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1. INTRODUCTION AND STATEMENT OF THE PROBLEM
Let E be a complex Banach space, and let A and B be linear closed operators on E whose domains

D(A) and D(B) are not necessarily dense in E. Further restrictions on these operators will be indicated
in the process of presenting the assertions to be proved. We study nonlocal problems on the finite interval
0 < t < 1, since the general case of an interval 0 < t < T is reduced to the case under consideration by
the change of variables t → t/T .

Consider the equation of the form

B

(
u′′(t) +

k

t
u′(t)

)
= Au(t), 0 < t < 1, (1.1)

which, in the case of B �= I, generalizes the abstract Euler–Poisson–Darboux equation.
The setting of boundary and nonlocal conditions, due to the singularity (for k �= 0) of the equation

under consideration at the point t = 0, depends on the parameter k ∈ R, and these conditions are given
below. The nonlocal integral conditions imposed below can be interpreted in the spirit of control theory: it
is required to find a solution of the differential equation (1.1) with a given initial state at t = 0 and having
some prescribed average value. As indicated in [1], conditions of this type arise, for example, when
studying the diffusion of particles in turbulent plasma, moisture transfer processes in capillary-porous
media, etc.

An equation of the form (1.1) is called an equation of Sobolev type, or a descriptor equation. The
Cauchy problem for the singular equation (1.1) with a Fredholm operator B was studied previously
in [2], [3]. A detailed survey of the solvability of nonsingular equations of Sobolev type can be found,
e.g., in [4]. Nonlocal problems for Eq. (1.1), generally speaking, are not well posed, but the need
to solve ill-posed problems is now generally accepted (see the introduction in the book [5] and the
extensive bibliography therein). A number of results devoted to nonlocal problems for abstract first-order
equations were obtained earlier in [6]–[8], and, for singular second-order equations, but under more
rigid conditions than those in the present work for the operator A, can be found in [9]–[11]. Nonlocal
problems for partial differential equations containing the Bessel differential operator with respect to
a spatial variable were studied in [12]–[15].

We will present sufficient conditions for the unique solvability of diverse nonlocal problems for the
singular equation (1.1) on the finite interval [0, 1]. A distinctive feature of this paper is that it establishes
connections between solutions of nonlocal problems and the corresponding solutions of boundary value
problems.
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2. CASE OF k ≥ 0 AND THE NEUMANN CONDITION AT t = 0

Let k ≥ 0. Consider the problem of determining a function

u(t) ∈ C1([0, 1], E) ∩ C2((0, 1], E)

belonging together with its derivatives to the domain D = D(A) ∩D(B) for t ∈ (0, 1) and satisfying
Eq. (1.1), the Neumann boundary condition

u′(0) = 0 (2.1)

at t = 0, and also a nonlocal condition of the form

lim
t→1

Iα0+;2,ηu(t) = u0,

where η = (k− 1)/2, α > 0, Γ(·) is the Euler gamma function, and Iα0+;2,η is the Erdélyi–Kober operator
defined by the formula (see [16, p. 246])

Iα0+;2,ηu(t) =
2

Γ(α)t2(α+η)

ˆ t

0
s2η+1(t2 − s2)α−1u(s) ds.

This nonlocal condition in expanded notation has the form

2

Γ(α)

ˆ 1

0
tk(1− t2)α−1u(t) dt = u0. (2.2)

Note that a special case of the nonlocal condition (2.2) for α = 1 and with respect to the spatial
variable occurred earlier in [1], [12].

Below, we repeatedly use the function

Yk(t;λ) = Γ

(
k

2
+

1

2

)(
t
√
λ

2

)1/2−k/2

Ik/2−1/2

(
t
√
λ
)
, (2.3)

where Iν(·) stands for the modified Bessel function. The function Yk(t;λ) is a solution of the
scalar Euler–Poisson–Darboux equation (the case of B = I, A = λI in Eq. (1.1)) and, in addition,
Yk(0;λ) = 1 and Y ′

k(0;λ) = 0.
For problem (1.1), (2.1), (2.2), the following criterion for the uniqueness of a solution of the nonlocal

problem was proved in [17].

Theorem 1. Let k ≥ 0 and α > 0, and let A and B be linear closed operators on E. Let us assume
that the nonlocal problem (1.1), (2.1), (2.2) has a solution u(t). For this solution to be unique,
it is necessary and sufficient that, for every λm = λm(k, α), m ∈ N, that is a zero of the function
Υk,α(λ) = Yk+2α(1;λ) specified by Eq. (2.3), the operator equation

Ah = λBh (2.4)

have no nonzero solution h.

When establishing the solvability of the nonlocal problem (1.1), (2.1), (2.2), we use the statement
established in [18] and given below about the unique solvability of some boundary value problem.

Let us denote by ρ(B,A) the set of μ ∈ C such that there exists a bounded inverse (μB −A)−1; we
call this set the resolvent set of the operator A with respect to B.

Theorem 2. Suppose that k ≥ 0, u1 ∈ D(A2) ∩D(B), and A and B are closed linear operators
commuting on the elements of D(A2) ∩D(B). Let also, for every n ∈ N, the zeros ξn of the
function Yk(1;λ) defined by Eq. (2.3) belong to the resolvent set ρ(B,A) of the operator A with
respect to B, and let the following bound hold:

sup
n∈N

|ξn| · ‖(ξnB −A)−1‖ < M0 < ∞.
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Then the boundary value problem

B

(
u′′(t) +

k

t
u′(t)

)
= Au(t), lim

t→0+
tku′(t) = 0, u(1) = u1,

is uniquely solvable, its solution has the form

uk(t) = −2
∞∑
n=1

Yk(t; ξn)

Y ′
k(1; ξn)

ξnB(ξnB −A)−1u1, (2.5)

and moreover, u′k(0) = 0.

Let problem (1.1), (2.1), (2.2) satisfy the conditions of Theorem 1 about the uniqueness of the
solution of the nonlocal problem, and in addition, for the value k + 2α of the parameter of the singular
equation (1.1), let the conditions of Theorem 2 established in [18] be satisfied, where the commutativity
of the operators A and B, as well as the corresponding estimate for the inverse operator (μB −A)−1, is
required.

If these conditions are satisfied, then there exists a unique solution uk+2α(t) of the boundary value
problem

B(u′′(t) +
k + 2α

t
u′(t)) = Au(t), lim

t→0+
tk+2αu′(t) = 0, u(1) = u1. (2.6)

It is defined by Eq. (2.5) after the replacement of the parameter k by k + 2α in this representation.
Using (e.g., see [19], [20]) the operators of motion of the solutions by the parameter,

Φku(t) = tk−1u(t), Iαt2u(t) =

(
1

t

d

dt

)α

u(t),

where, for fractional α > 0 (see [16, p. 248]),(
1

t

d

dt

)α

u(t) =

(
1

t

d

dt

)[α]+1(1

t

d

dt

){α}−1

=
2{α}

Γ(1− {α})

(
1

t

d

dt

)[α]+1 ˆ t

0
τ(t2 − τ2)−{α}u(τ) dτ, (2.7)

from the solution uk+2α(t) of the boundary value problem (2.6) we construct the solution

uk(t) = t1−k

(
1

t

d

dt

)α

(tk+2α−1uk+2α(t)) (2.8)

of Eq. (1.1) and show that this solution uk(t) satisfies conditions (2.1) and (2.2), which we need.

First, assume that α ∈ N. Note that the possibility to differentiate the function uk+2α(t) can be
provided by the additional requirement that the element u1 determining this solution belongs to the
set D(A2+α) ∩D(B).

The solution uk(t) of Eq. (1.1) satisfies condition (2.1), since this solution can be represented in the
form

uk(t) = c1uk+2α(t) + c2t
2u′k+2α(t) + · · ·

with some constants c1, c2, . . . , and at the same time we have u′k+2α(0) = 0, as follows from the
representation (2.5).

Let us further verify the validity of condition (2.2) for the same solution. Let us substitute uk(t) into
the left-hand side of condition (2.2). After integration by parts, we obtain

2

Γ(α)

ˆ 1

0
tk(1− t2)α−1uk(t) dt =

2

Γ(α)

ˆ 1

0
t(1− t2)α−1

(
1

t

d

dt

)α

tk+2α−1uk+2α(t) dt
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=
22

Γ(α− 1)

ˆ 1

0
t(1− t2)α−2

(
1

t

d

dt

)α−1

tk+2α−1uk+2α(t) dt = · · ·

=
2α

Γ(1)

ˆ 1

0
t

(
1

t

d

dt

)
tk+2α−1uk+2α(t) dt = 2αuk+2α(1) = 2αu1. (2.9)

If in the boundary value problem (2.6) we select u1 in such a way that 2αu1 = u0, then, by Eq. (2.9),
the solution uk(t) of Eq. (1.1) also satisfies condition (2.2).

Now let α > 0, {α} > 0, and u1 ∈ D(A3+[α]) ∩D(B) in problem (2.6). Using the concept of
fractional power of the operation of weight differentiation defined by Eq. (2.7), we represent the function
uk(t) in the form

uk(t) = t1−k

(
1

t

d

dt

)α

tk+2α−1uk+2α(t)

= t1−k

(
1

t

d

dt

)[α]+1 21−α

Γ(1− {α})

ˆ t

0
(t2 − τ2)−{α}τk+2αuk+2α(τ) dτ

=
21−αt1−k

Γ(1− {α})

(
1

t

d

dt

)[α]+1(
t2[α]+k+1

ˆ 1

0
(1− s2)−{α}sk+2αuk+2α(ts) ds

)

= d1

ˆ 1

0
(1 − s2)−{α}sk+2αuk+2α(ts) ds

+ d2t
2

ˆ 1

0
(1− s2)−{α}sk+2αu′k+2α(ts) ds+ · · ·

with some constants d1, d2, . . . , where we have u′k+2α(0) = 0. Consequently, the solution uk(t) of
Eq. (1.1) satisfies condition (2.1) in this case as well.

Let us now verify the validity of condition (2.2) for the same solution. Let us substitute uk(t) into
the left-hand side of condition (2.2). Using the fractional integral Iα0+ and the derivative Dα

0+ in the
Riemann–Liouville form [16, p. 41], as well as the formula [16, Theorem 2.4, (2.60)] about the action of
the fractional integration operation on the differentiation operation, we have

2

Γ(α)

ˆ 1

0
τk(1− τ2)α−1uk(τ) dt =

2

Γ(α)

ˆ 1

0
τ(1− τ2)α−1

(
1

τ

d

dτ

)α

τk+2α−1uk+2α(τ) dτ

=
2α

Γ(α)

ˆ 1

0
(1− s)α−1

(
d

ds

)α

sk/2−1/2+αuk+2α(
√
s) ds

= 2αIα0+D
α
0+

(
sk/2−1/2+αuk+2α(

√
s)

)∣∣
s=1

= 2αuk+2α(1) = 2αu1. (2.10)

Here we have used the fact that all summands in [16, (2.60)] that are calculated at the point t = 0 are
zero.

If in the boundary value problem (2.6) we select u1 in such a way that 2αu1 = u0, then, by Eq. (2.10),
the solution uk(t) of Eq. (1.1) also satisfies condition (2.2).

Thus, for any α > 0 the solution of problem (1.1), (2.1), (2.2) is unique and has the form

uk(t) = − t1−k

2α−1

(
1

t

d

dt

)α ∞∑
n=1

tk+2α−1Yk+2α(t;λn)

Y ′
k+2α(1;λn)

λnB(λnB −A)−1u0, (2.11)

where λn = λn(k, α), n ∈ N, are the zeros of the function Υk,α(λ) = Yk+2α(1;λ) given by Eq. (2.3),
u0 ∈ Dα, Dα = D(A2+α) ∩D(B) for α ∈ N, and Dα = D(A3+[α]) ∩D(B) for the other α > 0.

Let us state the result thus obtained in the form of a theorem.
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Theorem 3. Suppose that k ≥ 0, α > 0, u0 ∈ Dα, and A and B are closed linear operators
commuting on elements of Dα. Let also, for all n ∈ N, the zeros λn = λn(k, α) of the function
Υk,α(λ) = Yk+2α(1;λ) defined by Eq. (2.3) belong to the resolvent set ρ(B,A) of the operator A
with respect to B, and let the following bound hold:

sup
n∈N

|λn| · ‖(λnB −A)−1‖ < M0 < ∞. (2.12)

Then the nonlocal problem (1.1), (2.1), (2.2) is uniquely solvable, and its solution uk(t) is
determined by Eq. (2.11).

Note that earlier, in the paper [9], the corresponding theorem about the unique solvability of
problem (1.1), (2.1), (2.2) has been established by another method for B = I and under more restrictive
conditions than those in the present paper for the operator A.

Example 1. Let B = I in Eq. (1.1), and let the operator −A be the generator of an operator cosine
functionC(t;−A) of exponential growth ω; the resolvent of‘−A is well known to satisfy the bound (2.12).
Then, for the case in which the parameters in problem (1.1), (2.1), (2.2) satisfy the conditions 0 ≤ k < 2,
α = 1− k/2, and k + 2α = 2, the solution of the boundary value problem (2.6) has the form (see [18,
Example 2])

u2(t) =
sinπt

t

ˆ ∞

0

C(s;−A)u1 ds

coshπs+ cos πt
, ω < π.

Further, for u0 ∈ D(A3), using formula (2.8), we write out the solution of the nonlocal prob-
lem (1.1), (2.1), (2.2),

uk(t) = t1−k

(
1

t

d

dt

)1−k/2

(tu2(t))

= 2k/2−1t1−k

(
1

t

d

dt

)1−k/2(
sinπt

ˆ ∞

0

C(s;−A)u0 ds

coshπs+ cos πt

)
.

In particular, for k = 0 we obtain

u0(t) =
1

2

d

dt

(
sinπt

ˆ ∞

0

C(s;−A)u0 ds

cosh πs+ cos πt

)
.

If in problem (1.1), (2.1), (2.2) we have 0 < k < 2, α = 1− k/2 < 1, then, owing to (2.7), the solution
of the nonlocal problem (1.1), (2.1), (2.2) has the form

uk(t) =
1

Γ(k/2)tk
d

dt

(ˆ t

0
τ(t2 − τ2)k/2−1 sinπτ

ˆ ∞

0

C(s;−A)u1ds

cosh πs+ cos πτ
dτ

)
.

Example 2. In problem (1.1), let the operator A be the multiplication by a scalar A < 0, and let B = 1.
Then, for the case in which the parameters in problem (1.1), (2.1), (2.2) satisfy the conditions k ≥ 0 and
α > 0, again by [18, Example 2], the solution of the boundary problem (2.6) has the form

uk+2α(t) =
t1/2−k/2−αJk/2−1/2+α(t

√
−A)u0

2αJk/1−1/2+α(
√
−A)

.

If {α} > 0, then, taking into account (2.7), we see that, according to formula (2.8), the solution of
the nonlocal problem (1.1), (2.1), (2.2) can be represented in the form

uk(t) = t1−k

(
1

t

d

dt

)α

(tk−1+2αuk+2α(t))

=
t1−k

2αJk/1−1/2+α(
√
−A)u0

(
1

t

d

dt

)α(
tk/2−1/2+αJk/2−1/2+α(t

√
−A)

)
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=
2−αt1−ku0

Γ(1− {α})Jk/2−1/2+α(
√
−A)

×
(
1

t

d

dt

)[α]+1 ˆ t

0
τk/2+1/2+α(t2 − τ2)−{α}Jk/2−1/2+α

(
t
√
−A

)
dτ.

The last integral can be calculated (see [21, 2.12.4.6]), and therefore,

uk(t) =
t1/2−k/2(

√
−A)αJk/2−1/2(t

√
−A)u0

2αJk/2−1/2+α(
√
−A)

.

It can readily be seen that the same representation holds for the solutions uk(t) in the case of {α} = 0.
Note that the validity of the nonlocal condition (2.2) for the functions uk(t) can readily be verified using
the integral [21, 2.12.4.6].

In particular, if k = 1 and α = 1/2, then the solution of the nonlocal problem (1.1), (2.1), (2.2) has
the form

u1(t) =

√
−πA

2 sin(
√
−A)

J0
(
t
√
−A

)
u0.

3. CASE OF k < 1, THE DIRICHLET CONDITION AT t = 0

Let k < 1. Consider the problem of determining a function

u(t) ∈ C([0, 1], E) ∩ C2((0, 1], E)

belonging together with its derivatives to the domain D = D(A) ∩D(B) for t ∈ (0, 1) and satisfying
Eq. (1.1), the Dirichlet boundary condition

u(0) = 0 (3.1)

at t = 0, and a nonlocal condition of the form

2

Γ(β)

ˆ 1

0
t(1− t2)β−1u(t) dt = u0, β > 0, (3.2)

or, using the Erdélyi–Kober operator,

lim
t→1

Iβ0+;2,0u(t) = u0.

For problem (1.1), (3.1), (3.2), the criterion given below for the uniqueness of the solution of the
nonlocal problem was proved in [17].

Theorem 4. Let k < 1, let β > 0, and let A and B be linear closed operators in E. Let us
assume that the nonlocal problem (1.1), (3.1), (3.2) has a solution u(t). For this solution to be
unique, it is necessary and sufficient that, for any zero λm = λm(k, β), m ∈ N, of the function
Ψk,β(λ) = Y2β+2−k(1;λ), where the function Y2β+2−k(t;λ) is given by Eq. (2.3), the operator
equation (2.4) has no nonzero solution h.

When establishing the solvability of the nonlocal problem (1.1), (3.1), (3.2), we will also use the
statement, established in [18], about the unique solvability of a boundary value problem.

Theorem 5. Suppose that k < 1, u1 ∈ D(A2) ∩D(B), and A and B are closed linear operators
commuting on the elements of D(A2) ∩D(B). Let also, for all n ∈ N, the zeros ηn of the function
Y2−k(1;λ) defined by Eq. (2.3) belong to the resolvent set ρ(B,A) of the operator A with respect
to B, and let the following bound hold:

sup
n∈N

|ηn| · ‖(ηnB −A)−1‖ < M0 < ∞.
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712 GLUSHAK

Then the boundary value problem

B

(
u′′(t) +

k

t
u′(t)

)
= Au(t), u(0) = 0, u(1) = u1

is uniquely solvable, and its solution has the form

uk(t) = −2t1−k
∞∑
n=1

Y2−k(t; ηn)

Y ′
2−k(1; ηn)

ηnB(ηnB −A)−1u1. (3.3)

Let problem (1.1), (3.1), (3.2) satisfy the conditions of Theorem 4 about the uniqueness of a solution
of a nonlocal problem, and in addition, for the parameter value k − 2β of the singular equation (1.1), let
the conditions of Theorem 5 be satisfied; then there exists a unique solution uk−2β(t) of the boundary
value problem

B

(
u′′(t) +

k − 2β

t
u′(t)

)
= Au(t), u(0) = 0, u(1) = u1, (3.4)

defined by Eq. (3.3) after the replacement of the parameter k in this representation by k − 2β.
Let us assume that β ∈ N. As was done in Sec. 2, using the operator of motion of the solutions by

the parameter, from the solution uk−2β(t) of the boundary value problem (3.4), we construct a solution
of Eq. (1.1) in the form

uk(t) =

(
1

t

d

dt

)β

uk−2β(t) (3.5)

and show that this solution uk(t) satisfies the desired conditions (3.1) and (3.2).
The solution uk(t) of Eq. (1.1) satisfies condition (3.1), since this solution can be written in the form

uk(t) = c1t
1−kuk−2β(t) + c2t

3−ku′k−2β(t) + · · ·
with some constants c1, c2, . . . .

Let us further verify the validity of condition (3.2) for the same solution. Let us substitute uk(t) into
the left-hand side of condition (3.2). By analogy with (2.9), after integration by parts we have

2

Γ(β)

ˆ 1

0
t(1− t2)β−1uk(t) dt =

2

Γ(β)

ˆ 1

0
t(1− t2)β−1

(
1

t

d

dt

)β

uk−2β(t) dt = 2βu1. (3.6)

Choosing u1 in the boundary value problem(3.4) in such a way that 2βu1 = u0, we establish, owing
to Eq. (3.6), the validity of condition (3.2).

Now let β > 0 and {β} > 0, and let u1 ∈ D(A3+[β]) ∩D(B) in problem (3.4). Then let us write out
the function uk(t) defined by Eq. (3.5) in the form

uk(t) =

(
1

t

d

dt

)β

(t1−k+2βvk−2β(t)),

where

vk(t) = −2

∞∑
n=1

Y2β+2−k(t;λn)

Y ′
2β+2−k(1;λn)

λnB(λnB −A)−1u1

and λn = λn(k, β) are the zeros of the function Ψk,β(λ) = Yk−2β(1;λ) defined by Eq. (2.3).
After this, the further verification of the validity of conditions (3.1) and (3.2) is carried out in the same

way as this was done in Sec. 2 for the case of a fractional α.
Thus we can claim that, in the case of β > 0, the solution of problem (1.1), (3.1), (3.2) is unique and

has the form

uk(t) = − 1

2β−1

(
1

t

d

dt

)β ∞∑
n=1

t1−k+2βY2β+2−k(t;λn)

Y ′
2β+2−k(1;λn)

λnB(λnB −A)−1u0, (3.7)
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where u0 ∈ Dβ , Dβ = D(A2+β) ∩D(B) for β ∈ N, and Dβ = D(A3+[β]) ∩D(B) for the remaining
β > 0.

Let us formulate the result thus obtained in the form of a theorem.
Theorem 6. Let k < 1, β > 0, and u0 ∈ Dβ , and let A and B be closed linear operators on E
commuting on the elements of Dβ . Let also, for every n ∈ N, the zeros λn = λn(k, β) of the
function Ψk,β(λ) = Y2β+2−k(1;λ) defined by Eq. (2.3) belong to the resolvent set ρ(B,A) of the
operator A with respect to B, and let the following bound hold:

sup
n∈N

|λn| · ‖(λnB −A)−1‖ < M0 < ∞. (3.8)

Then the nonlocal problem (1.1), (3.1), (3.2) is uniquely solvable, and its solution uk(t) is
determined by Eq. (3.7).

Example 3. Let B = I in Eq. (1.1), and let the operator −A be the generator of an operator cosine
function C(t;−A) of exponential growth ω; as is known, the bound (3.8) holds for the resolvent of −A.
Then, for the case in which the parameters in problem (1.1), (3.1), (3.2) satisfy the conditions 0 < k < 1,
β = k/2, and k − 2β = 0, the solution of the boundary value problem (3.4) has the form [18, Example 1]

u0(t) =
sinπt

2β

ˆ ∞

0

C(s;−A)u0 ds

coshπs+ cos πt
, ω < π.

Further, for u0 ∈ D(A3), taking into account (2.7) and using formula (3.5), we obtain the solution of
the nonlocal problem (1.1), (3.1), (3.2) in the form

uk(t) =

(
1

t

d

dt

)k/2

u0(t) =

(
1

t

d

dt

)k/2 sin πt

2k/2

ˆ ∞

0

C(s;−A)u0 ds

cosh πs+ cosπt

=
1

Γ(k/2)t

d

dt

(ˆ t

0
τ(t2 − τ2)k/2−1 sinπτ

ˆ ∞

0

C(s;−A)u0ds

cosh πs+ cos πτ
dτ

)
.

Example 4. In Eq. (1.1), let the operator A be the multiplication by a scalar A < 0, and let B = 1. Then,
for the case in which the parameters in problem (1.1), (3.1), (3.2) satisfy the conditions k < 1 and β > 0,
we write the solution of the boundary value problem (3.4) according to [18, Example 1]:

uk−2β(t) =
t1/2−k/2+βJ1/2−k/2+β(t

√
−A)

2βJ1/2−k/2+β(
√
−A)

u0.

Let {β} > 0; taking into account (2.7) and using formula (3.5) we obtain the solution of the nonlocal
problem (1.1), (3.1), (3.2) in the form

uk(t) =

(
1

t

d

dt

)β

uk−2β(t) =

(
1

t

d

dt

)β t1/2−k/2+βJ1/2−k/2+β(t
√
−A)

2βJ1/2−k/2+β(
√
−A)

u0

=
2−[β]u0

Γ(1− {β})J1/2−k/2+β(
√
−A)

×
(
1

t

d

dt

)[β]+1 ˆ t

0
τ3/2−k/2+β(t2 − τ2)−{β}J1/2−k/2+β(t

√
−A) dτ.

The last integral can be calculated (see [21, 2.12.4.6]); therefore,

uk(t) =
t1/2−k/2(

√
−A)βJ1/2−k/2(t

√
−A)u0

2βJ1/2−k/2+β(
√
−A)

.

It can readily be proved that, in the case of {β} = 0, the same representation holds for the solutions
uk(t). Note that the validity of the nonlocal condition (3.2) for the functions uk(t) can be verified using
the integral [21, 2.12.4.6].

In particular, for k = 0, the solution of the nonlocal problem (1.1), (3.1), (3.2) has the form

u0(t) =
(
√
−A)β−1/4 sin(t

√
−A)u0

2β−1/2
√
πJβ+1/2(

√
−A)

.
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4. NONLOCAL CONDITION OF THE SECOND KIND. CASE OF k ≥ 0, THE NEUMANN
CONDITION AT t = 0

Instead of the nonlocal condition (2.2) for Eq. (1.1), let us pose a condition of the form

a

ˆ 1

0
tku(t) dt+ bu′(1) = u0, a �= 0, b �= 0. (4.1)

This type of nonlocal conditions for partial differential equations occurred earlier in [13] and [14]. In
this section, we establish the corresponding solvability theorems for problem (1.1), (2.1), (4.1). For this
problem, the following uniqueness criterion for solutions was proved in [17].

Theorem 7. Let k ≥ 0, and let A and B be closed linear operators in E. Assume that the nonlocal
problem (1.1), (2.1), (4.1) has a solution u(t). For this solution to be unique, it is necessary and,
in the case of u(t) ∈ C3((0, 1],D), also sufficient that, for any zero λm, m ∈ N0, of the function
Φk,a,b(λ) = (a+ bλ)Yk+2(1;λ), where the function Yk+2(t;λ) is given by Eq. (2.3), the operator
equation (2.4) has no nonzero solution.

Let problem (1.1), (2.1), (4.1) satisfy the conditions of Theorem 7 (the uniqueness theorem for the
solution of a nonlocal problem), and in addition, let the conditions of Theorem 2 be satisfied for the
parameter value k + 2 of the singular equation (1.1). Then there exists a unique solution uk+2(t) of
the boundary value problem (2.6) for α = 1, which is defined by Eq. (2.5) after the replacement of the
parameter k by k + 2 in this representation. Note that we have not yet used the fact that there exists no
nonzero solution of Eq. (2.4) for λ = −a/b. This will be taken into account below.

Just as when proving Theorem 3, from the solution uk+2(t) of the boundary value problem (2.6) we
construct the following solution of Eq. (1.1):

uk(t) = t−k d

dt
(tk+1uk+2(t)). (4.2)

As above, this solution satisfies condition (2.1). Let us show that the solution uk(t) satisfies
condition (4.1) as well. Substituting uk(t) into the left-hand side of condition (4.1), we obtain

a

ˆ 1

0
tkuk(t) dt+ bu′k(1) = a

ˆ 1

0

d

dt
(tk+1uk+2(t)) dt + bu′k(1) = au1 + bu′k(1),

and the nonlocal condition (4.1) is satisfied if the boundary value u1 in problem (2.6) satisfies the relation

au1 + bu′k(1) = u0.

Since, by formula (4.2),

Bu′k(t) = B
(
(k + 2)u′k+2(t) + tu′′k+2(t)

)
= tB

(
u′′k+2(t) +

k + 2

t
u′k+2(t)

)
= tAuk+2(t),

it follows that the value u1 in the boundary value problem (2.6) must be chosen in such a way that

(aB + bA)u1 = Bu0.

The possibility of this choice can be ensured by the invertibility of the operator aB + bA, i.e.,
by requiring that the number λ = −a/b belongs to the resolvent set ρ(B,A), and then we have
u1 = (aB + bA)−1Bu0.

Thus, the solution of problem (1.1), (2.1), (4.1) is unique and has the form

uk(t) = t−k d

dt

∞∑
n=1

tk+1Yk+2(t;λn)

Y ′
k+2(1;λn)

λnB
2(λnB −A)−1(aB + bA)−1u0, (4.3)

where u0 ∈ D(A3) ∩D(B2) and λn, n ∈ N, are the zeros of the function Φk,a,b(λ) = (a+ bλ)Yk+2(1;λ)
specified by Eq. (2.3).

Let us state the result thus obtained in the form of a theorem.
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Theorem 8. Suppose that k ≥ 0, u0 ∈ D(A3) ∩D(B2), and A and B are closed linear operators
commuting on the elements of D(A3) ∩D(B2). Let also, for every n ∈ N, the zeros λn of the
function Φk,a,b(λ) = (a+ bλ)Yk+2(1;λ) defined by Eq. (2.3) belong to the resolvent set ρ(B,A) of
the operator A with respect to B, and let the following bound hold:

sup
n∈N

|λn| · ‖(λnB −A)−1‖ < M0 < ∞. (4.4)

Then the nonlocal problem (1.1), (2.1), (4.1) is uniquely solvable, and its solution uk(t) is
determined by Eq. (4.3).

Example 5. Assume that in problem (1.1), (2.1), (4.1) we have k = 0, −a/b ∈ ρ(A), and B = I, and
let the operator −A be the generator of an operator cosine function C(t;−A) of exponential growth ω; it
is well known that the resolvent of −A satisfies the bound (4.4). Then, according to formula (4.2), the
solution of the nonlocal problem (1.1), (2.1), (4.1) has the form

u0(t) =
d

dt
(tu2(t)),

where u2(t) is defined in Example 1, and therefore,

u0(t) =
d

dt

(
sinπt

ˆ ∞

0

C(s;−A)(aI + bA)−1u0 ds

cosh πs+ cos πt

)
.

Example 6. In Eq. (1.1), let the operator A be the multiplication by a scalar A < 0, and let B = 1.
Then, for the case in which the parameters in problem (1.1), (2.1), (4.1) satisfy the conditions k ≥ 0 and
a+ bA �= 0, by Example 2, the solution of the boundary value problem (2.6) has the form

uk+2(t) =
t−1/2−k/2Jk/2+1/2(t

√
−A)(a+ bA)−1u0

Jk/1+1/2(
√
−A)

,

and by formula (4.2), the solution of the nonlocal problem (1.1), (2.1), (4.1) is defined by the relation

uk(t) = t1−k

(
1

t

d

dt

)
(tk+1uk+2(t)) =

t1/2−k/2
√
−AJk/2−1/2(t

√
−A)u0

(a+ bA)Jk/2+1/2(
√
−A)

.

In particular, for k = 0 we have the representation

u0(t) =

√
−A cos(t

√
−A)u0

(a+ bA) sin(
√
−A)

.

5. NONLOCAL CONDITION OF THE SECOND KIND. CASE OF k < 1, DIRICHLET
CONDITION AT t = 0

Let k < 1. In this case, for Eq. (1.1), instead of the nonlocal condition of the second kind (4.1), one
should specify a condition of the form

a

ˆ 1

0
tu(t) dt+ b lim

t→1
(tk−1u(t))′ = 0, a �= 0, b �= 0. (5.1)

The following criterion for the uniqueness of a solution was proved for problem (1.1), (3.1), (5.1)
in [17].

Theorem 9. Let k < 1 and let A and B be closed linear operators in E. Assume that the nonlocal
problem (1.1), (3.1), (5.1) has a solution u(t). For this solution to be unique, it is necessary and,
in the case of u(t) ∈ C3((0, 1],D), also sufficient that, for any zero λm, m ∈ N0, of the function
Θk,a,b(λ) = (a+ bλ)Y4−k(1;λ), where the function Y4−k(t;λ) is given by Eq. (2.3), the operator
equation (2.4) has no nonzero solution.
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Let problem (1.1), (3.1), (5.1) satisfy the conditions of Theorem 9 on the uniqueness of a solution of
the nonlocal problem, and in addition, let the conditions of Theorem 5 be satisfied for the parameter value
k − 2 of the singular equation (1.1). Then there exists a unique solution uk−2(t) of the boundary value
problem (3.4) for β = 1, which is defined by Eq. (3.3) after the replacement of the parameter k by k − 2
in this representation. We have not yet used the fact that there exists no nonzero solution of Eq. (2.4) for
λ = −a/b. It will be taken into account below.

As in the proof of Theorem 6, from the solution uk−2(t) of the boundary value problem (3.4) we
construct the following solution of Eq. (1.1):

uk(t) =
1

t
u′k−2(t). (5.2)

The solution defined by Eq. (5.2) satisfies condition (3.1). Let us show that this solution uk(t) also
satisfies condition (5.1). Substituting uk(t) into the left-hand side of condition (5.1), we have

a

ˆ 1

0
tuk(t) dt+ b lim

t→1
(tk−1u(t))′ = a

ˆ 1

0
u′k−2(t) dt+ b lim

t→1
(tk−2u′k−2(t))

′

= au1 + b lim
t→1

(
u′′k−2(t) +

k − 2

t
u′k−2(t)

)
,

and by analogy with Sec. 4, the nonlocal condition (5.1) is satisfied if the boundary value u1 in
problem (3.4) satisfies the relation

(aB + bA)u1 = Bu0.

The possibility of this choice can be ensured by the invertibility of the operator aB + bA, assuming
that the number λ = −a/b belongs to the resolvent set ρ(B,A), and then

u1 = (aB + bA)−1Bu0.

Thus, the solution of problem (1.1), (3.1), (5.1) is unique and has the form

uk(t) =
1

t

d

dt

∞∑
n=1

t3−kY4−k(t;λn)

Y ′
4−k(1;λn)

λnB
2(λnB −A)−1(aB + bA)−1u0, (5.3)

where u0 ∈ D(A4)∩D(B2) and λn, n ∈ N, are the zeros of the function Θk,a,b(λ) = (a+ bλ)Y4−k(1;λ)
given by Eq. (2.3)

Let us state the result thus obtained in the form of a theorem.

Theorem 10. Suppose that k < 1, u0 ∈ D(A4) ∩D(B2), and A and B are closed linear operators
commuting on the elements of D(A4) ∩D(B2). Suppose also that, for every n ∈ N, the zeros λn

of the function

Θk,a,b(λ) = (a+ bλ)Y4−k(1;λ)

defined by Eq. (2.3) belong to the resolvent set ρ(B,A) of the operator A with respect to B and the
following bound holds:

sup
n∈N

|λn| · ‖(λnB −A)−1‖ < M0 < ∞.

Then the nonlocal problem (1.1), (3.1), (5.1) is uniquely solvable, and its solution uk(t) is
determined by Eq. (5.3).

Example 7. In Eq. (1.1), let the operator A be the multiplication by a scalar A < 0, and let B = 1.
Then, for the case in which the parameters in problem (1.1), (3.1), (5.1) satisfy the conditions k < 1 and
a+ bA �= 0, by Example 4 we have a solution of the boundary value problem (3.4)

uk−2(t) =
t3/2−k/2J3/2−k/2(t

√
−A)(a+ bA)−1u0

J3/2−k/2(
√
−A)

,
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and by formula (5.2), the solution of the nonlocal problem (1.1), (3.1), (5.1) has the form

uk(t) =
1

t
u′k−2(t) =

t1/2−k/2
√
−AJ1/2−k/2(t

√
−A)u0

(a+ bA)J3/2−k/2(
√
−A)

.

In particular, for k = 0, we have the representation

u0(t) = − A sin(t
√
−A)u0

(a+ bA)(sin(
√
−A)−

√
−A cos(

√
−A))

.
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