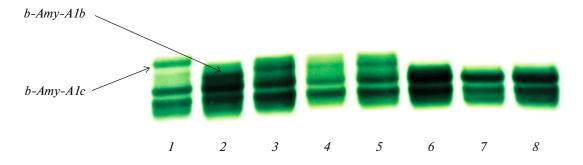


Fig. 3. Zymograms of some winter common wheat cultivars (1, 2, Dar Zernograda, 3–5, Donskoi mayak, 6-8, Stanichnaya) that carry alleles of the b-Amy-A1 locus: 1, A1c, 2–5, A1b, 6-8, A1a.

Table 3. Differentiation of winter common wheat based on the B1/b1 genes and beta-amylase isoenzymes associated with the b-Amy-A1 locus

No. Cultivar		Phenotypes according to genes		Originator		
		B1/b1	b-Amy-A1			
1	Aksin'ya	b1b1	Ala	Donskoy, Agricultural Research Center, Zernograd		
2	Al'meraa	b1b1	A1a	Shestopalov I.O., Belgorod		
3	Armada	b1b1	Ala	Federal Research Agricultural Center, Stavropol, 53		
4	Ariadna	b1b1	A1a + A1b	Federal Agricultural Center, Belgorod, 5829		
5	Akapello	b1b1	A1b	Federal Rostov Agricultural Center, Rostov, 223		
6	Asket	b1b1	A1a + A1b	Donskoy, Agricultural Research Center, Zernograd		
7	Belgorodskaya 16	b1b1	Ala	Belgorod State Agricultural University, Belgorod, 133		
8	Bogdanka	b1b1	A1a*	Federal Agricultural Center, Belgorod, 5829		
9	Vezelka	b1b1	A1a	Federal Agricultural Center, Belgorod, 5829		
10	Viktoria	b1b1	A1b	Federal Research Agricultural Center, Stavropol, 53		
11	Volzhskaya K	b1b1	A1a	Selektsiya, Research and Production Center, Ulyanovsk		
12	Volzhskaya S3	b1b1	A1a	Selektsiya, Research and Production Center, Ulyanovsk		
13	Volzhskaya 100	b1b1	A1b	Selektsiya, Research and Production Center, Ulyanovsk		
14	Vol'nitsa	b1b1	A1a	Donskoy, Agricultural Research Center, Zernograd, 5917		
15	Gubernator Dona	b1b1	A1a + A1b	Federal Rostov Agricultural Center, Rostov, 223		
16	Donskaya step'	b1b1	A1a	Donskoy, Agricultural Research Center, Zernograd		
17	Don 107	b1b1	A1a	Donskoy, Agricultural Research Center, Zernograd		
18	Donera	b1b1	A1a	Federal Rostov Agricultural Center, Rostov, 223		
19	Ermak	b1b1	A1a*	Donskoy, Agricultural Research Center, Zernograd		
20	Zhavoronok	b1b1	Ala	Donskoy, Agricultural Research Center, Zernograd		
21	Zarnitsa	b1b1	A1a	Donskoy, Agricultural Research Center, Zernograd 5917		
22	Zvonnitsa	b1b1	Ala	Shestopalov I.O., Belgorod		
23	Kapitan	b1b1	Ala	Donskoy, Agricultural Research Center, Zernograd		
24	Korochanka	b1b1	A1a	Federal Agricultural Center, Belgorod, 5829		
25	Korotyshka	b1b1	Ala	Federal Agricultural Center, Belgorod, 5829		
26	Larisa	b1b1	Ala	Federal Agricultural Center, Belgorod, 5829		
27	Levoberezhnaya 3	b1b1	A1c	Federal Center of Agriculture Research of the Southeast Region, Saratov		
28	L'govskaya 8	b1b1	Ala	Experimental Breeding Station, L'gov, 95		
29	Magia	b1b1	Ala	Federal Rostov Agricultural Center, Rostov, 223		
30	Maiskaya yubileinaya	b1b1	Ala	Belgorod State Agricultural University, Belgorod 133		
31	Moskovskaya 56	b1b1	A1a	Nemchinovka, Federal Research Center, Moscow, 168		
32	Moskovskaya 40	b1b1	A1a	Nemchinovka, Federal Research Center, Moscow, 168		
33	Nemchinovskaya 17	b1b1	Ala	Nemchinovka, Federal Research Center, Moscow, 168		
34	Nemchinovskaya 57	b1b1	A1a	Nemchinovka, Federal Research Center, Moscow, 168		
35	Oksana	b1b1	A1b	Breeding and Genetics Institute, Odessa		
36	Partner	b1b1	A1a	Federal Research Agricultural Center, Stavropol, 53		
37	Pionerskaya 32	b1b1	A1b	Orenburg State Agrarian University		
38	Praskov'ya	b1b1	Ala	National Grain Center, Krasnodar, 25		
39	Rostovchanka 3	b1b1	Ala	Donskoy, Agricultural Research Center, Zernograd		
40	Rostovchanka 7	b1b1	Ala	Donskoy, Agricultural Research Center, Zernograd		
41	Sirena	b1b1	Ala	Federal Agricultural Center, Belgorod, 5829		
42	Sintetik	b1b1	A1a + A1b	Federal Agricultural Center, Belgorod, 5829		

Table 3. (Contd.)

No.	Cultivar	Phenotypes according to genes		Originator		
		B1/b1	b-Amy-A1			
43	Severo-donetskaya yubileinaya	b1b1	Ala	Federal Rostov Agricultural Center, Rostov, 223		
44	Sofiika	b1b1	Ala	Breeding and Genetics Institute, Odessa		
45	Stanichnaya	b1b1	Ala	Donskoy, Agricultural Research Center, Zernograd		
46	Surava	b1b1	Ala	Shestopalov I.O., Belgorod		
47	Tarasovskaya 70	b1b1	Ala	Federal Rostov Agricultural Center, Rostov, 223		
48	Shef	b1b1	Ala	Donskoy, Agricultural Research Center, Zernograd		
49	Chernobrova	b1b1	A1b + A1a	Breeding and Genetics Institute, Odessa		
50	Avesta	B1B1	Alb	Federal Rostov Agricultural Center, Rostov, 223		
51	Agra	B1B1	Alb	Federal Rostov Agricultural Center, Rostov, 223		
52	Alekseich	B1B1	Alb	National Grain Center, Krasnodar, 25		
53	Akhmat	B1B1	A1b + A1a	National Grain Center, Krasnodar, 25		
54	Bezenchukskaya 380	B1B1	A1b	Samara Federal Research Center, Russian Academy of Sciences, Samara, 21181		
55	Bezostaya 100	B1B1	Alc	National Grain Center, Krasnodar, 25		
56	Brigada	B1B1	Alb	National Grain Center, Krasnodar, 25		
57	Viktoria 95	B1B1	Alb	Federal Center of Agriculture Research of the Southeast Region, Sarato		
58	Vol'nyi Don	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd, 5917		
59	Grom	B1B1	Alb	National Grain Center, Krasnodar, 25		
60	Gomer	B1B1	Alb	National Grain Center, Krasnodar, 25		
61	Dar Zernograda	B1B1	A1b + A1c			
62	Deviz	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd		
63	Dolya	B1B1	A1a + A1c	National Grain Center, Krasnodar, 25		
64	Don 95	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd, 5917		
65	Dominanta	B1B1	A1b	Federal Rostov Agricultural Center, Rostov, 223		
66	Don 105	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd		
67	Donstar	B1B1	Alb	Federal Rostov Agricultural Center, Rostov, 223		
68	Donskoi mayak	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd, 5917		
69	Donskoi syurprize	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd		
70	Deviz	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd		
71	Dzhangal'	B1B1	Alb	Federal Center of Agriculture Research of the Southeast Region, Sarato		
72	Donshchina	B1B1	A1a	Donskoy, Agricultural Research Center, Zernograd		
73	Ershovskaya 11	B1B1	A1a	Federal Center of Agriculture Research of the Southeast Region, Sarato		
74	Zhemchuzhina Povolzh'ya	B1B1	A1b	Federal Center of Agriculture Research of the Southeast Region, Sarato		
75	Zernogradka 9	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd		
76	Zernogradka 11	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd		
77	Zimnitsa	B1B1	A1c	National Grain Center, Krasnodar, 25		
78	Zolushka	B1B1	A1b	Federal Rostov Agricultural Center, Rostov, 223		
79	Izyuminka	B1B1	A1b	Donskoy, Agricultural Research Center, Zernograd		
80	Kalach	B1B1	A1b	Federal Center of Agriculture Research of the Southeast Region, Sarato		
81	Kaprizulya	B1B1	A1b	Donskoy, Agricultural Research Center, Zernograd		
82	Konkurent	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd		

Table 3. (Contd.)

No. Cultivar		Phenotypes according to genes		Originator	
			b-Amy-A1		
83	Krasa Dona	B1B1	A1b + A1a	Donskoy, Agricultural Research Center, Zernograd	
84	Laureat	B1B1	A1b	National Grain Center, Krasnodar, 25	
85	Levoberezhnaya 1	B1B1	A1c	Federal Center of Agriculture Research of the Southeast Region, Saratov	
86	Lilit	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd	
87	L'govskaya 4	B1B1	Alb	Experimental Breeding Station, L'gov, 95	
88	Marafon	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd	
89	Melodia	B1B1	A1a	Agricultural Scientific Center, Omsk	
90	Morozko	B1B1	A1b	National Grain Center, Krasnodar, 25	
91	Nakhodka	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd	
92	Nemchinovskaya 24	B1B1	Alb	Nemchinovka, Federal Research Center, Moscow, 168	
93	Niva Stavropol'ya	B1B1	Alb	Federal Research Agricultural Center, Stavropol, 53	
94	Omskaya 5	B1B1	A1a	Agricultural Scientific Center, Omsk	
95	Omskaya 6 B1B1 A1b		Alb	Agricultural Scientific Center, Omsk	
96	Paritet	B1B1	Alb	Federal Research Agricultural Center, Stavropol, 53	
97	Tabor	B1B1	Alb	National Grain Center, Krasnodar, 25	
98	Tanais	B1B1	Alb	Donskoy, Agricultural Research Center, Zernograd	
99	Timiryazevskaya 150	B1B1	A1b	National Grain Center, Krasnodar, 25	
100	Chernozemka 115	115 B1B1 A1a		Federal Agricultural Research Center, Voronezh	
101	Etyud B1B1 A1b		A1b	Donskoy, Agricultural Research Center, Zernograd	
102	Yuka	B1B1	A1b	National Grain Center, Krasnodar, 25	

Recombinant phenotypes by B1, b-Amy-A1 alleles are in bold.

controls the synthesis of beta-amylase dominates among winter wheat cultivars. In its frequency, this allele significantly exceeds that of the b-Amy-Ala alternative allele (t = 4.87***). Within the Rostov oblast, the frequencies of these alleles are close to each other and the differences in frequencies are within the experimental error (Table 4). Northward (region IV, Central Chernozem region + Lower Volga region), the b-Amy-A1a allele dominates and the frequency of b-Amy-A1b is decreased. In this case, the differences in the frequencies of these alleles are significant: t =4.32**. A similar situation is observed further northward. Thus, at the latitude of the Moscow oblast (region V, northern Central Federal District + Middle Volga region), the frequency of the b-Amy-Ala allele was 72.5%, and that of the alternative allele was only 25.0%. Differences in frequencies are significant, t =3.27* (Table 4).

Next, we assessed allele frequency variations among the selected regions. Herein, the most contrasting differences were observed when geographically more distant regions were compared. For example, a comparison of the *b-Amy-A1b* allele frequency in region V (northern Central Federal District + Middle Volga region) with the frequency of this allele in

region I (Northern Caucasus) revealed a significant decrease in its frequency from south to north, i.e., by 50.8% ($t=2.60^*$; P>0.95). A comparison of this allele frequency in region IV (Central Chernozem region + Lower Volga region) and region I (North Caucasus) revealed similar regularities. As well, its frequency from south to north decreased by 47.2% ($t=3.26^{**}$; P>0.99). At the same time, the differences between geographically close regions were insignificant. Thus, variations in frequencies of the b-Amy-Ala allele between regions V (Northern Central Federal District + Middle Volga region) and IV (Central Chernozem region + Lower Volga region) were only 1.1% (t=0.06: P<0.95).

In general, the *b-Amy-A1b* allele frequency tends significantly to a decrease and the frequency of the *b-Amy-A1a* alternative allele increases from south to north of European Russia.

It had been shown that the collection of self-pollination cultivars can be characterized as a homozygous $F_{\to\infty}$ population. In this case, such population may be used to evaluate linkage of the genes located in the same linkage group [21]. Hence, since wheat cultivars were grouped according to traits awn/awnless spike (genes b1 and b1), as well as according to the b-Amy-A1a

Table 4. Distribution of the *b-Amy-A1* locus alleles in winter common wheat cultivars released in the Russian Federation that were combined into groups according to the altitude origin

	in the Eu	of alleles of the ropean parts o tion from sout	Error	Significance (t)		
Regions	quantity of c	allele frequency			in occurrence frequency	
	Ala	A1b	Ala	A1b		
I. Northern Caucasus (National Grain Center, Krasnodar; Federal Research Agricultural Center, Stavropol)	4	12.5	0.242	0.758	0.106	4.87***
II. South of the Rostov oblast (Donskoy Agricultural Research Center)	14	18.5	0.431	0.569	0.087	1.59
III. North of the Rostov oblast (Federal Rostov Agricultural Center, Rostov oblast)	4.5	6.5	0.409	0.591	0.148	1.23
IV. Central Chernozem Region + Lower Volga region (Federal Agricultural Center, Belgorod; Experimental Breeding Station, L'gov, Saratov)	15	6	0.714	0.286	0.099	4.32**
V. Central Federal District + Middle Volga region (Nemchinovka, Moscow; Selektsiya, Research and Production Center, Ulyanovsk)	6	2	0.725	0.250	0.153	3.27*
Total	43.5	45.5	0.489	0.511	0.053	0.415

Significant differences between frequencies are in bold.

Table 5. Analysis of $F_{\to\infty}$ winter common wheat for estimation of linkage between loci B1/b1 and b-Amy-A1

Alleles	P	henotypic classes	in F ₄		$\chi^2_{ m L}$	Recombination,
$\frac{A}{a} \times \frac{B}{b}$		ВВ	bb	Sample size		
$\frac{B1}{b1} \times \frac{b - Amy - A1a}{b - Amy - A1b}$	AA aa	6.5 39.5	42.5 7.0	95.5	49.13	5.56 ± 1.90

and *b-Amy-A1b* alleles located on chromosome 5A, we estimated occurrence of the corresponding phenotypes and determined the amount of linkage between the *B1* and *b-Amy-A1* loci.

The ratio of the phenotypes shown in Table 3 was as follows: b1b1 + A1a : b1b1 + A1b : B1B1 + A1a : B1B1 + A1b = 39.5 : 7.0 : 6.5 : 42.5. Segregation in $F_{\to\infty}$ according to the expected segregation at monogenic inheritance should be 1 : 1. Compliance of segregation by awn/awnless to this ratio of phenotypes was expressed by the value $\chi_{b1}^2 = 0.063$, which is significant at P > 0.25. Alleles of the b-Amy-A1 locus reveal close values χ_{b -Amy-A1}^2 = 0.124, P > 0.25. In digenic inheritance (segregation 1 : 1 : 1 : 1), the value $\chi_0^2 = 49.32$; P < 0.01. This indicates that these genetic fac-

tors deviate from independent inheritance. Hence, Table 5 shows the value of χ^2 associated with linkage of the studied loci (χ^2_L) .

The recombination value calculated on the basis of the studied collection of winter common wheat was $5.56 \pm 1.90\%$.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflicts of interest.

This article contains no studies involving animals or human participants performed by any of the authors.

^{*, **, ***} Probabilities are 0.95, 0.99, and 0.999, respectively.

REFERENCES

- Netsvetaev, V.P., Akinshina, O.V., Bondarenko, L.S., and Motorina, I.P., The β-amylase polymorphism of winter common wheat grains, *Russ. J. Genet.*, 2012, vol. 48, no. 2, pp. 146—151. https://doi.org/10.1134/S102279541202010X
- McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Somers, D.J., Appels, R., and Devos, K.M., Catalogue of Gene Symbols for Wheat, in The 12th International Wheat Genetics Symposium, Yokohama, 2013, pp. 1—167. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp.
- 3. Ainsworth, C.C., Gale, M.D., and Baird, S., The genetics of beta-amylase isozymes in wheat: allelic variation among hexaploid varieties and intrachromosomal gene locations, *Theor. Appl. Genet.*, 1983, vol. 66, pp. 39—49.
- Dabrowska, T., Studies on chromosomal location of genes involved in beta-amylase isozymes in wheat kernels (*Triticum aestivum* L.), *Genet. Pol.*, 1983, vol. 24, pp. 9—19.
- Joudrier, P. and Cauderon, Y., Localisation chromosomique de gènes contrôlant la synthèse de certain constituants β amylasique du grain de Blé tendre, C. R. Acad. Sci., Sér. D, 1976, vol. 282, pp. 115—118.
- 6. Netsvetaev, V.P., Akinshina, O.V., Kozelets, Ya.O., and Ashcheulova, A.P., Chromosomal localization of genes controlling beta-amylase isoenzymes of common wheat, Aktual'nye problemy funktsionirovaniya ustoichivykh agrotsenozov v sisteme adaptivno-landshaftnogo zemledeliya (Current Issues in the Functioning of Sustainable Agrocenoses in the System of Adaptive Landscape Agriculture) (Proc. All-Ross. Theor. Prakt. Conf. with Int. Participation and All-Ross. School of Young Scientists in Belgorod 2020), Belgorod, 2020, pp. 284—293.
- 7. Sears, E.R., The aneuploids of common wheat, *Mo. Agric. Exp. Stn. Res. Bull.*, 1954, vol. 572, p. 59.
- 8. Chalmers, K.J., Campbell, A.W., Kretschmer, J., et al., Construction of three linkage maps in bread wheat, *Triticum aestivum*, *Aust. J. Agric. Res.*, 2001, vol. 52, pp. 1089—1119.
- 9. Rao, M.V.P., Mapping of the compactum gene C on chromosome 2D of wheat, *Wheat Inf. Serv.*, 1972, no. 35, p. 9.
- 10. Unrau, J., The use of monosomes and nullisomes in cytogenetic studies in common wheat, *Sci. Agric.*, 1950, vol. 30, pp. 66—89.

- Netsvetaev, V.P., Locatization of β-amylase locus (Bmy 1) in barley chromosome 4, *Tsitol. Genet.*, 1993, vol. 27, no. 5, pp. 74—78.
- 12. Rokitskii, P.F., *Vvedenie v statisticheskuyu genetiku* (Introduction to Statistical Genetics), Minsk: Vysheishaya Shkola, 1974.
- 13. Persson, G., An attempt to find suitable genetic markers for dense ear loci in barley: I, *Hereditas*, 1969, vol. 62, pp. 25–96.
- 14. Allard, R.W., Formulas and tables to facilitate the calculation of recombination values in heredity, *Hilgardia*, 1956, vol. 24, no. 10, pp. 235—278.
- 15. Netsvetaev, V.P., Obraztsov, I.S., and Sozinov, A.A., Hrd G locus mapping in barley chromosome 5, in Molekulyarnye mekhanizmy geneticheskikh protsessov (Molecular Mechanisms of Genetic Processes) (Proc. 5th All-Union Symposium), Moscow: Nauka, 1983, p. 110.
- 16. Netsvetaev, V.P. and Sozinov, A.A., Location of a hordein G locus, Hrd G, on chromosome 5 of barley, *Barley Genet. Newslett.*, 1984, vol. 14, pp. 4—6.
- 17. Korzun, V., Röder, M.S., Ganal, M.W., et al., Genetic analysis of the dwarfing gene (*Rht8*) in wheat: I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (*Triticum aestivum* L.), *Theor. Appl. Genet.*, 1998, vol. 96, pp. 1104—1109.
- 18. Worland, A.J., Korzun, V., Roder, M.S., et al., Genetic analysis of the dwarfing gene Rht8 in wheat. Part II: the distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening, *Theor. Appl. Genet.*, 1998, vol. 96, pp. 1110—1120.
- 19. Dubovets, N.I., Sycheva, E.A., Drobot, N.I., et al., Prebreeding assessment of dwarfing genes *Rht-B1*, *Rht-D1*, *Rht8* and *Ddw1* allelic composition in recombinant and introgressive wheat—rye hybrids, *Vestsi Nats. Akad. Navuk Belarusi*, *Ser. Biyal. Navuk*, 2018, vol. 63, no. 2, pp. 146—154.
- https://reestr.gossortrf.ru. Accessed December 22, 2022.
- 21. Netsvetaev, V.P. and Kalendar', R.N., The use of collections of self-pollinators for estimating gene linkage, *Russ. J. Genet.*, 1999, vol. 35, no. 4, pp. 393—402.

Translated by M. Novikova