Thermodynamic Limit in Vector Lattice
Models Shel

Yuri P. Virchenko

Abstract Classes of Gibbs random fields u(x), x e Z donfinite sets /1 ¢ Z d,d e
N with values in the space ,n e N are studied. Each class is connected with the
sequence (/1; 1 ¢ Z d unboundedly expanding according to the definite rule when
N~ Z d. Each random field is generated by the Hamiltonian Hn[u(z)]. Classes of
all functionals Hn[u(z)] corresponding to sequence (J1; /1 ¢ Z d) form the Banach
space H,,. It is proved the existence of the limit statistical characteristic In Z n/|1|
in each class when /1 ™ Z dwhich is the continuous functional in H,,.

Keywords Vector models «Hamiltonian «Gibbs’ random field <Free energy =
Phase space «Thermo-dynamic limit

1 Introduction

The object of study in this paper is Gibbs random fields on the integer lattice Z d,
d e N. The importance of studying such mathematical objects is due to the fact that
models of statistical mathematical physics are constructed on their basis (about the
subject of the study and the terminology used, see, for example, [1- 6]). We will
call such models as vector lattice systems. From the point of view of theoretical
physics, these models describe, within the microscopic approach and with appro-
priate interpretation of the parameters defining theirs, the thermodynamic behavior
of single-crystal solid-state structures in awide temperature range. Despite the fact
that a considerable amount of literature is devoted to the mathematical analysis of
such theoretical models, in most mathematical works related to their study within the
framework of the formalism of statistical mechanics of classical (non-quantum) sys-
tems, the greatest attention is paid to such of them which are called lattice gases. For
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such mathematical objects, the terminology has been developed that unites them. In
terms of this terminology their properties are established at the level of those require-
ments that are imposed on mathematical texts. The purpose of this work is to extend
these basic concepts to amuch wider class of models of statistical mechanics of clas-
sical systems which we call, as mentioned above, the vector lattice models. For such
systems, we will prove, within the framework of accepted general restrictions, the
validity of one of the basic provisions of statistical mechanics, namely, we establish
the presence of extensive asymptotic En ~| J1 Jof thefree energy ¥n if the sets /1
tends to according to acertain principle dictated by physical considerations.

2 The Gibbs Random Fields

Consider arandom field ii(J1) = {ii(x); x e J1} on an arbitrary finite subset /1 of
the integer lattice Z d, d e N, with elements x = (/1, Id),lj eZz,j = 1~ dwe
w ill call the lattice elements as vertexes*This means that corresponding probability
space Pn = {™\n,Bn, Pn) consists of M n elementary random events (random con-
figurations), a-algebra B n of measurable subsets of "n, each element of which is
considered as the random event, and the probability distribution Pn on B 5.

For the Gibbs random fields of vector lattice models considered in this paper, the
listed components of the probability space Pn are defined as follows. Denote the
set Q = R n, which we will call the phase space of each vertex in Z d. The number
n e N is the dimension of the vector field fixed during the work.

For any subset of 1 ¢ Z d, we define the space Mn = ™ a.This means that each
vertexx = (Il, Id) e 1 is mapped to apoint of the Q space which is assigned the
label x and, as aresult of such an operation, the phase space Qx is obtained. Then,
for any 1 ¢ Z d, the space of elementary events, which we will call the space of
states (configurations), is represented by the formula

Qn"N09 Qx. o)
xe/l

On the space Q, there is a natural measurability structure defined by the a-
algebraB ofBorel sets in R n.Then, similarly to the formula (1), by assigning labels,
a-algebras Bx, x e Z areintroduced on each of the spaces Qx and, on the bases of
them, the a-algebra B n is constructed on Qn

BA =~ Bx. @)
xefl

In accordance with this structure of measurability, we will also assume that the
measure M is defined on the a-algebra B. For simplicity of further constructions, we

1 Here andfurther throughout the text, random variables are marked with the “tilde” sign.



w ill assume with respect to this measure thatit does not contain asingular component,
that is, it has aderivative dM/du = 0(u) > 0 of the Lebesgue measure in R n with
thedifferential du = du\...dun.This derivative is expressed as ageneralized function
with respect to the countably normalized space oflocally continuous functions onR n.
In particular, in the case of n = 1, this means that in the Lebesgue decomposition of
the measure M on R, there are only absolutely continuous and discrete components.
On the basis of the measure M, by assigning labelsx e Z d, we introduce measures
Mx on a-algebras Bx and, as aresult, the measure B n is defined as a product of
measures
Mh = Mx, dMh = D (i(x))di(x). (©))
xefl xe/l

Each Gibbs random field is (/1) is constructed by the definition of the proba-
bility distribution Pn on ameasurable space (Q/1, B n, Mn). Its random realizations
() e Qn arerepresented by mappings vi(J1) : /1 ~ R n. Due to the finiteness of
the set J1, each such mapping can be considered as a collection of {ii(x); x e 1} of
N I(humber of vertexes in /1) random variables taking the value in R n. The fact
that we consider further this set of random variables as a Gibbs randomfield means
that the probability distribution Pn has anon-negative density on the measure Mn
defined by the formula

dpPn = exp (- Hn[i(z)]))dMn , @
ZNn

where each of the functionals Hn[i(r)], 1 ¢ Z dis called the Hamiltonian of the
Gibbs random field.

Statistical characteristic 2 J1 of the probability distribution (4) called the partition
function, is determined on the basis of the normalization condition PJ1(Q/1) = 1 of
the distribution P /1

zn exp (- Ha[n(z)])dMn. 5)

an

Thus, for afixed measure M, we assume the choice only of such functionals Hn [A(r)]
for which this integral is finite.

In order to connect probability spaces {Pn ; /1 ¢ Z d} defined atvarious J1 ¢ Z d
by the fixed phase the space Q andthe fixed measure M onit with statistical mechanics
models, it is necessary to distribute these spaces by equivalence classes such that one
may take into account the property of physical uniformity.

This is done, firstly, taking into account the fact that the translation of the set /1
should not change the physical predictions, that is, it should not change values of
statistical averages obtained as aresult of calculations on the basis of amathematical
model.



Secondly, it should be taken into account that the sets J1 for statistical mechanics
systems consist of an indefinitely large number of vertexes so that each intensive
thermodynamic characteristic, related to one vertex of the lattice, is practically inde-
pendent on |1 |

The first of these requirements can be satisfied by assuming that the collection of
all Hamiltonians Hn[-], /1 ¢ Z ddescribing the same physical system, subject to a
condition that reflects independence of all statistical averages on the location of the
set /1 in Z d. This is expressed by the property of the translational invariance. Let
us formulate the simplest version of such acondition. Let z be an arbitrary vertex of
Z d. Then the space N n and the measure Mn on it have the property

AN+z = A p)™MNUKXFZ), M+ = M PX)™MU(x+z) = (6)

Hamiltonian Hn [u(x)] is called the translationally invariant oneif it has the following

property
Hn+z[u(x)] = Hau(x + 2)] = @)

Each Hamiltonian Hn [u(x)] is defined as afunction on vector variables {x e N}
for each set /1. We denote this function asu(J1) = {u(x); x e /1}. Then, the property
(7) means that all these functions are the same for all sets 1 + z,z e Z d.

Theorem 1 If Hamiltonian H[u(z)] is translationally invariant, then the probability
distributions Pn and Pn+z are equivalent in the sense that

dPn+z[u(y)] = dPn[u(y + 2)] = ©)

Proof Statement directly follows from (5)- (7).

Let us now proceed to the discussion ofthe secondrequirement for aGibbs random
field with Hamiltonians H/1[u(z)] which allows distribute them into equivalence
classes. Let us fix some lattice vertex Z d which we will call the zero one. We will
consider only Gibbs fields on sets J1 that contain this vertex. Due to the necessity
to use alarge number of vertexes 1 ](even for the smallest experimentally studied
nanoparticles of a solid state substance P1 | « 106 and more), it does not make
sense to accurately calculate the expectations of E /1(*) on the basis of the probability
measure P .

On the contrary, in the practice of using of probability theory methods in the-
oretical statistical physics, it is necessary only to have confidence the fact that the
calculated thermodynamic characteristics have aquite definite asymptotic behavior
atunlimited increase of the set /1 occupied by the thermodynamically homogeneous
medium under study. In this case, only the main asymptotic terms of expectations
En(-) on the probability measure Pn are of interest when J1 is expanded to Z d
according to adefinite rule. Transition to the limit at 1 ™~ Z d according to corre-
sponding expanding sequences of statistical characteristics of Gibbs random fields
is called the transition to thermodynamic limit in statistical mechanics.



In this paper we study so-called the extensive systems which are traditional to
statistical mechanics when the function ¥n = In Z n, which is named theirs free
energy, has the asymptotic

An[Hn] = |10 Kf (M, Hn) + o(1)), 9)

that is, this thermodynamic characteristic has the certain density f (M, Hn) which is
the functional on the measure M and on the Hamiltonian Hn [#A(r)].

The concept of the thermodynamic limit transition needs the serious clarification,
since there are some different ways to construct expanding sequences (J1; /1 ¢ Z d)
which are associated with fundamentally different physical situations, and which,
generally speaking, should not lead to the same result.

The simplest type of sequences (J1; /1 ¢ Z d) used in statistical mechanics,
whose components serve as geometric models of crystals and which we will
consider further is represented by the sets /1 = {0, 1,...,L}d where L eN s
the size of the "crystal'. The number of vertexes in each of such sets is equal
M= (L+ Hd< ™.

Let us consider the equality

Hn[h(r)]» n Yr (n(r)) (10)
ren:rpt

where each function Y~ (I~ at fixed set I' ¢ /1 of vertexes depends on corre-
sponding collection (') = {u(x); x e I'}. One may consider this equality as the
functional equation defining functions YT (-). These functions, which we further call
potentials, are defined by recursively as the solution of this equation, using the induc-
tion on the number P1 Jand putting Y~ n (Fr~ = 0 with |r] = 1. By induction, it
is also established that the potentials ¥r(-) have a property similar to (7). Namely,
since

ANYT(n(r +2)) = Hafn(x + z)], Yr(%(r)) = Ha+z[u(x)],
rcn fchn+z

then the potentials YT (7 (")) for all sets, which are differed from each other only by
shifts with arbitrary vector z e Z d, coincides, YT (i (I')) = Yr+z(i(l)).

We do notinclude terms I = {x} with '] = 1lin Hn[iA(x)] andrefer them to the
definition of Mx, x e /1. At the same time, as already mentioned above, we restrict
ourselves to the case when all measures Mx are isomorphic between themselves, that
is, they are instances of the same measure M.

Definition 1 The class of Gibbs random fields whose probability spaces (Pn,
N c Z d) are constructed on the basis ofthe same measurable phase space (Q, B, M),
whose Hamiltonians are determined by the same set of potentials YT (1 (T)) ;|| e
N \{1}) so that corresponding partition functions are finite when the sequence



(N N c Z d) ofsets coincides with (J1(L) = {0, 1, == L}d;L e N) with their suit-
able translation, we w ill call the limit Gibbs random field on Z d.

Thus, the limit Gibbs random field is determined by the sequence of Hamiltonians
(HA(y[-1; (L) c Z d) which is constructed on the basis of potentials by decompo-
sition (10) where the sets /1(L ) aredefined by L e N .

Note that, accepting this definition, we adhere to amore traditional view about the
thermodynamic limit for statistical characteristics of Gibbs random fields within the
framework of statistical mechanics, in contrast to the approach known in statistical
mathematical physics. It consists of determination of the Gibbs random field on the
entire lattice Z d by means of aset of conditional probabilities allowed by the fixed
set of relative Hamiltonians (see, [7]).

3 The Hamiltonians Space H,, of Limit Gibbs Fields

Note that the study of limit Gibbs random fields is sufficient to carry out fixing only
their generating family of sets {/1(L); L e N} without the account of translations,
on which the further presentation in this paper is based. Moreover, we will study
a family of Gibbs random fields with the fixed measure M. With the account of
these remarks, every limit Gibbs random field uniquely characterized by the class of
Hamiltonians H = {H/(E)[=]; L e N} which is defined by the fixed set of potentials
{yr(u(F)); I'l eN \{1}}. Itis obvious that all such classes form alinear manifold
with natural linear operations.

Let us further assume, throughout the work, that there is a monotone function
v(s) > 0, s e (0, ) such that the integra”™”?,, exp (av(Ju]*dM(u) < ™ defined
by the density D (u) of the measure M, converges for any a > 0. In particular, this
takes place if the support of the measure M is compact, that is, it is concentrated on
the interval [0, s+], s+ < »x andits density D(u) is zero at Ju] > s+. It takes place in
the case for the standard vector model (see, for example, [8]). In this case one may
consider v = 1.

We connect the study of Gibbs random fields when their measures M have non-
compact supports in order to apply ourresults for such objects of statistical mathemat-
ical physics as, for example, the Berlin-Katz spherical model [9, 10], the Gaussian
model and the ~4 model which play an important role in the fluctuation theory of
phase transitions (see, [11]). One may note that the above described Gibbs random
field on Z dinclude, in particular, all classical lattice models at n = 1 specified in
[2]. To see this fact it is sufficient to introduce the measure M with the density
D(u) ~ I~ 111s@ - Ne~r on the space Q = R.

Further, we fix the function v(-) connected with the measure M. Let the potentials
yr (u(r)) depend continuously on the values of the field u(x), x e /1. Then, there
exists the function
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G(I") = sup M < 0
ud) Y v(ju))

xel

(1L

for each set I' € Z9. Let us additionally assume that the Hamiltonians H 4 [u(x)]
included in each fixed class H have such a property that for any vertex z € A it takes
place

N[Haz)] = Z GI) < . (12)

FcZ4: zel, T>1

Due to the translational invariance of potentials, the values of the functional N[-]
on classes H of Hamiltonians {HA(L) ; L € N'} does not depend on the choice of the
vertex z € Z%. Then, on the linear manifold of all such classes of Hamiltonians, it
is possible to introduce the norm N[-] that turns this manifold into the Banach space
H,. In order to simplify the presentation, we omit the proof of the completeness of
this space. It is very important that this norm allows also the following definition

Wiy [Haw
”HA(L)” = Sup sup # 5
LN wa) Y v(jux)|)

xe AL)

Wan[Haw]= DY IVr@@)]. (13)

FCA(L): IT[>1
It is valid the following statement.

Theorem 2 If takes place the equality
IHaw Il = N[Haw] - (14)

Proof 1et us consider the inequalities

Vr@@™) < G@) Y v(u@, T CAL).

xel

Summing themon all I' € A(L) at [T'| > 1, we obtain

Wan[Haw]= Y. W@yl > GO ) v(uw) <

FcA@L): T|>1 FcA(L): T|>1 xeAL)

< Y v(uwh Y. GI) <NHsp] D v(um)

xeAL) xel' CAL) xeAl)



and, therefore,

J\]'|(|:>) g/ = sup N (_I?_/_\_!-_l_{-l_(_l?_)__ < N H"[Kb) (15)
N(b)c v(Ju@)D

xef(L)

Let us establish the inverse inequality. Choose avalue s > 0. Then, there will be
suchL e N andthefield u(x), x e N1 (L) for which the following inequality

WnE) HAGE)] > (YHAB)~-s~ A~ v(lu(x)D

xe JI(b)
takes place. On the other hand, we have
Wwa(l) Hn(1) DAv(lu(x)l) < ~Hae™™ ~ v(JuX)l)
rene): ' xer xefiL)

and, therefore, YHI(E)Y —s < N HJI(") .Due to the arbitrariness of the values > 0,
there is an inequality yHn(4 Y < “"Hn(b”. The validity of (14) follows from it and
from the inequality (15).

We show that if the limit random field defined by the class of Hamiltonians {HJI(£);
L e N} which belongs to the spaceH vwith afunction v(-), thenit is correctly defined.
Namely, it is valid

Theorem 3 [f the integra”™,j*nexp (@v(Ju]*dM(u) < x convergesfor a monotone
function v(s) > 0, s e (0, ) andforany a > 0 andif the class H ofHamiltonians
defined by the set of potentials {yr (u(r)) ;Jrle N \{1}} belongs to Hv, then the
partitionfunction Z /1, defined by (5), isfinite and, therefore, the corresponding Gibbs
random thefield is definedforall /1 ¢ Z d

Proof Let Hamiltonians H/1(l) be satisfied the condition (12). Then, on the basis of
definition (5) and according to (14), the following estimates are valid

zn~y exp ([HAu@lDdMn ~ 3 exp (MyHAL)[u(2)]Y v(Ju) |"dMn <
An &) xell

f exp (YHAB\ =v(Jux)|FdMx(u(x)) =

xeﬂQ(

n
j exp ("yHn()y-v(lu]~dM(u) (16)
Q



We give the following

Definition 2 Lettheclass {HAL) : 1(L) = {0, 1,..., L}d;L e N} ofHamiltonians
determines the lim it Gibbs random field with fixed measure M on the phase space Q .
The set of limit Gibbs random fields defined by the set pH = {BH/IL)[m :L e N}
of classes ofHamiltonians contained in H,, where each setis parameterizedby s > 0
is called the lattice classical model of statistical mechanics corresponding to eH.

Introduction of the set of classes of Hamiltonians which is represented as arec-
tilinear ray in the space H,,, is connected with the fact that the model of equilibrium
statistical mechanics is defined by the thermodynamic interpretation of measurable
parameters of corresponding limit Gibbs field. First of all, it refers to the main ther-
modynamic parameter, that is the temperature. According to the canons of statistical
mechanics, it is proportional tos -1.

4 The Extensive Asymptotics of Free Energy

Our aim is the proof the asymptotic formula (9) a /J1(L) ~ Z d for each lattice
system of statistical mechanics.

Definition 3 The Hamiltonian (10) has the finite range of action if there exists such
afinite set 1 ¢ Z d, 0 e J1 of vertexes for which YT (1n(')) = 0 only in the case
when there is such avertexz el thatl —z c /1.

If the Hamiltonian Hn“?) has a finite range of action, the pointed out set /1 is
named its support. It is obvious that all such Hamiltonians form the linear manifold
H (O) in the Banach space H,,. We begin the proof of the extensiveness of the free
energy from the proof of the following statement.

Theorem 4 For thefixed measure M and anyfinite set J1 ¢ Z d, the corresponding
manifold H (0) ofHamiltonians Hn is dense in the space H,,.

Proof Let us fix the value e > 0. Since the sum in (12) is finite for the fixed Hamil-
tonian Hn [, one may choose the finite family S offinite subsets ' ¢ Z dsuch that
each of them contains the vertex 0 and it takes place the inequality

~ G (N<e. (17)
rczd er,r/E

Let us introduce the set

ek

We add the family S such thatit should contain all sets ' ¢ /1 .The inequality (17)is
strengthened only at such an expansion. After that, we define ¥Yr (1 (")) = Yr (4 (),



if one may find such avertexz e Z dfor which theinclusion (I' + z) e S takes place.
In opposite case, we define Vr(u(r)) = 0. The latter means that \>(u(r')) = 0
every time whentheset ' ¢ Z dis suchthatl' + z ¢ ~ takes place for any vertex
zeZd

Further, we define the Hamiltonian

Hnlu(z)]» n Yr(u(l)) = (18)
ren:rpt

It belongs to the linear manifold H (0). Then, using the determination of potentials
V N u (r™, due to the Theorem 1 the following equality

IN—Hny=~Hn — ~ ~ G (r)<s
fcZd: Cel,T/E

takes place that is any Hamiltonian Hn may be approximate arbitrarily accurate in
the space H v by the Hamiltonian Hn with finite range of action.

To solve the problem which is set at the beginning of the section, some fol-
lowing supplementary properties of density D(-) should be used. According to
the basic supposition, the measure M has the density D(-) which is a general-
ized function relative to the space of continuous functions. It consists of two
summands D(-) = Dc(=) + Dd(=) where D c(=) is measurable bounded nonnegative
function onR nand Dd(u) = ™ k/xk5(u —vk); ik > 0, vk e R n. Denote D a(u) =
Da(u) kH-k™Mu —vk) at 0 < a < 1. We will say that such adensity D(-) is
bounded by the value K if maxDc(u) < K andfil < K, eN .

In addition to the existence of positive monotone function v(s) on (0, x) such
that the density D(u) possesses the property JQexp(av(ju]))D(u)du < x at any
a> 0, we will suppose also the availability of some supplementary more strong
restrictions for the density when the basic result of the paper w ill be obtained in this
section.

Lemma 1 Letthe Hamiltonians class {H/1(£); L e N} belongs to the space Hv. Let
also the density D(-) of measure M defines the limit Gibbs random field together
with this class. IfD (-) is bounded by the value K and there exists such a nonnegative
function v(s), the value a e (0, 1)for which the integral f QD a(u)eav(u)du < X is
finite and also thefunction v(u)D 1—a(u) is bounded by the value Kv > 0, then the
following inequality is validfor expectation En(L)v(] ~(x)]) < KvK l-aandfor any
vertexx e Z d

Proof Since the function v(u)Dl—a(u) is bounded by the value K v, then, for the
following integral with any nonnegative weight function W (*) on R n, the estimate

i v(u)D(u)W(u)du < K ~ Da(u)W (u)du (29)



takes place. By the same way, since the density D (u) is bounded by the value K , the
inequality

i D(U)W ()it < K 12 Da(u)W (i1)di (20)

is valid.
Now, we note that, due to the lemma conditions relative the integral with the
density D(?), the following partition function is finite (see the proof of Theorem 2),

Zn(L),a = ( Da((Ix ))dux” exp(—Hn(L)[(2)])d Mn(L)\x <
Qc QU

j exp ("yHAlL) y™(Jul™D a(u)du m | exp (YHA(y Ymv(Ju]~dM(u)
Q Q
since JHA(L)] < ™ H m(b) (L)~ xe (L)~ (Ji).

Then, on the basis of the identity 1 = Z a(”)/Za(1), using the inequality (20) for
the denominator, we find that

Zn(L),a > K a1z n(L). 2l
By the same way, due to the condition for the integral pointed out and due to the

inequality (19), we find the estimate

| v(lu() 1D (u(x) 1D aii (x)) d i (x~ exp(—Hn(L)[(2))dMn~
JQX NG

< KWZ Nb)a @22

The expression for the expectation E/IL) v(Ju(x)]) is written in the following
form

I v(ux)H)dM~ exp(—Hn(L)[r(z)])dMn(L)\x
En(LAv(IA)D) B
/ dM~ exp(—Hn(L)[n(z)])dMn(L)\x

JQx JQ N(LN\x

We apply the estimate (22) for the nominator and the estimate (21) for the denomi-
nator. Then

En(LAV(I ()9 < KvK™T 2

Further, we suppose that always the measure M satisfies conditions of Lemma 1.



Let 1' ¢ /1 and u(J1") is the restriction of the field u(/1) on the set /1'. If the
Hamiltonian Hnu(z)] has the property Hn[u(J1)] = Ha[u(/1")], then we will say
that Hn[u(/1")] is the natural restriction of the Hamiltonian Hn[u(z)] on the linear
manifold of vector fields u(/1'). We wi ill denote this natural restriction by means
of HA' [u(2)].

Lemma 2 Let /1 c Z d Then, for the partitionfunctions

Zn[HNm] ~ exp (—HIM)[u(z2)])dMn
An

which are defined by Hamiltonians H {r’, m e{1, 2} of the space Hv such that the
difference HN,) —HYP at 1' ¢ /1 is the natural restriction ofthe Hamiltonian H/1) —

H/T) on A n, thefollowing inequality is valid
In Zn[HN)] —In Zn[HAM]] < Env(JULN = PT] syH —HVY «  (23)

Proof The Hamiltonian HY —HY1 possesses the finite norm y ey. We introduce

the family of Hamiltonians H[u(z); t] = HY2 [u(z)] + t (H/T) [u(2)] —H’\Z)[u(z)]),
te [0 1] so that all belong to H,,, and also we consider the family of corresponding
partition functions

Xt 2 | exp (—H[u(z); thdMn =
An

These functions are finite due to Theorem 2.
Now, we note that the following estimates are valid

d
@ In Zn(t) < Z—].(t) j dt H[u(z); t] exp (—H[u(z); t])dMn <
An

dHuE: 1 2T XU e (—H[u(@); thdMn =

= (Env(JU |~ 1'1.yHA) —H

if we take into account the definition (13) of the norm and also that the difference
Hn') —HY? is the natural restriction on A JV/. Here, the expectation Ev(]ii]) is finite.
Due to Lemma 1, it does not exceed K vK la Integrating the obtained inequality
from () up to land taking into account that Zn (0) = Z n[Hﬂ2)], Zn(1)=12 n[Hﬂl)],
the inequality (23) follows.



Lemma 3 LettheHamiltonian Hn e H (0) has thefinite range ofaction and /1 is the
finite subset in Z dwhich is its support. Let also /11 and n2be any nonintersecting
finite subsets in Zd 11 M N 2= 0 and 2’\(}11, 112; ) be the set of such vertexes
zeZdorwhich(J1+2z)Nn 1= o, (N+2z)N N2 = oarefulfiled simultaneously.

LettheHamiltonians Hﬂmf[ H ]’1 Hnare natural restrictions ofthe Hamiltonian
Hn on QJ‘I"unl QNI, QJ, correspondingly. Then, the difference (H Mlun2 —HJ1
Hm has the natural restriction on QS.(ﬂ,nﬂ) and thefollowing estimate

IH2[u2)] —Hnl[u@)] —HA2[i(2)]] <YHAlun2 v(IxD  (24)
xeS,(}'Ilﬂz;fl)

is validfor it.

Proof Let us estimate the left-hand side of the inequality (24)

HAIWR[u@)] —HAl[u@)] —HN2u@)] <

, Yr@n)l = yr@(m) <
rcrl'ﬂ‘gi rﬁl}' rﬁg: rﬁ‘ﬁ@?ﬁﬁo
< yr(i(r)) <
xeniun2 Mrﬁ%ﬁﬁ
N E G~ E v(Ix1
s :0el, ML xeSUI1,12)

Here, we takeinto accountthat ¥r (1 (")) = 0 only in the case when there exists such a
vertexx e I for which therelation ' —x ¢ /1 is valid and, therefore, we introduce
the set 2 (J1 1Ln2 ) of vertexes x e J1 1u n2. For each vertex in this set there
exists asubset ' with the following properties ' ¢ /1 lu J'|2, xel,  —x c N,
rnnl=0,rnn2=o0.

Now, we show that the inclusion 2 (/1 1, nz2; n) c 2~(N 1, N2; N takes place.
Indeed, from two last inclusions we conclude (I —x) N (ﬂl—x) =0 and (I —
x) M (J12 —x) =0. Then, combining these inclusions with the following ' —x c
N, we may assert that relationships /1 I (ﬂl—x) =0and NN (N12—x)=0
are realized. Thus, (J1 + x) M N 1= 0, (T+x)N n2=o0 and, therefore, the last
inequzality leads to the inequality (24) if we take into account the statement of The-
orem <.

The following lemma is the consequence of Lemmas 2 and 3.

Lemma 4 Let Hamiltonian Hn e H (0) has thefinite range of action and /1 is the
finite subsetin Z dwhich is its support. If /1 laren? are nonintersectingfinite subsets
inZdnin n-= 0, then thefollowing estimate takes place



In z41ud2 —in z™M —In 2421 < Env(QUL» =yHay =1S.(~L N2y - (25)

Proof We define the following Hamiltonians H/1) = HYWTr and HY? = H”Aj + HA2.
Then, using this definition, we have Zalua2 = Z n[H411/|42], Z4an= Zn[HNY, 272 =
ZN[H42]. Dueto 4 1n 4 2 = 0, the Hamiltonians H41, H42 actin linear manifolds
which have the empty intersection. Consequently,

In z41u42 —In 241 —In 2421 = 1In Z A[HNY] —In Z A[HUT)] -

Further, we apply the inequality (24) to partition functions Zn[H/1)], m= 1, 2,
In ZALHM] —In ZnHAM] < EnvVNA ~Ipedd 1L 4 2, 4 ) -y — KD

where we take into account that the difference H/1) —HJ1) has the natural restric-

tion on S,(41, 42; 4). Since HN) —HT) = Hs.(41424), then yHN) —H)y =
yHe.(4l42;4)y < YHNy because of the nondecreasing of the Hamiltonian norm
when the set /1 is expanded. From here, it follows the inequality (25).

Corollary 1 LetHamiltonian Hn e H (0) has thefinite rang ofaction and 4 isfinite

subset in Z dwhich is its support. If4 j, | = 12 marefinite subsets in Z dsuch that
4jnd4k= 0atj = k, then thefollowing estimate
m m
InZxm ~  InZ4jl< Emv(Jul® -yHIAY A 1S, (Tj-1 4] (26)
i=1 j=2

takes place where T| ™~ U j= 14j and (Tj—l, 4 j;4) is the set of such vertexes
z e Z dfor which the relationships (4 + z) nTI =0, (4 + z) n 41 = O follow
simultaneouslyfor each| = 2~ m.

Proof The proofis carried out by induction according to m e N with the use of the
inequality (25), starting out m = 2.

Let us proceedto the proof ofthe mainresult ofthis work. It is carried out according
to the same scheme that is proposed in [2], andit is based on the representation of a
lattice model as the sum of alarge number of isomorphic disjoint identical “weakly
interacting” lattice models.

Theorem 5 IfHn e H (0) then there exists thefinite limit

f (M,Hn) = llim

T @7

Proof On the basis of the set /lla —1), ae N, a> 2 and vertexes y e Z d, we
definethesets ly = Ji(la — 1) + ay.LetL = aN — 1. Consider the set J/1(aN —1)



which contains adN d vertexes. We represent it in the form

N@aN —=bh~ u ny
ye I(N—D

where }'Iyll'l ﬂy2 = 0 for any pair of vertexes {y]., y2} c NI(N —1).

Let us introduce lexicographical order of the set J1(N —1) containing N d ver-
texes, we demote the fact that the vertex y2 follows the vertex yl by y]. < y2. It
means that for each pair of such vertexes yl = (y@ -yg)’\ V2= y{@ - A\

ym = 0~AN —1;j = 1~ d, me{1, 2} there exists such anumberk = 1 d for
whichy(h= y@.j = 1- k—1 yiP < v
The values of functionals In Z Jiy do not dependonj = 1 —Nddue to transla-

tional invariance. Then

Nd
InZ gy —N din z N(a-) InZ @) In Z Jy. (28)
il

To estimate the right-hand side of this equality we apply the inequality (26) con-
nectedwith sets J1j = Ny.,j = 1—Nd T N2=n (L) in the sense of the introduced
order,

Nd

nZag A~ Nz En) (i IHA)! < s, (Ti—Lny.:m
=l = o9

where TI ~ U j= ]J'Iy’\, Ty 1= N@a — 1). We choose the number a e N so large that
the inclusion /1(a — 1) D (N1 + z) is fulfiled for avertex z.

Suppose there are two sets Jiy™ and Jiy™ such that there exists such avertexx e Z d
for them when the relationships (J1 + x)NJ/y*= 0 and (J1 + x) N Jy* = 0 are
valid. Then from the inclusion /i(a —1) D (J1 + z) it follows that (J1((a —1) + x —
z) NNy = 0and (J1(a —1) + x —z) M 1% = 0. Such asituation is possible only in
the casewhen J1y. and J1 ¥k are “neighboring” sets, namely, yj = (y(j), ..., Y™)), Yk =
Y+ al,...,y()+ ad), aj e{-1,0, 1},i = 1—d.For each set /1Y there exists
no more that 3d — 1 neighboring sets among all 1Yk = j ,k = 1—Nd.In this case,
if the vertex x is contained in anything set J1y., then there are 3d — 1 sets J1Y such
that (J1 + x) N J1X = 0. Consequently, the number of vertexes S~ (Tj—l, Ny.; n
does not exceed (3d—1) r}léﬂag\|5+(}'l>kﬂy ;1) foranyj = 1—Ndwhere Hj is

the set which consists of those 3d — 1 numbers k e {1,..., Nd} for which 1Y is a
neighbor with /1Y..

Let us estimate the number S™,(1¥ NY.; 1) for two neighboring sets /1Y. and
N1Yk It is obvious that it is maximal in the case when there is the face of /1Y. with the
dimension d — 1 which divides them. It contains ad— vertexes. Let xo is the fixed



vertex in this face. Then, we find the number of vertexes x for which simultaneous
feasibility of relationships (4 + x)n Jy™~ = 0 and (4 + x) n Jlyk =0 is possible.
Indt_l'iis case xq e 4 + x does not exceed |4]. Then, it is valid S™N1yk, Ny ; 4)

" E | On the basis of this estimate, we obtain the following inequality

S, (Ti_LNyj; 4) < 3d—1)ad-l}4] =
Using it and also (28) and (29), we conclude that the inequality

InZa@N-1)  Inzn@b R _— Kl
nan —h1 1@ =1 @Bd—17En(L) w(liilh) TN\ a (30)

takes place at J1(aN — 1] = (aN)d, P1(a — 1] = ad. Since the right-hand side
of the inequality (30) tends to zero at a ™ x , then, to complete the proof of the
theorem, we show that the sequence (] /1 (L) |—1In Z N(b); L e N) is the fundamental
one. For this, we will prove that, for each s > 0, there is such a sufficiently large
number L , for which there are values a and N when for any L' > L we may find
a' > a, N' > N when the following inequality

INnZaw) InznE—
1wl @@=

takes place. It is obvious that the sequence under consideration is fundamental in

this case since
In Z N(L) In Z (b))

25, L'>L = (31)
1InOI O]

We introduce the sets /1(aN —1) and g/1(aN —1) = J1(L) \N1(aN —1). Let
us estimate the expression in left-hand side of (31) atL' = L ,a' = a onthe basis of

In Z n(b) In Z N(a-1)

nol el ol In Z 7I(b) —In Z Ni@@N-\) —In Z S7@N)

+ INZIAE@NN) + INZaEN\) Inz @) 32)
In Z i) In@N =D 1@ -

To estimate first summand, we apply (25) with 4 1= N(aN —1) and 42=
nN(aN —1), taking into account that /1 (L) = 1(aN —1) U g/i(aN —1),

In Z Ii(b) In Z l'I(aN-J-) In Z pn(anN-1) <

ev(17]) IS~(1(aN —1), ai(aN —1); 4)] =



Here, S*(J1(aN —1), g/i(aN —1); N) is the set of such vertexes x for which the
set J1 + x contains the vertex in g/i(aN —1). Then, it follows that S™,(J1(aN —
1), p/i(aN —1); N) < Jal(@aN —I1|] =|/]. Consequently, the inequality

In ZJ(b) —In Z N(aN-1) —In Z a/l(aN-1) < S (33)
ol
takes place at sufficiently large number N .

The estimate of second summand is given by the inequality

inzan@\n - Jan@N —D | exp ("YHWY mv(JulrdM (U)<5,  (34)
] 1)l
which should be valid at sufficiently large L at fixed number N .

Finally, last summand at right-hand side of (32) is estimated by choice a suffi-
ciently large value a in the inequality (30) forany N e N so that its right-hand side
may be done less that S. Thus, by selecting S < e/3 and, at first, choosing asuitable
value a, and then choosing asufficiently large number N so that the inequalities (33)
and (34) are satisfied, we w ill ensure the satisfiability of the inequality (31).

Theorem 6 If Hn e Hyv, then there exists thefinite limit

In Z figb)

f (M, H = i
MHD =m0

(3%)

The limitfunction f (M, Hn) is the continuousfunctional in the space ofHv.

Proof The inequality (23) points out that the estimate
In Zn[Hﬂl)L)]—In Z n[HNN)L)] (Env(a ] myHM)Y —HA)LY, (36)

takes place for any pair of classes {HM)£); L e N }, {H/1(£); L e N} of Hamiltonians
in the space Hv.

Since the manifold H (0) is dense in Hv, then, for agiven class of Hamiltonians
Hn(b) - HML eHv,L e N and for the value e > 0, choosing such aclass H@ =

HV)L), L eN in H{) for which i(b) H}QL_“I < e, we get

ebEnv(il) + PyiInzn[HIL] > 1M Zn[HhiL] > 0 17 Zn [HL)] - e Env(il)e

Since, according to Theorem 5, the sequence of functions | J1(L) |—1 In Z A(L) (HQL)],
L e N converges to afixed limit, then, going tothelimitL ~ ~ , we get an estimate
for the difference between the upper and lower limits of the sequences of functions



In Zn[H
lim sup In ZnHn(L)] —lim inf n ZnHn(ul senv(JU]

LNTO n b n

Taking into account the arbitrariness ofthevalues > 0, we find that the first statement
of the theorem is true.

The limit function f (M, Hn) (35) depends functionally on the set of potentials
Vr(u(r)), T c Zd 1< N < x, thatis, on the class of Hamiltonians {H/1b); L e
N}. Since such limiting at L ~ »x functions f (M, H™\L)) exist for every pair

{HN(L); L eN}, m e {1, 2} of Hamiltonians classes in Hv, then, going to the limit
when L ™ x in (36), for of these limit functions, we obtain

f (M, Hel)) —f (M, H/‘F%b)) < Cenv(Ia)” /(1121) Hf%)l

From here, it follows that the limit functional f (M, Hn) is continuous on the space
of Hamiltonians H v that proves the second part of the statement.

5 Conclusion

In the paper it is proved the extensiveness of the free energy ~J1[H/] of classical
vector lattice models in statistical mechanics, that is, the presence of asymptotic
behavior (9) at /1 ~ Z dfor this thermodynamic function. The proved statement is
valid for any classes of translationally invariant Hamiltonians of the space Hv and
for any dimension d of the immersion space of the specified type models.

It is necessary to note that investigated models are used in statistical physics only at
d = 3forbulk physical samples of asolid andatd = 2 in the study of thermodynamic
phenomena on the boundaries of macroscopic physical bodies (in particular, the
surface tension). Besides, in practical calculations within the framework of statistical
mechanics, as arule, Hamiltonians ofpair interaction are used thatis Vr (u(r)) = 0
only when |I'|= 2 with asummable potential.

At the same time, it should be noted that we have proved the presence of extensive
asymptotic only in the special case, which is used when applying models of statis-
tical mechanics in problems of theoretical statistical physics. Namely, the sets J1
which serve as geometric models of crystals, have the form /1 = 11 (L). So, it would
be desirable to extend the constructions proposed in this paper to the case when J1
sets have amore general form. It may be done if it is permissible to determine the
so-called thermodynamic Van Hove limit transition (see [2]). Such ageneralization
is important as from the viewpoint of development of the general theory of the Gibbs
random fields and as from the physical viewpoint because of the development of the-
oretical physics. The latter is connected with the fact that different constructions of
thermodynamic lim it transition may describe different physical reality. For example,
if it is violated the so-called Fisher condition (see [2, Sect. 2]) when the thermody-
namic limit transition is fulfilled, in particular, there are violated those conditions



that are inherent in the definition of the Van Hove limit transition, then it seems that
one may describe fractal solid-state structures within the framework of statistical
mechanics.

In conclusion, we note that, from our opinion, the development of an alternative

approach in the theory of Gibbs random fields proposed by Dobrushin [7], despite
its undoubted general theoretical importance, will not lead to the elimination of
the concept of thermodynamic limit transition in the traditional sense in statistical

mechanics.
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