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Abstract—Anomalous diffusion is a random process in which the root-mean-square displacement of a parti-
cle from the starting point depends nonlinearly on time. The possibility of such behavior for high-energy par-
ticles moving through the crystal under conditions close to axial channeling was found earlier. In this case,
the rapid displacement of particles in a plane transverse to atomic strings (Lévi f lights) is due to the temporary
capture of the particles in planar channels. In this work, the anomalous diffusion exponent has been found by
numerical simulation for different values of the energy of electron transverse motion in the (100) plane of a
silicon crystal. It has been shown that, in the case of electrons with an energy exceeding by 1 eV the height of
the saddle point of the potential of a system of atomic chains [100], the results are consistent with those
obtained earlier. It has been confirmed that the anomalous nature of diffusion is due to the possibility of
short-term capture of particles in planar channels. With increasing transverse energy, this possibility disap-
pears and the diffusion becomes normal (Brownian).
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INTRODUCTION
A fast charged particle moving in a crystal near one

of the crystallographic axes closely packed with atoms
can be captured in the potential well formed by these
axes, performing finite motion in a plane perpendicu-
lar to the corresponding axis and penetrating anoma-
lously deeply into the crystal. This phenomenon is
called axial channeling [1–5]. The motion of a particle
in the axial channeling mode can be described with
good accuracy as motion in the field of a continuous
potential of an atomic chain, that is, potential aver-
aged along the chain axis. In this case, the longitudinal
component of the particle momentum  is conserved,
and the problem of its motion is reduced to a two-
dimensional problem of motion in the transverse
plane. A set of parallel atomic chains lying in one or
another close-packed plane can form a planar channel
with the possibility of channeling a particle trapped in
it. An interesting situation arises when the motion of a
particle in a planar channel is weakly stable. In this
case, the particle, having passed a certain part of the
path in the planar channel, leaves it (the instability of
motion is associated with the inhomogeneity of the
potential of the set of atomic chains that forms the pla-
nar channel) and performs chaotic motion in the peri-
odic field of atomic chains. Then, having found
another channel, it can get into it for a while, and so
on. This motion of a particle in a crystal resembles the

so-called Lévi f lights, known in the theory of stochas-
tic processes (e.g., [6–10]). This mode of motion is of
interest because it leads to anomalous diffusion of par-
ticles.

Normal diffusion (Brownian motion) is described
by the following equation:

(1)

where a is the diffusion coefficient, and the two-
dimensional case with  exactly corresponds
to the considered motion of particles in a plane trans-
verse to the atomic chains of the crystal. Its solution
with the initial distribution of diffusing particles in the
form of the -function

(2)

has the form

(3)

(any textbook of mathematical physics, e.g., [11, 12]);
that is, the root-mean-square displacement of parti-
cles from the starting point depends linearly on time:

(4)
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Fig. 1. Potential energy (7) of an electron moving near the [100] direction of the silicon crystal.
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The situation when the dependence of this quantity on
time is nonlinear,

(5)

where  is different from unity, is called anomalous
diffusion.

It was found [13, 14] that such behavior is possible
for high-energy particles moving in a crystal under
conditions close to the conditions of axial channeling.
In this case, the fast ( ) displacement of a particle
in a plane transverse to the atomic chains is due to the
temporary capture of particles into planar channels
described above. In this work, the value of  was found
by numerical simulation for different energy values of
the transverse motion of electrons in the (100) plane of
the silicon crystal. It was shown that the behavior of
the system is qualitatively consistent with the results of
[13–15] but the quantitative results allow for ambigu-
ous interpretation.

METHOD
The motion of a relativistic particle at a small angle

to a close-packed atomic chain is described with good
accuracy by the so-called continuous potential, that is,
atomic potential averaged along the chain axis. In the
work, the continuous potential of an individual atomic
chain is approximated by the formula [1]:

(6)

where for chain [100] of the silicon crystal  eV,
, , and  Å (Thomas–Fermi

radius); the minus sign takes into account the attrac-
tive nature of the chain potential for an incident elec-
tron. Such chains form a square lattice in the (100)
plane with period  Å, where  is the
period of the silicon lattice, and the electron moves in
the field of the total potential of all atomic chains of
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the crystal. In the algorithm used, it is approximated
by a finite sum of the potentials of the 25 nearest
chains (Fig. 1):

(7)

The equation of motion of a relativistic electron
particle can be written in the form [1, 16]:

(8)

where v is the particle velocity,  is the force
acting on the particle, c is the speed of light in vacuum,
and  is the particle energy. In
the case of a high-energy particle moving at a small
angle  and a force acting only in the transverse plane
(which, as was noted above, leads to conservation of
the longitudinal component of the momentum ,
the equation of motion in this plane can be reduced
with good accuracy to the formal form of the nonrela-
tivistic equation of motion

(9)

in which the quantity  plays the role of the parti-

cle mass and  is the energy of lon-
gitudinal motion [1]. For its numerical integration,
the velocity Verlet algorithm was used [17]. Time step

 was chosen in such a way that

(10)

To find the root-mean-square displacement of a
particle as a function of time  104 trajectories are
simulated whose initial positions  are scattered
within the central potential cell (7). At the boundaries
of this cell, periodic boundary conditions are imposed
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Fig. 2. Typical trajectory of an electron in the transverse
direction [100] of the silicon crystal plane. The energy of
transverse electron motion is 0.5 eV.
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Fig. 3. Numerically found time dependences  on
the logarithmic scale for electrons with transverse motion
energies of 0.5 (thin solid line), 1 (thin dashed line), 1.5
(thin dash-dotted line), 2 (thick solid line), 2.5 (thick dot-
ted line), and 3 eV (thick dashed line) for options (a) and (b)
choice of initial conditions. In the case of the second option,
on the curve for electrons with  eV the values of  used
in Fig. 4 are marked with a circle and a dot.
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on the local trajectory of the particle, and information
about the global displacement of the particle relative to
the central cell is accumulated.

RESULTS AND DISCUSSION
For all simulated trajectories, the initial velocity is

selected from the expression for a given value of the
transverse motion energy:

(11)

In one series of simulations, the direction of the initial
velocity was chosen randomly for the particle (as in
[13–15]), and in the other series, all initial velocities
were chosen in the positive direction of the axis x (i.e.,
the three-dimensional vector of the initial velocity was
in the (110) plane of the silicon crystal), as would be
the case if an electron beam was incident on the crys-
tal. Here and further we will (as in [13–15]) count 
from the saddle point of the potential (7), located near
the central cell (marked with a dot in Fig. 1). In [13], the
simulation was performed for a single value  eV
and particle trajectories in the transverse plane were
traced down to penetration depths l = ct = 10 mm (for
the electron energy  = 10 GeV, the velocity of longi-
tudinal displacement can be considered with good
accuracy equal to the speed of light in vacuum),
which, when choosing the time step (10), corresponds
to the number of time steps .

An example of a typical electron trajectory in the
transverse plane is shown in Fig. 2. It shows exactly
how anomalous diffusion occurs: a particle is captured
from time to time in a planar channel and quickly
moves away from the region of previous localization;
this is what Levi’s f lights are, leading to superdiffusion
in the transverse plane.
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In this work, in the development of [13–15], we
simulated electron trajectories for transverse motion
energies of 0.5, 1, 1.5, 2, 2.5, and 3 eV. We considered
initial conditions of two types: (a) random scatter in
azimuth directions of incident electrons, as in [13–
15], and (b) the same azimuth direction of all initial
particles, corresponding to a beam from the accelera-
tor incident parallel to the (110) plane. For two types
of initial conditions Fig. 3 shows on a logarithmic
scale the dependences  found as a result of sim-
ulation for electrons with energies from this set. The
slope of such a curve allows us to estimate the expo-
nent  in (5) depending on time. In the first three
cases, in the limit of large penetration depths into the
crystal,  significantly exceeds unity, which indicates
the anomalous nature of particle diffusion in the
transverse plane. In the remaining three cases, the
energy of the transverse motion significantly exceeds
the height of the potential barriers. Therefore, particle
capture into planar channels does not occur for a sig-
nificant time, and the exponent μ is close to unity; that
is, the diffusion process is normal (Brownian). As was

2( )tρ

μ

μ
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Fig. 4. Graphs  in the case  eV obtained by for-
mula (12) for  mm (dotted line) and  mm
(dashed line), and also as the derivative of the function
approximating the logarithmic curve in Fig. 4 by the poly-
nomial of degree 25 (solid line). The dots correspond to
the numerically found values of the slope of the tangents to
the logarithmic curve in Fig. 3b.
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Fig. 5. Graphs  for all studied values of  calculated
using formula (12) for  mm for options (a) and (b)
choice of initial conditions; line types correspond to Fig. 3.
The short horizontal lines in the figures on the right corre-
spond to the values of  from Table 1.
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shown in [13], the same diffusion takes place in a sys-
tem of randomly located parallel chains.

Dependence of the exponent  in (5) on time in
[13–15] was proposed to take from the plot 
found by simulation calculating the ratio

(12)

where  is some standard point in time, , and in
[13, 14] the value of  was not specified but in [15] it
was mentioned that it corresponds to the penetration
depth l = 1 mm. However, the results obtained in this
way should be treated with caution, since formula (12)
gives an unambiguous result only in the case of the
time-independent exponent . Indeed, the approxi-
mation of the function obtained as a result of simula-
tion of function  by the power-law dependence
(5) will have the form:

(13)

where the division by  is necessary to make the argu-
ment of the power function dimensionless. It is easy to
understand that for a given time function on the left
side of (13) different choices of  will lead to different
values of the exponent of  calculated by formula
(12). These differences are illustrated in Fig. 4, which
shows the graphs  obtained by formula (12) for

 mm (as in [15]) and  mm, and also as a
derivative of a function that approximates the logarith-
mic curve in Fig. 3b corresponding to  eV by
polynomial of degree 25. In addition, the graph shows
points corresponding to the numerically found values
of the slope of the tangents to the logarithmic curve in
Fig. 3b.
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Figure 5 shows the  curves for all the studied val-
ues of  calculated using formula (12) for  mm
(discontinuities in the curves correspond to the
excluded region of small denominators in (12) near ).
In the second and fourth columns (for variants of dif-
ferent initial conditions, respectively) of Table 1, the
values of  achieved at  mm are shown. Let
us note, in particular, that in the case  eV the
exponent of  was obtained for the choice
(a) of initial conditions and 1.57 was obtained for
choice (b), which is close to a value of 1.51 reported in
[13–15]. To study the asymptotic behavior of electron
diffusion in the transverse plane at large times (corre-
sponding to large penetration depths into the crystal)
the values of  corresponding to the slope of the
logarithmic curves in Fig. 3 at  mm may be of
interest. These values are given in the third and fifth
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→ 10ct
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Table 1. Power-law exponent of diffusion at the maximum depth of penetration into the crystal calculated using formula (12)
for  mm ( ), as well as from the slope of the tangent to the logarithmic curve displaying the simulation results in Fig. 3
( ) for the initial conditions of two types: the random scatter of electrons in azimuthal directions (a) and the parallel
beam of electrons (b)

, eV
Initial conditions (a) Initial conditions (b)

0.5 1.68 1.65 1.88 1.79

1.0 1.67 1.93 1.57 1.75

1.5 1.70 1.89 1.69 1.90

2.0 1.05 1.19 1.06 1.19

2.5 1.01 1.01 1.00 1.02

3.0 0.99 1.02 1.01 0.99

=0 1ct μ
μend

⊥E
μ μend μ μend
columns of the table and are also marked with hori-
zontal lines along the right edge of Figs. 5a and 5b.

CONCLUSIONS

The motion of the ensemble of high-energy elec-
trons moving in the silicon crystal at a small angle to
the [100] axis, slightly exceeding the critical angle of
axial channeling, is simulated. In the case when the
energy of electron motion in the transverse plane
slightly exceeds the height of the potential barriers cre-
ated by the system of atomic chains of the crystal, the
simulation results show anomalous diffusion in the
transverse plane. These results are in qualitative agree-
ment with the results of [13–15], where this phenom-
enon was first discovered during the motion of high-
energy particles through a crystal. In addition to [13–
15], a set of different energy values for the transverse
motion of electrons was investigated. It has been
shown that with increasing  the nature of the move-
ment approaches normal (Brownian) diffusion, which
is due to the disappearance of the possibility of elec-
tron capture in planar channels. Another result of the
work is the demonstration of the ambiguity of the time
dependence of the power-law diffusion exponent
extracted using the approach described in [13–15].
Thus, the quantitative characteristic of anomalous dif-
fusion extracted from the simulation results needs to
be clarified before being used in further applications,
such as describing diffusion by kinetic equations with
fractional-order spatial derivatives [8, 11, 18]. At the
same time, qualitatively, the cases of anomalous and
normal diffusion differ markedly, regardless of the
details of the procedure used. We also note that in the
work initial conditions of two types were studied: the
random scatter of the azimuth directions of incident
electrons, as in [13–15], and the parallel beam of inci-

⊥E
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dent particles. The qualitative nature of diffusion in
the transverse plane is the same in both cases.
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