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Abstract—The transition radiation of a charged particle in the simplest case of incidence on an infinitely con-
ductive, ideal plane can be described based on the well-known method of images from electrostatics. This
method also enables finding the distribution of fields in more complex cases, such as the field of a point par-
ticle in the presence of two intersecting conducting planes, the angle between which divides the angle 180°
evenly. Based on the method of images, we describe the transition radiation that occurs when a fast charged
particle strikes a target consisting of two conducting half-planes intersecting at right angles (from the inside
of a dihedral angle). The characteristics of radiation emitted by fast and slow particles are qualitatively exam-
ined, and their visual interpretation is given. The possibility of using interference effects arising from radiation
for monitoring beams of charged particles is discussed.
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INTRODUCTION
Transition radiation occurs when a uniformly mov-

ing charged particle crosses the interface between two
media with different electromagnetic properties [1–3]. It
was predicted for the simplest case of an infinite f lat
interface between free space and an ideal conductor
[4], based on the mirror-image method known from
electrostatics (for example, [2, 3]). In this method,
the boundary conditions on the metal surface are sat-
isfied by introducing, alongside the charge of the
incident particle, its “mirror image” (a fictitious
charge). In cases of more complex geometries, the
result can be achieved by introducing multiple ficti-
tious charges. For example, diffraction and transition
radiation on spherical and semispherical surfaces was
described [5–9].

In the present study, the theory of transition radia-
tion on a target in the form of two infinite half-planes
intersecting at right angles is developed. A visual inter-
pretation of the angular distribution of the emitted
radiation is given on the magnitude and direction of
velocity of the incident particle, as well as the coordi-
nates of the point of particle impact on the conductor
surface.

Transition radiation is widely used for diagnosing
and monitoring beams of charged particles (see, for
example, [10–15]). Due to its interference nature,
transition radiation at a dihedral angle can also be uti-
lized for these purposes.

EXPERIMENTAL

In the mirror-image method [2, 3], the effect of a
conducting surface on the distribution of the electric
field in space is simulated by introducing, alongside a
real point charge, one or more fictitious charges
(“images” of the real charge). In the simplest case of a
point charge e and a grounded conducting infinite plane,
the distribution of the electric field is the same as that of
two point charges (real and fictitious (charge –e), posi-
tioned symmetrically relative to the plane. In a more
complex scenario involving two intersecting conduct-
ing half-planes, boundary conditions on the surface of
the conductor are satisfied by introducing three ficti-
tious charges (see any textbook on electrodynamics,
for example [3]).

Let us consider a situation where a real charge
moves rectilinearly and uniformly with velocity v1 at
angle ψ to the normal of one of the two half-planes
(Fig. 1), reaching it at time t = 0, where the point of
collision of the particle with the plane has the coordi-
nate x0. The resulting radiation can be easily described
based on known equations for radiation from an arbi-
trarily moving point charge (e.g., [16–18]). The
amplitude of the diverging wave of the vector potential
of the radiation field is proportional to the magnitude
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where ω and k are the frequency and wave vector of the
emitted wave; |k| = ω/c; c is the speed of light in free
space; e, r(t), and v(t) are the magnitude, trajectory,
and velocity of the charge; and the spectral-angular
radiation density is expressed by the equation

(2)

In the case under consideration, vector I contains four
terms, describing four partial contributions from the
incident particle and its three images:

(3)

where the charge velocity components are

The first pair of terms in (3) describes the radiation
resulting from the particle’s incidence on the infinite
plane (x, y), while the second pair describes the reflec-

tion of this radiation from the plane (y, z), with differ-
ences in the phase factors accounting for the interfer-
ence between these two contributions. For the conve-
nience of further analysis, we introduce a unit vector
in the direction of the wave vector of the emitted wave,

and rewrite (3) as follows:

(4)

Substituting (4) into (2) and taking into account that

(5)

where ez is the unit vector along the z axis, we obtain an
expression for the spectral-angular radiation density,
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Fig. 1. Incidence of charge e onto a conducting dihedral angle. All dashed lines lie in the same plane.
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RESULTS AND DISCUSSION

The characteristics of the resulting radiation are
qualitatively determined by each of the four partial
contributions in vector I (3) and the vector cross prod-
uct k × I entering (2) of the four charges involved in
generating radiation, as well as their interference. On the
one hand, in the case of a relativistic particle (  → c), the
denominator of each of the four partial terms is small
in the direction of k (the radiation direction), which is
close to the direction of motion of the corresponding
charge. On the other hand, the vector cross product of
k with the corresponding term is small near this direc-
tion, approaching zero in the case of k parallel to the
corresponding velocity. The combination of these two
factors leads to the characteristic funnel-shaped angu-
lar dependence typical of transition radiation from rel-
ativistic particles (with a characteristic opening angle
on the order of γ–1, where γ = (1 – )−1/2 is the

v

2 2cv

Lorentz factor of the particle) for each of the four par-
tial contributions (Fig. 2). To illustrate the effect of the
interference of partial contributions on the nature of
the resulting radiation, we consider two specific cases.

First, let us consider the case where the trajectory
of the incident particle lies in the plane (x, z), i.e., α =
π. The expressions for vector I and the spectral-angu-
lar radiation density are significantly simplified in this
case since v3 = −v2 and v4 = −v1. The vector cross
product k × I entering (2) is proportional to the ampli-
tude of the magnetic field in the emitted wave, and the

Fig. 2. Schematic representation of the four partial contri-
butions to the radiation (from the incident particle and its
three images) in the particular case of α = π/2.
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Fig. 3. (top) Contribution of the first term in (4) in the par-
ticular case of α = π to the amplitude of the magnetic field
of waves emitted in the plane (x, z), and the contribution of
the second term for a given k, i.e., the opposite point in the
graph (k → –k); (bottom) phase shifts of these two terms.
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second pair of terms coincides with the first one with
the replacement k → –k. Figure 3 illustrates the radi-
ation in the plane (x, z). Its upper part depicts the con-
tribution to the amplitude of the magnetic field of the

emitted wave H(k) (resulting from substitution into
the vector cross product k × I of the first term in (4) for
different directions of the wave vector k (we recall that
actual radiation occurs only in directions determined
by the inequalities kx > 0, kz < 0) and simultaneously,
according to the aforementioned, the contribution of
the second term H(–k). The lower part of Fig. 3 illus-
trates the corresponding phase shifts associated with
these two contributions.

The general equation for the spectral-angular radi-
ation density (6) is simplified (α = π) to

(7)

The interference term becomes zero for radiation
angles satisfying the condition

(8)
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Fig. 4. Radiation pattern for ψ = π/4, α = π, and x0ω/c =
20 according to (7) for the cases  = (a) 0.9c and (b) 0.99c.
The conical surface on both graphs indicates the directions
of radiation where condition (8) is satisfied.
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The signs of the second multiplier in the interference
term on both sides of the surface defined by this con-
dition (Fig. 4) are opposite. Meanwhile, the multiplier
cos(2kxx0) in the interference term leads to the appear-
ance of maxima and minima with the x axis as the axis
of symmetry. All of this collectively forms a highly
complex pattern of angular distribution of radiation.

Now, let us consider the case where the velocity of
the incident particle is parallel to the plane (y, z), i.e.,
α = π/2. The general equation (6) is simplified due to
v3 = v1 and v4 = v2 (Fig. 2). The second multiplier in
the interference term maintains its sign throughout the
entire range of emission angles, so cos(2kxx0) remains
the only sign-alternating multiplier in the interference
term, leading to simplification of the interference pat-
tern (Fig. 5).

The angular distribution appears most straightfor-
ward when the particle is nonrelativistic. As seen from
(4) taking into account (5), in this case, the depen-
dence of I on the direction of the incident particle
velocity becomes negligibly small, and the direction of
I becomes normal to the plane (x, y). Therefore, the
angular distribution of transient radiation from a non-
relativistic particle on an infinite plane (described by
the vector cross product of k and either the first or sec-

ond term in Eq. (5)) is symmetric with respect to the
normal to the metal surface, with zero intensity in this
direction ([19] and Fig. 2a in [15]). Interference aris-
ing from the presence of two terms in (4) leads to the
angular distribution shown in Fig. 6. The nature of the
interference, determined solely by the term cos(2kxx0)
in the case of nonrelativistic particles, is independent
of the magnitude or direction of particle velocity.
Therefore, counting the number of interference max-
ima on the radiation pattern at a given radiation fre-
quency allows inference about the value of the coordi-
nate x0, which can be used for beam monitoring.

CONCLUSIONS
The study derived equations describing transition

radiation on a conducting target in the form of two
infinite half-planes intersecting at right angles. The
description is based on the mirror-image method
known from electrostatics. This approach yields a
clear interpretation of the angular distribution of the
resulting radiation, depending on the magnitude and
direction of velocity of the incident particle, as well as
the coordinates of the point of particle impact on the
surface of the conductor, as a result of the interference
of four partial contributions from the real charge and
its three images in the radiation field.

The simplest interference occurs in two cases:
when a relativistic particle is incident onto one half-
plane parallel to the other half-plane (i.e., α = π/2)
and when a nonrelativistic particle impacts regardless
of its velocity direction. In these scenarios, it appears
feasible to extract information about the particle’s
impact point on the conductor from the interference
pattern. This, in turn, could serve as the foundation for
a new beam diagnostics method.
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