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Abstract Classes of Gibbs random fields u(x), x  e Z d on finite sets Л с Z d, d e 
N  with values in the space , n e N  are studied. Each class is  connected with the 
sequence (Л; Л с Z ‘d) unboundedly expanding according to the definite rule when 
Л ^  Z d. Each random field is generated by the Hamiltonian Hл [u(z)]. Classes of 
all functionals Hл [u(z)] corresponding to sequence (Л; Л с Z d) form the Banach 
space H„. It  is  proved the existence of the lim it statistical characteristic ln Z л /|Л| 
in each class when Л  ^  Z d which is the continuous functional in H„.

Keywords Vector models • Hamiltonian • Gibbs’ random field • Free energy • 
Phase space • Thermo-dynamic lim it

1 Introduction
The object of study in this paper is  Gibbs random fields on the integer lattice Z d, 
d e N .  The importance of studying such mathematical objects is  due to the fact that 
models of statistical mathematical physics are constructed on their basis (about the 
subject of the study and the terminology used, see, for example, [1- 6]). We w ill 
call such models as vector lattice systems. From the point of view of theoretical 
physics, these models describe, within the microscopic approach and with appro­
priate interpretation of the parameters defining theirs, the thermodynamic behavior 
of single-crystal solid-state structures in a wide temperature range. Despite the fact 
that a considerable amount of literature is devoted to the mathematical analysis of 
such theoretical models, in most mathematical works related to their study within the 
framework of the formalism of statistical mechanics of classical (non-quantum) sys­
tems, the greatest attention is  paid to such of them which are called lattice gases. For
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such mathematical objects, the terminology has been developed that unites them. In 
terms of this terminology their properties are established at the level of those require­
ments that are imposed on mathematical texts. The purpose of this work is  to extend 
these basic concepts to a much wider class of models of statistical mechanics of clas­
sical systems which we call, as mentioned above, the vector lattice models. For such 
systems, we w ill prove, within the framework of accepted general restrictions, the 
validity of one of the basic provisions of statistical mechanics, namely, we establish 
the presence of extensive asymptotic Е л ~| Л | of the free energy ¥л i f  the sets Л 
tends to according to a certain principle dictated by physical considerations.

2 The Gibbs Random Fields
Consider a random field i i (Л) =  {й(x) ; x  e Л} on an arbitrary finite subset Л  of 
the integer lattice Z d, d e N ,  with elements x  =  (/1, ld), I j  e Z , j  =  1 ^  d .We 
w ill call the lattice elements as vertexes.̂  Th is  means that corresponding probability 
space Рл =  {!^л , В л , Р л ) consists of П л elementary random events (random con­
figurations), a -algebra В л of measurable subsets of !^л , each element of which is 
considered as the random event, and the probability distribution Рл on В л .

For the Gibbs random fields of vector lattice models considered in this paper, the 
listed components of the probability space Р л are defined as follows. Denote the 
set Q =  R n, which we w ill call the phase space of each vertex in Z d. The number 
n e N  is the dimension of the vector field fixed during the work.

For any subset of Л с Z d, we define the space П л  =  ^ л . Th is means that each 
vertex x  =  (I1, Id) e Л  is  mapped to a point of the Q space which is  assigned the 
label x  and, as a result of such an operation, the phase space Qx is  obtained. Then, 
for any Л с Z d, the space of elementary events, which we w ill call the space of 
states (configurations), is  represented by the formula

Qл ^ 0 9  Qx . (1)
xeЛ

On the space Q , there is a natural measurability structure defined by the a - 
algebra В  of Borel sets in R n .Then, similarly to the formula (1), by assigning labels, 
a -algebras B x , x  e Z  are introduced on each of the spaces Qx and, on the bases of 
them, the a -algebra В л is  constructed on Qл

Вл =  ^  Bx . (2)
xeЛ

In accordance with this structure of measurability, we w ill also assume that the 
measure M is defined on the a -algebra В. For simplicity of further constructions, we

1 Here and further throughout the text, random variables are marked with the “tilde” sign.



w ill assume with respect to this measure that it does not contain a singular component, 
that is, it has a derivative dM/du =  0 (u ) > 0 of the Lebesgue measure in R n with 
the differential d u =  du\...dun. Th is derivative is  expressed as a generalized function 
with respect to the countably normalized space of locally continuous functions on R n. 
In particular, in the case of n =  1, this means that in the Lebesgue decomposition of 
the measure M on R ,  there are only absolutely continuous and discrete components.

On the basis of the measure M, by assigning labels x  e Z d, we introduce measures 
Mx on a -algebras B x and, as a result, the measure В л is  defined as a product of 
measures

Mh =  Mx , dMh = D ( i( x ) ) d i( x ) .  (3)x , d Mл
xeЛ xeЛ

Each Gibbs random field is  й (Л) is  constructed by the definition of the proba­
bility distribution Рл on a measurable space (QЛ, В л , Mл ). Its random realizations 
й (Л) e Qл are represented by mappings й (Л) : Л  ^  R n. Due to the finiteness of 
the set Л, each such mapping can be considered as a collection of {й(x) ; x  e Л} of 
| Л  | (number of vertexes in Л) random variables taking the value in R n. The fact 
that we consider further this set of random variables as a Gibbs random field means 
that the probability distribution Рл has a non-negative density on the measure Mл 
defined by the formula

dРл =  exp ( -  Hл[й(z)])dMл , (4)
Z  Л

where each of the functionals Нл[й(г)], Л с Z d is called the Hamiltonian of the 
Gibbs random field.

Statistical characteristic 2 Л of the probability distribution (4) called the partition 
function, is  determined on the basis of the normalization condition PЛ(QЛ) =  1 of 
the distribution Р Л

Z Л exp ( -  Hл[й(z)])dM л. (5)

ал

Thus, for a fixed measure M, we assume the choice only of such functionals Нл [й(г)] 
for which this integral is finite.

In order to connect probability spaces {Рл ; Л с Z d} defined at various Л с Z d 
by the fixed phase the space Q and the fixed measure M on it with statistical mechanics 
models, it is  necessary to distribute these spaces by equivalence classes such that one 
may take into account the property of physical uniformity.

Th is  is  done, firstly, taking into account the fact that the translation of the set Л 
should not change the physical predictions, that is, it should not change values of 
statistical averages obtained as a result of calculations on the basis of a mathematical 
model.



Secondly, it should be taken into account that the sets Л  for statistical mechanics 
systems consist of an indefinitely large number of vertexes so that each intensive 
thermodynamic characteristic, related to one vertex of the lattice, is  practically inde­
pendent on | Л  |.

The first of these requirements can be satisfied by assuming that the collection of 
all Hamiltonians Нл [-], Л с Z d describing the same physical system, subject to a 
condition that reflects independence of all statistical averages on the location of the 
set Л  in Z d. Th is  is expressed by the property of the translational invariance. Let 
us formulate the simplest version of such a condition. Let z be an arbitrary vertex of 
Z d. Then the space П л and the measure Мл on it have the property

^Л+z =  ^ Л |u(x)^u(x+z), МЛ+г =  МЛ|u(x)^u(x+z) • (6)

Hamiltonian Нл [u(x)] is  called the translationally invariant one i f  it has the following 
property

Н л+z [u(x)] =  Нл [u(x +  z)] • (7)

Each Hamiltonian Нл [u(x)] is  defined as a function on vector variables {x e Л} 
for each set Л. We denote this function as u(Л) =  {u(x) ; x  e Л}. Then, the property 
(7) means that all these functions are the same for all sets Л +  z, z e Z d.

Theorem 1 I f  Hamiltonian H[u(z)] is  translationally invariant, then the probability 
distributions Рл and Рл+z are equivalent in the sense that

dР л+z[u(y)] =  dРл [u(y +  z)] • (8)

Proof Statement directly follows from (5)- (7).

Let us now proceed to the discussion of the second requirement for a Gibbs random 
field with Hamiltonians HЛ[u(z)] which allows distribute them into equivalence 
classes. Let us fix  some lattice vertex Z d which we w ill call the zero one. We w ill 
consider only Gibbs fields on sets Л  that contain this vertex. Due to the necessity 
to use a large number of vertexes | Л  | (even for the smallest experimentally studied 
nanoparticles of a solid state substance | Л  | «  106 and more), it does not make 
sense to accurately calculate the expectations of Е Л (•) on the basis of the probability 
measure Р л .

On the contrary, in the practice of using of probability theory methods in the­
oretical statistical physics, it is  necessary only to have confidence the fact that the 
calculated thermodynamic characteristics have a quite definite asymptotic behavior 
at unlimited increase of the set Л  occupied by the thermodynamically homogeneous 
medium under study. In this case, only the main asymptotic terms of expectations 
Ел(-) on the probability measure Рл are of interest when Л  is  expanded to Z d 
according to a definite rule. Transition to the lim it at Л  ^  Z d according to corre­
sponding expanding sequences of statistical characteristics of Gibbs random fields 
is  called the transition to thermodynamic lim it in statistical mechanics.



In this paper we study so-called the extensive systems which are traditional to 
statistical mechanics when the function ¥ л =  ln Z л , which is  named theirs free 
energy, has the asymptotic

^л[Нл] =  |Л |( f  (M, Нл) +  o(1)), (9)

that is, this thermodynamic characteristic has the certain density f  (M, Нл ) which is 
the functional on the measure M and on the Hamiltonian Нл [й(г)].

The concept of the thermodynamic lim it transition needs the serious clarification, 
since there are some different ways to construct expanding sequences (Л; Л с Z d) 
which are associated with fundamentally different physical situations, and which, 
generally speaking, should not lead to the same result.

The simplest type of sequences (Л; Л с Z d) used in statistical mechanics, 
whose components serve as geometric models of crystals and which we w ill 
consider further is  represented by the sets Л =  {0, 1,..., L } d where L  e N  is 
the size of the "crystal". The number of vertexes in each of such sets is equal 
| Л  | =  (L  +  1)d < ^ .

Let us consider the equality

Н л [й (г)]^  ^  Уг (й(Г)) (10)
ГсЛ :|Г|>1

where each function У ^ й (Г^  at fixed set Г  с Л  of vertexes depends on corre­
sponding collection й (Г) =  {u(x) ; x  e Г } . One may consider this equality as the 
functional equation defining functions УГ (-). These functions, which we further call 
potentials, are defined by recursively as the solution of this equation, using the induc­
tion on the number | Л | and putting У ^ й (Г^  =  0 with |Г| =  1. By  induction, it 
is  also established that the potentials Уг(-) have a property similar to (7). Namely, 
since

^ У Г ( й ( Г  +  z)) =  Hл[й(x +  z ) ] , Уг (й (Г)) =  Н л+z[u(x)],
ГсЛ ГсЛ+z

then the potentials УГ (й(Г)) for all sets, which are differed from each other only by 
shifts with arbitrary vector z e Z d, coincides, УГ(й(Г)) =  У г+z(й(Г)).

We do not include terms Г  =  {x } with |Г| =  1 in Hл [й(x)] and refer them to the 
definition of Mx, x  e Л. At the same time, as already mentioned above, we restrict 
ourselves to the case when all measures Mx are isomorphic between themselves, that 
is, they are instances of the same measure M.

Definition 1 The class of Gibbs random fields whose probability spaces (Рл , 
Л  с Z d) are constructed on the basis ofthe same measurable phase space (Q, B , M), 
whose Hamiltonians are determined by the same set of potentials УГ(й(Г)) ;|Г|e 
N  \ {1}) so that corresponding partition functions are finite when the sequence



(Л Л с Z d) of sets coincides with (Л (L)  =  {0, 1, •••, L } d ; L  e N )  with their suit­
able translation, we w ill call the lim it Gibbs random field on Z d.

Thus, the lim it Gibbs random field is determined by the sequence of Hamiltonians 
(НЛ(ц[-]; Л (L )  с Z d) which is constructed on the basis of potentials by decompo­
sition (10) where the sets Л (L ) are defined by L  e N .

Note that, accepting this definition, we adhere to a more traditional view about the 
thermodynamic lim it for statistical characteristics of Gibbs random fields within the 
framework of statistical mechanics, in contrast to the approach known in statistical 
mathematical physics. It  consists of determination of the Gibbs random field on the 
entire lattice Z d by means of a set of conditional probabilities allowed by the fixed 
set of relative Hamiltonians (see, [7]).

3 The Hamiltonians Space H„ of Limit Gibbs Fields
Note that the study of lim it Gibbs random fields is sufficient to carry out fixing only 
their generating family of sets {Л (L ) ;  L  e N }  without the account of translations, 
on which the further presentation in this paper is based. Moreover, we w ill study 
a family of Gibbs random fields with the fixed measure M. With the account of 
these remarks, every lim it Gibbs random field uniquely characterized by the class of 
Hamiltonians H  =  {НЛ(£) [•]; L  e N }  which is defined by the fixed set of potentials 
{ y r ( u ( F ) ) ; |Г| e N  \ {1}}. It is  obvious that all such classes form a linear manifold 
with natural linear operations.

Let us further assume, throughout the work, that there is  a monotone function 
v(s) >  0 , s e (0 , ж )  such that the integra^^„ exp (av(|u|^dM(u) < ^  defined 
by the density D(u) of the measure M, converges for any a >  0. In particular, this 
takes place i f  the support of the measure М is compact, that is, it is concentrated on 
the interval [0, s+], s+ < ж  and its density D(u) is zero at |u| > s+. It takes place in 
the case for the standard vector model (see, for example, [8]). In this case one may 
consider v =  1.

We connect the study of Gibbs random fields when their measures M have non­
compact supports in order to apply our results for such objects of statistical mathemat­
ical physics as, for example, the Berlin-Katz spherical model [9, 10], the Gaussian 
model and the ^4 model which play an important role in the fluctuation theory of 
phase transitions (see, [11]). One may note that the above described Gibbs random 
field on Z d include, in particular, all classical lattice models at n =  1 specified in 
[2]. To see this fact it is  sufficient to introduce the measure M with the density 
D (u ) ^  I ^ l l1 S(u -  l)e^(u) on the space Q =  R .

Further, we fix  the function v(-) connected with the measure M. Let the potentials 
y r (u (r))  depend continuously on the values of the field u(x), x  e Л. Then, there 
exists the function



0 ( Г )  =  sup
УГ(й(Г))

й(Г  ̂ ^  v(|u(x)|)
(11)

x e Г

for each set Г  с Z d. Let us additionally assume that the Hamiltonians HЛ(L)[й(x)] 
included in each fixed class H  have such a property that for any vertex z e Л  it takes 
place

N H Л(Ь) С (Г) < ^ .
Гс Z d : ze Г, |Г|>1

(12)

Due to the translational invariance of potentials, the values of the functional N[-] 
on classes H  of Hamiltonians {Н Л(£); L  e N }  does not depend on the choice of the 
vertex z e Z d. Then, on the linear manifold of all such classes of Hamiltonians, it 
is  possible to introduce the norm N[-] that turns this manifold into the Banach space 
H „. In order to simplify the presentation, we omit the proof of the completeness of 
this space. It is  very important that this norm allows also the following definition

W
U(L) У =  sup sup

e N

Л(Ь) H Л(Ь)

LeN  й(Л(Ь)̂  У V(|u(x)|)

|УГ(й(Г))|.W Л(Ь)

xe Л(Ь)

Нл(ц' (13)
ГсЛ(L): |Г|>1

It is  valid the following statement.

Theorem 2 It  takes place the equality

yHЛ(L)y =  N [HЛ(L)_ .

Proof Let us consider the inequalities

|УГ(й(Г))| < G ( Г ^ v ( | й ( x )|), Г  с Л (L ) .

(14)

x eГ

Summing them on all Г  с Л (Ь ) at |Г| > 1, we obtain

W Л(Ь) H Л(Ь) =  Y .  |УГ(й(Г))| ^ Y .  G(Г^ ^  v(|u(x)|) <
ГсЛ(Ь): |Г|>1 ГсЛ(Ь): |Г|>1 xeЛ(L)

^ ^(|u(x)\̂  G (Г) < N[Hл(L)]  ̂ (̂|u(x)|)
xeЛ(L) xeГсЛ(L) x eЛ(L)



and, therefore,

J  II ^Л(Ь^ НЛ(Ь)
\л(Ь) у =  sup ---------------

Л(Ь)с v(|u(x)|)
x eЛ(L)

< N H’̂ Л(Ь) (15)

Let us establish the inverse inequality. Choose a value s >  0. Then, there w ill be 
such L  e N  and the field u(x), x  e Л ( L ) for which the following inequality

W Л(Ь) НЛ(Ь)] > (УНл(Ь ) ^ - s ^  ^  v(|u(x )|)
xe Л(Ь)

takes place. On the other hand, we have

Wл(L) Нл(1 ) D ( r^ v (| u (x )| )  < ^Нл(ь^^ ^  v(|u(x)|)
ГсЛ(Ь): |Г|>1 x er x eЛ(L)

and, therefore, УНЛ(£)У — s < N НЛ(̂ ) . Due to the arbitrariness of the value s >  0, 
there is  an inequality уНл(ц У < ^ Н л (ь ^ . The validity of (14) follows from it and 
from the inequality (15).

We show that i f  the lim it random field defined by the class of Hamiltonians {НЛ(£); 
L  e N }  which belongs to the space H v with a function v(-), then it is correctly defined. 
Namely, it is  valid

Theorem 3 I f  the integra^,j^n exp (av(|u|  ̂d M(u) < ж  converges fo r a monotone 
function v(s) > 0, s e (0, ж )  and fo r any a >  0 and i f  the class H  of Hamiltonians 
defined by the set of potentials {y r (u (r))  ;|r|e N  \ {1}} belongs to H v, then the 
partitionfunction Z  Л, defined by (5), is  finite and, therefore, the corresponding Gibbs 
random the field is  defined fo r all Л  с Z d.

Proof Let Hamiltonians Н Л(1 ) be satisfied the condition (12). Then, on the basis of 
definition (5) and according to (14), the following estimates are valid

Z Л ^ У  exp (|Hл[u(z)]|)dMл ^ J  exp (^уHл(L)[u(z)]У v(|u(x)|^dMл <

Ял x eЛ

x eЛ
f  exp (уН Л(Ь)\

Qx

• v(|u(x )|Я d Mx (u(x)) =

j  exp (^уНл(ь)y-v(|u|^dM(u)
|Л|

(16)

QЛ

Q



We give the following

Definition 2 Lettheclass {HЛ(L) : Л (L )  =  {0, 1,..., L } d; L  e N }  ofHamiltonians 
determines the lim it Gibbs random field with fixed measure M on the phase space Q . 
The set of lim it Gibbs random fields defined by the set p H  =  { в HЛ(L) [■] : L  e N }  
of classes ofHamiltonians contained in H„ where each set is parameterized by в  >  0 , 
is  called the lattice classical model of statistical mechanics corresponding to eH.

Introduction of the set of classes of Hamiltonians which is represented as a rec­
tilinear ray in the space H„, is  connected with the fact that the model of equilibrium 
statistical mechanics is  defined by the thermodynamic interpretation of measurable 
parameters of corresponding lim it Gibbs field. F irs t of all, it refers to the main ther­
modynamic parameter, that is the temperature. According to the canons of statistical 
mechanics, it is proportional to в -1 .

4 The Extensive Asymptotics of Free Energy
Our aim is the proof the asymptotic formula (9) at Л (L )  ^  Z d for each lattice 
system of statistical mechanics.

Definition 3 The Hamiltonian (10) has the finite range of action i f  there exists such 
a finite set Л с Z d, 0 e Л of vertexes for which УГ (й(Г)) =  0 only in the case 
when there is such a vertex z e Г  that Г  — z с Л.

I f  the Hamiltonian Нл 1̂ )̂ has a finite range of action, the pointed out set Л is 
named its support. It  is  obvious that all such Hamiltonians form the linear manifold 
H (0) in the Banach space H„. We begin the proof of the extensiveness of the free 
energy from the proof of the following statement.

Theorem 4 For the fixed measure M and any finite set Л  с Z d, the corresponding 
manifold H (0) of Hamiltonians Нл is  dense in the space H„.

Proof Let us fix  the value e >  0. Since the sum in (12) is  finite for the fixed Hamil­
tonian Нл [̂ ], one may choose the finite family S  of finite subsets Г  с Z d such that 
each of them contains the vertex 0 and it takes place the inequality

^  G ( Г ) < e .  (17)
Гс Z d : 0e Г, Г/Е

Let us introduce the set

ГeE

We add the family S  such that it should contain all sets Г  с Л .The inequality (17) is 
strengthened only at such an expansion. After that, we define Уг  (й(Г)) =  Уг  (й(Г)),



i f  one may find such a vertex z e Z d for which the inclusion (Г  +  z) e S  takes place. 
In opposite case, we define V r(u (r))  =  0. The latter means that Vr> (u (r'))  =  0 
every time when the set Г '  с Z d is such that Г '  +  z с ^  takes place for any vertex
z e Z d.

Further, we define the Hamiltonian

H л [u (z)]^  ^  Уг (u (Г )) • (18)
ГсЛ :|Г|>1

It belongs to the linear manifold H (0). Then, using the determination of potentials 
V ^ u ( r^ , due to the Theorem 1 the following equality

1Л — Н л У = ^ Н л  — ^  ^  G ( r ) < s
Гс Z d : 0e Г, Г/Е

takes place that is any Hamiltonian Нл may be approximate arbitrarily accurate in 
the space H v by the Hamiltonian Нл with finite range of action.

To solve the problem which is set at the beginning of the section, some fol­
lowing supplementary properties of density D(-) should be used. According to 
the basic supposition, the measure M has the density D(-) which is  a general­
ized function relative to the space of continuous functions. It  consists of two 
summands D(-) =  D c(•) +  D d(•) where D c(•) is measurable bounded nonnegative 
function on R n and D d(u) =  ^ k /xk5(u — vk); /xk >  0, vk e R n. Denote D a(u) =  
Da(u) k H-k^(u — vk) at 0 < a <  1. We w ill say that such a density D(-) is 
bounded by the value K  i f  max D c(u) < K  and f i l < K , l  e N .

In addition to the existence of positive monotone function v(s) on (0, ж )  such 
that the density D(u) possesses the property JQ exp(av(|u|))D(u)du < ж  at any 
a >  0 , we w ill suppose also the availability of some supplementary more strong 
restrictions for the density when the basic result of the paper w ill be obtained in this 
section.

Lemma 1 Let the Hamiltonians class {НЛ(£); L  e N }  belongs to the space H v. Let 
also the density D(-) of measure M defines the lim it Gibbs random field together 
with this class. IfD (-)  is  bounded by the value K  and there exists such a nonnegative 
function v(s), the value a e (0, 1) fo r which the integral f Q D a(u)eav(u)du < ж  is  
finite and also the function v(u) D 1—a(u) is  bounded by the value Kv > 0, then the 
following inequality is  valid fo r expectation Eл(L)v(|^ (x )|) < Kv K 1—a and fo r any 
vertex x  e Z d.

Proof Since the function v(u)D 1—a(u) is bounded by the value K v, then, for the 
following integral with any nonnegative weight function W (•) on R n, the estimate

j  v(u)D(u)W(u)du < K ^  D a(u)W (u)du (19)



takes place. By  the same way, since the density D(u) is  bounded by the value K , the 
inequality

j  D (u )W (й)dй < K 1—̂  D a(u)W (й)dй (20)

is  valid.
Now, we note that, due to the lemma conditions relative the integral with the 

density D(^), the following partition function is finite (see the proof of Theorem 2),

Zл(L),a = (  D a(й(|x |))du(x ̂  exp( —Hл(L)[й(z)])d Mл(L)\x <
Q:c '̂ QЛ{L')\x

j  exp (^yHл(L) y^v(|u|^D a(u)du ■ j  exp (уНл(ц У ■ v(|u|^dM(u)

Л(Ь) IЛ (L)^xeЛ(L )^ (|й|).since |Hл(L)| < ^ Н л
Then, on the basis of the identity 1 =  Z a(i^)/Za(l ), using the inequality (20) for 

the denominator, we find that

Zл(L),a > K a—1 Z л(L). (21)

By the same way, due to the condition for the integral pointed out and due to the 
inequality (19), we find the estimate

I  [v(|u(x)|)D1—“ (u(x))]D a(й (x ) )d й (x ^  exp(—Hл(L)[й(z)])dMл
J Qx JQл(̂ :̂  x

(̂L̂ \̂x

< Kv ZV Z Л(Ь),a ■ (22)

The expression for the expectation E Л(L) v(|u(x)|) is  written in the following 
form

Eл(LЯv(|й(x )|)

I  v(|u(x)|)dM^ exp(—Hл(L)[й(z)])dMл(L)\x
^ x  ' ^ Q Л {L ')\ x

/ d M ^  exp(—Hл(L)[й(z)])dMл(L)\x
J  Q x  J  Q Л ( L ) \ x

We apply the estimate (22) for the nominator and the estimate (21) for the denomi­
nator. Then

Eл(L^v(|й(x)|Я < K v K’■1—a

Further, we suppose that always the measure M satisfies conditions of Lemma 1.

Q Q



Let Л ' с Л  and u(Л ') is  the restriction of the field u(Л) on the set Л'. I f  the 
Hamiltonian Hл[u(z)] has the property Hл[u(Л)] =  Hл[u(Л ')], then we w ill say 
that Hл[u(Л ')] is the natural restriction of the Hamiltonian Hл[u(z)] on the linear 
manifold of vector fields u(Л '). We w ill denote this natural restriction by means 
of Нл' [u(z)].

Lemma 2 Let Л  с Z d. Then, fo r the partition functions

Zл[HЛm)] ^  exp ( — нЛm)[u(z)])dMл

Ял

which are defined by Hamiltonians H (’m'’, m e{1, 2} of the space H v such that the 
difference НЛ,) — Н̂ Л? at Л ' с Л is  the natural restriction of the Hamiltonian НЛ) — 
нЛ) on Я л , the following inequality is  valid

ln Zл [H Л )] — ln Zл[HЛЛ)]| < (Eлv(|U|^ • |Л'| • уНЛ  ̂ — Н^^У • (23)

Proof The Hamiltonian НЛ̂  — Н̂ 'Л possesses the finite norm у • y. We introduce

the family of Hamiltonians H[u(z); t] =  Ĥ j2 [u(z)] + t (HЛ) [u(z)] — Ĥ 2) [u(z)]), 
t e [0 , 1] so that all belong to H„, and also we consider the family of corresponding 
partition functions

Z л (t) ^  j  exp ( — H[u(z); t])dMл •--л\ )̂ =

Ял

These functions are finite due to Theorem 2.
Now, we note that the following estimates are valid

d
—  ln Z л ( t ) 
dt

ddt H[u(z); t ]

< Z —1(t) j  dt H[u(z); t] exp ( — H[u(z); t])dMл <

Ял

Z^^(t) j  X]v(|u(x)|) exp ( — H[u(z); t ])dMл =

=  (Eлv(|U|^ |Л'|.уНЛ,) — НЛ̂

i f  we take into account the definition (13) of the norm and also that the difference 
Нл') — Н̂Л2  is  the natural restriction on Я Л/. Here, the expectation Ev(|ii|) is finite. 
Due to Lemma 1, it does not exceed K v K 1—a. Integrating the obtained inequality 
from 0 up to 1 and taking into account that Z л ( 0 ) =  Z л[НЛ2)], Z л ( 1 ) =  Z л[НЛ1)], 
the inequality (23) follows.



Lemma 3 Let the Hamiltonian Нл e H (0) has the finite range of action and Л is  the 
finite subset in Z d which is  its support. Let also Л 1 and Л 2 be any nonintersecting 
finite subsets in Z d, Л 1 П Л 2 =  0 and 2 ^(Л1, Л 2; Л) be the set of such vertexes 
z e Z d fo r which (Л +  z) П Л 1 = 0 ,  (Л +  z) П Л 2 =  0 are fulfilled simultaneously.

Let the Hamiltonians Н Л1иЛ2, Н Л1, НЛ2 are natural restrictions of the Hamiltonian 
Нл on QЛ ûЛ2, QЛl, QЛ2, correspondingly. Then, the difference (H ЛluЛ2 —Н Л1 
НЛ2) has the natural restriction on QS.(Л̂,Л2;Л) and the following estimate

|НЛ1иЛ2 [u(z)] —Нл1 [u(z)] — Нл2 [й(z)]|<УHлl u Л2 v(|x |) (24)
xeS, (Л1,Л2;Л)

is  valid fo r it.

Proof Let us estimate the left-hand side of the inequality (24)

НЛ1 иЛ2 [u(z)] — НЛ1 [u(z)] — НЛ2[u(z)] <

)|Уг(й(Г))| =  E
ГсЛ1иЛ2|Г|>1

ГсЛ1 : 
|Г|>1 ГсЛ2 : |Г|>1

У г(й (Г))  <
ГсЛ1иЛ2 :|Г|>1 

ГПЛ1=0 , гПЛ2=0

< У г(й (Г)) <
xeЛlUЛ2 Гсл1ил2: x€Г,г—xсл,ГПЛ1 =0 , ГП Л2 =0, |Г|>1

^ Е  G(Г^ Е  v(|x |
ГсЯ  ̂: 0eГ, |Г|>1 xeS(Лl,Л2;Л)

Here, we take into account that Уг (й(Г)) =  0 only in the case when there exists such a 
vertex x  e Г  for which the relation Г  — x  с Л is valid and, therefore, we introduce 
the set 2 ( Л 1, Л 2; Л) of vertexes x  e Л 1 U Л 2. For each vertex in this set there 
exists a subset Г  with the following properties Г  с Л 1 U Л 2, x  e Г , Г  — x  с Л, 
Г  П Л 1 = 0 , г  П Л 2 = 0 .

Now, we show that the inclusion 2 ( Л 1, Л 2; Л) с 2^(Л1, Л 2; Л) takes place. 
Indeed, from two last inclusions we conclude (Г  — x ) П (Л 1 — x ) =  0 and (Г  — 
x ) П (Л 2 — x ) = 0 .  Then, combining these inclusions with the following Г  — x  с 
Л, we may assert that relationships Л П (Л 1 — x ) =  0 and Л П (Л 2 — x ) =  0 
are realized. Thus, (Л +  x ) П Л 1 = 0 ,  (Л +  x ) П Л 2 =  0 and, therefore, the last 
inequality leads to the inequality (24) i f  we take into account the statement of The­
orem 2 .

The following lemma is  the consequence of Lemmas 2 and 3.

Lemma 4 Let Hamiltonian Нл e H (0) has the finite range of action and Л is  the 
finite subset in Z d which is  its support. I f  Л 1 are Л 2 are nonintersecting finite subsets 
in Z d, Л 1 П Л 2 =  0, then the following estimate takes place



ln Z 41U42 — ln Z ^1 — ln Z 42 I < (Eлv(|U|^ • уНлу • | S,(^ 1, Л 2; Л)| • (25)

Proof We define the following Hamiltonians НЛ) =  Н^^иЛг and Н̂Л2  =  H^j +  H^2. 
Then, using this definition, we have Za 1ua2 =  Z  л [Н 4 1и42 ], Z  4  ̂ =  Z  л[Н^1 ], Z  ̂ 2 =  
Z Л[Н42]. Due to 4 1 n 4 2 =  0, the Hamiltonians H41, H42 act in linear manifolds 
which have the empty intersection. Consequently,

ln Z 41U42 — ln Z 41 — ln Z 42 I =  I ln Z л[НЛ!)] — ln Z л[НЛЛ)] •

Further, we apply the inequality (24) to partition functions Z л [H Л )], m =  1, 2,

ln Zл [H Л )] —ln Zл[HЛЛ)] < (Eлv(|U|Я -|:£,(4 1 , 4 2; 4 ) | - уН̂ ^̂  — Hj(1) u(2)iЛ (̂|И|Л • |S +(4 1, 4 2; 4 )| • уНл — Н Л

where we take into account that the difference НЛ) — НЛ) has the natural restric­
tion on S ,(4 1 , 4 2 ; 4 ) . Since НЛ) — НЛ̂ ) =  H s.(41,42;4), then уНЛ) — НЛ̂ ) у =  
уНе.(41, 42; 4)у < УНЛу because of the nondecreasing of the Hamiltonian norm 
when the set Л  is expanded. From here, it follows the inequality (25).

Corollary 1 Let Hamiltonian Нл e H (0) has the finite rang of action and 4  is  finite 
subset in Z d which is  its support. I f  4  j,  j  =  1 ^ m are finite subsets in Z d such that 
4  j  n 4 k =  0 at j  =  k, then the following estimate

m m
ln Zxm ^  ln Z 4 j I < (Exm v(|u|  ̂ -уНт^ У ^ | S , ( T j - l  ; 4)| (26)

j =1 j  =2

takes place where T l ^  U j = 1 4  j  and ( T j —1, 4 j ; 4 )  is  the set of such vertexes 
z e Z d fo r which the relationships (4  +  z) n T l =  0, (4  +  z) n 4 l =  0 follow 
simultaneously fo r each l  =  2 ^ m.

Proof The proof is  carried out by induction according to m e N  with the use of the 
inequality (25), starting out m =  2.

Let us proceed to the proof of the main result of this work. It  is carried out according 
to the same scheme that is  proposed in [2], and it is  based on the representation of a 
lattice model as the sum of a large number of isomorphic disjoint identical “weakly 
interacting” lattice models.

Theorem 5 I f  Нл e H (0), then there exists the finite limit

f (M, Нл ) =  Ll im • (27)
L |Л(L)|

Proof On the basis of the set Л(a — 1), a e N ,  a > 2 and vertexes y e Z d, we 
define the sets Л у =  Л(a — 1) +  ay. Let L  =  aN  — 1. Consider the set Л(aN  — 1)



which contains adN d vertexes. We represent it in the form

Л(aN  — 1) ^  U  Л у
ye Л(N—1)

where Лу1 П Лу2 =  0 for any pair of vertexes {у1, у2} с Л (N  — 1).
Let us introduce lexicographical order of the set Л (N  — 1) containing N d ver­

texes, we demote the fact that the vertex y2 follows the vertex y1 by y1 < y2. It 
means that for each pair of such vertexes y1 =  (y(1) - (1)̂ —  (2) - (2)\
y (m') =  0 ^  N  — 1; j  =  1 ^  d, m e{1, 2} there exists such a number k =  1 ^  d for

yd У2 =  (y{

which y(1) =  y j2 , j  =  1 -  k — 1, yk1  <(2) (1)
y

(2)

The values of functionals ln Z Лу 
tional invariance. Then

do not depend on j  =  1 — N d due to transla-

ln Z Л(1 ) — N d ln Z Л(a-1)
Nd

ln Z Л(1 ) ln Z Лу.
j =1 j

(28)

To estimate the right-hand side of this equality we apply the inequality (26) con­
nected with sets Л j  =  Л у. , j  =  1 — N d, T N2 =  Л (L )  in the sense of the introduced 
order,

ln Z Л(1)

Nd
^ ^  ln Z Лу.

j =1
Ел(Ь) v(|ii IIH Л(1) I : c

j =2
S , ( T j —1,Лу. ; Л)

(29)
where T l  ^  U j= 1 Лу ,̂ T y 1 =  Л(a — 1). We choose the number a e N  so large that 
the inclusion Л(a — 1) D (Л +  z) is fulfilled for a vertex z.

Suppose there are two sets Лу̂  and Лу̂  such that there exists such a vertex x  e Z d 
for them when the relationships (Л +  x ) П Лу̂  =  0 and (Л +  x ) П Лу̂  =  0 are 
valid. Then from the inclusion Л(a — 1) D (Л +  z) it follows that (Л(a — 1) +  x  — 
z) П Л у. =  0and (Л(a — 1) +  x  — z) П Л Уk =  0. Such a situation is possible only in 

the case when Л у. and Л Уk are “neighboring” sets, namely, y j =  (y(j), ..., y^)), yk =  
(ŷ1 )̂ +  a1 , ..., y( ') +  ad), aj e { - 1 ,  0, 1}, i =  1 — d. For each set Л У there exists 
no more that 3d — 1 neighboring sets among all Л Ук, k =  j , k =  1 — N d. In this case, 
i f  the vertex x  is contained in anything set Л у. , then there are 3d — 1 sets Л Уk such 
that (Л +  x ) П Л Уk =  0. Consequently, the number of vertexes S ^ ( T j—1, Л у. ; Л) 
does not exceed (3d — 1) max |S+(ЛУk, Л у. ; Л )  for any j  =  1 — N d where H j  is

is  a
keH ̂

the set which consists of those 3d — 1 numbers k e {1,..., N d} for which Л У 
neighbor with Л У..

Let us estimate the number S^,(ЛУk, Л У.; Л) for two neighboring sets Л У. and 
Л Ук. It  is  obvious that it is maximal in the case when there is  the face of Л У. with the 
dimension d — 1 which divides them. It  contains ad—1 vertexes. Let xo is  the fixed



vertex in this face. Then, we find the number of vertexes x  for which simultaneous 
feasibility of relationships (4  +  x ) n Лу̂  =  0 and (4  +  x ) n Лyk = 0  is  possible. 
In this case xq e 4  +  x  does not exceed |4|. Then, it is  valid S^,(Лyk, Лу ; 4 )
,,d—1| 4 | . On the basis of this estimate, we obtain the following inequality

S , ( T j _ l ,Л y j ;  4 )  < (3d — 1)ad—1|4| •

Using it and also (28) and (29), we conclude that the inequality

ln Z Л(aN-1) ln Z Л(a-1)
| Л(aN  — 1)| | Л(a — 1)|

(3d — 1 ^ Eл(L) v(|ii|)^ ЛЛ(Ь)\
| 4| (30)

takes place at | Л(aN  — 1)| =  (aN)d, | Л(a — 1)| =  ad. Since the right-hand side 
of the inequality (30) tends to zero at a ^ ж ,  then, to complete the proof of the 
theorem, we show that the sequence (| Л ( L ) |—1 ln Z Л(ь); L  e N )  is  the fundamental 
one. For this, we w ill prove that, for each s >  0, there is  such a sufficiently large 
number L , for which there are values a and N  when for any L ' > L  we may find 
a' > a, N ' > N  when the following inequality

ln Z Л(Ь') ln Z Л(a' — \)
|Л(L ')| |Л(a'— 1)|

< s

takes place. It  is obvious that the sequence under consideration is  fundamental in 
this case since

ln Z Л(L) ln Z Л(Ь')
|Л(L)| |Л(U)|

2 s , L ' > L  • (31)

We introduce the sets Л(aN  — 1) and дЛ(aN  — 1) =  Л (L )  \ Л(aN  — 1). Let 
us estimate the expression in left-hand side of (31) at L ' =  L , a' =  a on the basis of

ln Z Л(Ь) ln Z Л(a-1)
|Л(L )| |Л(a — 1)|

1
| Л ( L )|

ln Z Л(Ь) — ln Z Л(aN-\) — ln Z ЭЛ(aN-\)

+  ln Z ЭЛ(aN-\) +
ln Z Л(Ь)

ln Z Л(aN-\) ln Z Л(a-1)
|Л(aN — 1)| |Л(a — 1)|

(32)

To estimate first summand, we apply (25) with 4 1 =  Л(aN  — 1) and 4 2 =  
дЛ(aN  — 1), taking into account that Л ( L ) =  Л(aN  — 1) U дЛ(aN  — 1),

ln Z Л(Ь) ln Z Л(aN-1)1 ) ln Z дЛ(aN-1) <

( Êлv(|й|) |S^(Л(aN — 1), дЛ(aN  — 1); 4)| •

a



Here, S^(Л(aN  — 1), дЛ(aN  — 1); Л) is  the set of such vertexes x  for which the 
set Л +  x  contains the vertex in дЛ(aN  — 1). Then, it follows that S^,(Л(aN — 
1), дЛ(aN  — 1); Л) < |дЛ(aN — 1)| ■ |Л|. Consequently, the inequality

1
| Л ( L )|

ln Z Л(Ь) — ln Z Л(aN-1) — ln Z aЛ(aN-1) < S

takes place at sufficiently large number N .
The estimate of second summand is  given by the inequality

ln Z aЛ(aN-r) |дЛ(aN — 1)|
|Л(L )| |Л( L  )|

j  exp (^УНлщУ ■ v(|u|  ̂d M ( u ) < 5 ,

(33)

(34)

which should be valid at sufficiently large L  at fixed number N .
Finally, last summand at right-hand side of (32) is  estimated by choice a suffi­

ciently large value a in the inequality (30) for any N  e N  so that its right-hand side 
may be done less that S. Thus, by selecting S < e/3 and, at first, choosing a suitable 
value a, and then choosing a sufficiently large number N  so that the inequalities (33) 
and (34) are satisfied, we w ill ensure the satisfiability of the inequality (31).

Theorem 6 I f  Нл e H v, then there exists the finite limit

f  (M, Нл ) =  lim
ln Z Л(Ь)
|Л(L)|

The lim it function f  (M, Нл) is  the continuous functional in the space of Hv. 

Proof The inequality (23) points out that the estimate

1
ln Z л[HЛ1)L)]—ln Z л[HЛЛ)L)]

(35)

(Eлv(|й|^ ■уНЛ)ц — НЛЛ)цУ, (36)

takes place for any pair of classes {НЛ)£); L  e N }, {НЛ(£); L  e N }  of Hamiltonians 
in the space Hv.

Since the manifold H (0) is  dense in H v, then, for a given class of Hamiltonians 
Нл(Ь) -  HЛ1)L) e H v, L  e N  and for the value e >  0, choosing such a class H (0) =

HЛЛ))L), L  e N  in H (0) for which 'Л(Ь) H (0) IН л щ | < e, we get

eEлv(|й|) + |лЛу In Zл[нЛ°)L)] > |лЛ| Zл [HлlL)] > |лЛ| 1" Zл[нЛ°)L)] - e Eлv(|й|)•

Since, according to Theorem 5, the sequence of functions |Л(L) |—1 ln Z Л(L) [HЛ0))L)], 
L  e N  converges to a fixed lim it, then, going to the lim it L  ^ ^ ,  we get an estimate 
for the difference between the upper and lower lim its of the sequences of functions

Q



lim  sup
L T̂O

ln Zл[Hл(L)] 
| Л|

— lim  inf
Ь^ж

ln Z л[Нл(ц] 
| Л|

sEлv(|U|

Taking into account the arbitrariness of the value s >  0, we find that the first statement 
of the theorem is true.

The lim it function f  (M, Нл ) (35) depends functionally on the set of potentials 
Vr (u (r)), Г  с Z d, 1 < |Г| < ж , that is, on the class of Hamiltonians {H Л(Ь); L  e 
N } .  Since such limiting at L  ^ ж  functions f  (M, H^^L)) exist for every pair 

{HЛ(L); L  e N } ,  m e {1, 2} of Hamiltonians classes in H v, then, going to the lim it 
when L  ^ ж  in (36), for of these lim it functions, we obtain

f  (M, H (2 l) )  — f  (M, HЛ(Ь)(1) < ( Êлv(|й|)^ (1)
Л(1) H (2)

Л(1  )l

From here, it follows that the lim it functional f  (M, Нл ) is  continuous on the space 
of Hamiltonians H v that proves the second part of the statement.

5 Conclusion
In the paper it is  proved the extensiveness of the free energy ^Л[НЛ] of classical 
vector lattice models in statistical mechanics, that is, the presence of asymptotic 
behavior (9) at Л  ^  Z d for this thermodynamic function. The proved statement is 
valid for any classes of translationally invariant Hamiltonians of the space H v and 
for any dimension d of the immersion space of the specified type models.

It  is necessary to note that investigated models are used in statistical physics only at 
d =  3 for bulk physical samples of a solid and at d =  2 in the study of thermodynamic 
phenomena on the boundaries of macroscopic physical bodies (in particular, the 
surface tension). Besides, in practical calculations within the framework of statistical 
mechanics, as a rule, Hamiltonians of pair interaction are used that is  Vr  (u (r))  =  0 
only when |Г|= 2 with a summable potential.

At the same time, it should be noted that we have proved the presence of extensive 
asymptotic only in the special case, which is  used when applying models of statis­
tical mechanics in problems of theoretical statistical physics. Namely, the sets Л 
which serve as geometric models of crystals, have the form Л  =  Л ( L ). So, it would 
be desirable to extend the constructions proposed in this paper to the case when Л 
sets have a more general form. It may be done i f  it is permissible to determine the 
so-called thermodynamic Van Hove lim it transition (see [2]). Such a generalization 
is  important as from the viewpoint of development of the general theory of the Gibbs 
random fields and as from the physical viewpoint because of the development of the­
oretical physics. The latter is connected with the fact that different constructions of 
thermodynamic lim it transition may describe different physical reality. For example, 
i f  it is violated the so-called Fisher condition (see [2, Sect. 2]) when the thermody­
namic lim it transition is  fulfilled, in particular, there are violated those conditions

)



that are inherent in the definition of the Van Hove lim it transition, then it seems that 
one may describe fractal solid-state structures within the framework of statistical 
mechanics.

In conclusion, we note that, from our opinion, the development of an alternative 
approach in the theory of Gibbs random fields proposed by Dobrushin [7], despite 
its undoubted general theoretical importance, w ill not lead to the elimination of 
the concept of thermodynamic lim it transition in the traditional sense in statistical 
mechanics.
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