
B-subharmonic Functions

Elina Shishkina

Abstract Considering different problemswith Bessel operator we inevitably should
obtain the main theorems of harmonic analysis for Laplace–Bessel operator. In this
article we obtain condition of B-subharmonicity using the second Green’s formula
for the Laplace–Bessel operator.
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1 Introduction

Subharmonic functions have been introduced in the analysis Hartogs [1]. The sys-
tematic study of subharmonic functions began with the work of Riesz [2, 3], Privalov
[4] andRadó [5]. It is widely known that subharmonic functions are used in the theory
of surfaces of nonpositive Gaussian curvature [6], in solving boundary value prob-
lems [7], in the theory of random processes [8] and in studying analytic functions
of a complex variable [4]. Now the theory of subharmonic functions is an actively
developing area of modern mathematics.

In this articlewe introduce and proof B-subharmonicity condition. This is a part of
B-harmonic analysis which provides a mathematical theory to deal with the singular
Bessel differential operator of the form

Bγ j = 1

x
γ j

j

∂

∂x j
x

γ j

j

∂

∂x j
= ∂2

∂x2j
+ γ j

x j
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, j = 1, . . . , n.
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We will use notation �γ = (�γ)x =
n∑

k=1
(Bγk )xk . For �γ the term Laplace–Bessel

operator is used. A function u = u(x) = u(x1, . . . , xn) defined in a domainΩ ⊂ Rn

is said to be B–harmonic ifu ∈ C2(Ω), ∂u
∂x j

|x j=0 = 0 for all j = 1, . . . , n and satisfies
the Laplace–Bessel equation �γu = 0 at every point of the domain Ω .

One can say that a function defined and continuous in some domain is B-
subhartnonic if the value of this function at each point of the domain under con-
sideration is less than or equal to its weighted spherical mean. It will be shown that
B-subharmonicity of function in some domain follows from inequality �γu(x) ≥ 0
which is satisfied at all points of the considered domain.

In classical theory, the definition of subharmonic functions is often given in terms
of the positivity of the Laplace operator, and then a generalized mean value theorem
is derived with inequality instead of equality. For our case with the Laplace-Bessel
operator, we rearrange this order and define subharmonic functions through the gen-
eralized mean value theorem with inequalities, and then derive for them a theorem
about the non-negativity of the Laplace-Bessel operator.

2 Definitions

Suppose that Rn is the n-dimensional Euclidean space,

Rn
+ = {x = (x1, . . . , xn) ∈ Rn, x1>0, . . . , xn>0},

R n
+ = {x = (x1, . . . , xn) ∈ Rn, x1≥0, . . . , xn≥0},

γ = (γ1, . . . , γn) is a multi-index consisting of positive fixed real numbers γi , i =
1, . . . , n, and |γ| = γ1 + . . . + γn .

LetΩ befinite or infinite open set in Rn symmetricwith respect to each hyperplane
xi=0, i=1, ..., n, Ω+=Ω ∩ Rn+ and Ω+ = Ω ∩ Rn+.

We deal with the class Cm(Ω+) consisting of m times differentiable on Ω+ func-
tions and denote by Cm(Ω+) the subset of functions from Cm(Ω+) such that all
derivatives of these functions with respect to xi for any i = 1, . . . , n are continu-
ous up to xi=0. Class Cm

ev(Ω+) consists of all functions from Cm(Ω+) such that
∂2k+1 f
∂x2k+1

i
|xi=0 = 0 for all non-negative integer k ≤ m−1

2 (see [9], p. 21).

In the following, we will denote Cm
ev(R

n+) by Cm
ev . We set

C∞
ev (Ω+) =

∞⋂

m=0

Cm
ev(Ω+)

with intersection taken for all finite m and C∞
ev (R+) = C∞

ev .
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The classCev(Ω+) is the restriction of the class of even continuous onΩ functions
to Ω+.

We will use notation
◦
C∞

ev(Ω+) for the space of all functions f ∈C∞
ev (Ω+) with a

compact support. We will use notations
◦
C∞

ev(Ω+)=D+(Ω+) and
◦
C∞

ev(R+) = ◦
C∞

ev .
The multidimensional generalized translation is defined by the equality

(γTy
x f )(x) = γTy

x f (x) = ( γ1T y1
x1 ... γn T yn

xn f )(x), (1)

where each of one-dimensional generalized translation γi T yi
xi acts for i=1, ..., n

according to (see [10])

( γi T yi
xi f )(x) =

Γ
(

γi+1
2

)

√
πΓ

( γi
2

)

×
π∫

0

f (x1, . . . , xi−1,

√
x2i + τ 2

i − 2xi yi cosϕi , xi+1, . . . , xn) sinγi−1 ϕi dϕi .

Next we will use notation

C(γ) = π− n
2

n∏

i=1

Γ
(

γi+1
2

)

Γ
( γi
2

) .

Part of the sphere of radius r with center at the origin belonging to Rn+ we will
denote S+

r (n):

S+
r (n) = {x ∈ R n

+ : |x | = r} ∪ {x ∈ R n
+ : xi = 0, |x |≤r, i = 1, . . . , n}.

For the weighed integral by the S+
1 (n) we have formula [11], formula 107, p. 49

|S+
1 (n)|γ =

∫

S+
1 (n)

xγdS =

n∏

i=1
Γ
(

γi+1
2

)

2n−1Γ
(
n+|γ|
2

) . (2)

3 B-harmonic Functions

In this section we will consider B-harmonic functions i.e. functions annihilated by
the Laplace–Bessel operator in domain Ω+ = Ω ∩ Rn+.

A function u = u(x) = u(x1, . . . , xn) defined in a domain Ω+ is said to be B–
harmonic if u ∈ C2

ev(Ω+) and satisfies the Laplace–Bessel equation �γu = 0 at
every point of the domain Ω+.
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Theorem 1 Let x ∈ Rn+, n > 1 and

E(x) =
⎧
⎨

⎩

1
|S+

1 (n)|γ ln |x |, n+|γ| = 2;
|x |2−n−|γ|

(2−n−|γ|)|S+
1 (n)|γ , n+|γ| > 2,

where |S+
1 (n)|γ is (2). Then for |x | > ε ∀ε > 0 we obtain that E(x) is B-harmonic:

�γE(x) = 0.

Proof Let consider first the case n + |γ| > 2. We can write

�γE(x) =
n∑

j=1

Bγ j E(x) =
n∑

j=1

1

x
γ j

j

∂

∂x j
x

γ j

j

∂

∂x j
E(x) =

= 1

(2 − n − |γ|)|S+
n |γ

n∑

j=1

1

x
γ j

j

∂

∂x j
x

γ j

j

∂

∂x j
|x |2−n−|γ| =

= 1

(2 − n − |γ|)|S+
n |γ

n∑

j=1

1

x
γ j

j

∂

∂x j
x

γ j

j

(2 − n − |γ|)
2

|x |−n−|γ| 2x j =

= 1

|S+
n |γ

n∑

j=1

1

x
γ j

j

∂

∂x j
|x |−n−|γ|x1+γ j

j =

= 1

|S+
n |γ

n∑

j=1

1

x
γ j

j

[
(−n − |γ|)

2
|x |−n−|γ|−2 2x

2+γ j

j + (1 + γ j )|x |−n−|γ|xγ j

j

]

=

= 1

|S+
n |γ

n∑

j=1

[(−n − |γ|)|x |−n−|γ|−2 x2j + (1 + γ j )|x |−n−|γ|] =

= 1

|S+
n |γ [(−n − |γ|)|x |−n−|γ| + (n + |γ|)|x |−n−|γ|] = 0.

Now consider the case n + |γ| = 2:

�γE(x) =
n∑

j=1

Bγ j E(x) =
n∑

j=1

1

x
γ j

j

∂

∂x j
x

γ j

j

∂

∂x j
E(x) =
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= 1

|S+
n |γ

n∑

j=1

1

x
γ j

j

∂

∂x j
x

γ j

j

∂

∂x j
ln |x | = 1

|S+
n |γ

n∑

j=1

1

x
γ j

j

∂

∂x j
|x |−2 x

1+γ j

j =

= 1

|S+
n |γ

n∑

j=1

1

x
γ j

j

[−2|x |−4 x
2+γ j

j + (1 + γ j )|x |−2 x
γ j

j ] =

= 1

|S+
n |γ

n∑

j=1

[−2|x |−4 x2j + (1 + γ j )|x |−2] =

= 1

|S+
n |γ [−2|x |−2 + (n + |γ|)|x |−2] = 0,

because n + |γ| = 2.

4 Weighted Spherical Mean

In B-harmonic analysis when constructing a weighted spherical mean, instead of the
usual shift, a multidimensional generalized translation (1) is used.

Weighted spherical mean (see [11–13]) of function u(x), x ∈ R n+ for n ≥ 2 is

(Mγ
r u)(x) = (Mγ

r )x [u(x)] = 1

|S+
1 (n)|γ

∫

S+
1 (n)

γTrθ
x u(x)θγdS, (3)

where θγ=
n∏

i=1
θ

γi
i .

Weighted spherical mean has properties

(Mγ
r u)(x)|r=0 = u(x),

∂

∂r
(Mγ

r u)(x)

∣
∣
∣
∣
r=0

= 0. (4)

In the classical case, the transition from integration over a unit sphere centered
at the origin to a sphere centered at a point x0 of radius r is carried out by a simple
linear change of coordinates. In our case, the presence of a generalized translation
significantly complicates such a transition. Let’s consider this point in more detail.

We will transform (Mγ
t u)(x) so that the center of the part of the sphere over

which the integration takes place moves. In this case, the dimension of the space will
double. We have

(Mγ
r u)(x) = C(γ)

|S+
1 (n)|γ ×
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×
∫

S+
1 (n)

π∫

0

...

π∫

0

u(

√
x21 − 2r x1θ1 cosβ1 + r2θ21, ...,

√
x2n − 2r xnθn cosβ1 + r2θ2n)×

×
n∏

i=1

sinγi−1 βi dβθγdS.

One can convert this integral into integral by the part of sphere in R2n by using
formulas

θ̃1 = rθ1 cosβ1, θ̃2 = rθ1 sin β1,

θ̃3 = rθ2 cosβ2, θ̃4 = rθ2 sin β2, . . . , (5)

θ̃2n−1 = rθn cosβn, θ̃2n = rθn sin βn.

We obtain

(Mγ
r u)(x) = C(γ)

|S+
1 (n)|γrn+|γ|−1

×

×
∫

S̃+
r (2n)

u(

√

(x1 − θ̃1)2 + θ̃22, ...,

√

(xn − θ̃2n−1)2 + θ̃22n)

n∏

i=1

θ̃
γi−1
2i d S̃ =

= C(γ)

|S+
1 (n)|γrn+|γ|−1

∫

S̃+
r,x (2n)

u(

√

z21 + θ̃22, ...,
√
z22n−1 + θ̃22n)

n∏

i=1

θ̃
γi−1
2i d S̃′,

where we put {θ̃2i−1 − xi = z2i−1, i = 1, ..., n}. Here θ̃2i > 0, i = 1, ..., n,

S̃+
r (2n) = {θ̃ ∈ R2n : |θ̃| = r}

and
S̃+
r,x (2n) =

= {(z1, θ̃2, ..., z2n−1, θ̃2n) ∈ R2n : (z1 − x1)
2 + θ̃22 + · · · + (z2n−1 − xn)

2 + θ̃22n = r2},

differentials d S̃ and d S̃′ mean that we are integrating over a surfaces S̃+
r (2n) and

S̃+
r,x (2n) respectively.
Let now z2i−1 = θi cosβi θ̃2i = θi sin βi , i = 1, ..., n. We can write

(Mγ
r u)(x) = C(γ)

|S+
1 (n)|γrn+|γ|−1

π∫

0

...

π∫

0

⎛

⎜
⎜
⎝

∫

˜̃
S+
r,x (n)

u(θ)θγdS

⎞

⎟
⎟
⎠

n∏

i=1

sinγi−1 βi dβ, (6)
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where
˜̃
S+
r,x (n) is a sphere (or a part of sphere) (θ1 cosβ1 − x1)2 + θ21 sin

2 β1 + · · · +
(θn cosβn − xn)2 + θ2n sin

2 βn = r2. To simplify the right part of (6) we introduce
the next notation

∫

γTx
θ S

+
r (n)

u(θ)θγdS = C(γ)

π∫

0

...

π∫

0

⎛

⎜
⎜
⎝

∫

˜̃
S+
r,x (n)

u(θ)θγdS

⎞

⎟
⎟
⎠

n∏

i=1

sinγi−1 βi dβ

so we can write

(Mγ
r u)(x) = 1

|S+
1 (n)|γrn+|γ|−1

∫

γTx
θ S

+
r,x (n)

u(θ)θγdS. (7)

5 B-subharmonic Functions

In this section we define the B-subharmonic function and prove that if Laplace-
Bessel operator of a sufficiently smooth function is non-negative in domain then this
function is B-subharmonic.

Let u ∈ Cev(Ω+). We say that a function u is B-subharmonic if

u(x0) ≤ (Mγ
r u)(x0) = 1

|S+
1 (n)|γ

∫

S+
1 (n)

γTrθ
x0u(x0)θγdS

whenever the part of the sphere {x ∈ Rn+ : |x − x0| ≤ r} is contained in Ω+.

Theorem 2 Suppose u ∈ C2
ev(Ω+) and �γu(x) ≥ 0 for all x ∈ Ω+, then u(x) B-

subhartnonic at all points of Ω+.

Proof Let x0 is any point of Ω+,

v(x) =
{− ln |x − x0| + ln r, n+|γ| = 2s;

|x − x0|2−n−|γ| − r2−n−|γ|, n+|γ| > 2,

is B-harmonic function by Theorem 1 in Ω+: �γv = 0, v(x) ≥ 0.
We consider θ ∈ Rn+,

I (x) = C(γ)

π∫

0

...

π∫

0

⎛

⎜
⎝

∫

G̃+

(u(θ)�γv(θ) − v(θ)�γu(θ)) θγdθ

⎞

⎟
⎠

n∏

i=1

sinγi−1 βi dβ,

where G̃+ the shell domain between
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(θ1 cosβ1 − x01 )
2 + θ21 sin

2 β1 + · · · + (θn cosβn − x0n )
2 + θ2n sin

2 βn = ε2

and

(θ1 cosβ1 − x01 )
2 + θ21 sin

2 β1 + · · · + (θn cosβn − x0n )
2 + θ2n sin

2 βn = r2.

Numbers ε and r satisfy inequalities 0 < ε < r chosen so that set G̃+ lies entirely
in Ω+. The boundary of G̃+ can include parts of the coordinate plains.

Since �γv = 0, v(x) ≥ 0 and �γu(x) ≥ 0 for all x ∈ Ω+ and G̃+ ⊆ Ω+ we get

0 ≥ I (x) = C(γ)

π∫

0

...

π∫

0

⎛

⎜
⎝

∫

G̃+
(u(θ)�γv(θ) − v(θ)�γu(θ)) θγdθ

⎞

⎟
⎠

n∏

i=1

sinγi−1 βi dβ,

The second Green’s formula for the Laplace–Bessel operator (see [14]) is

0 ≥ I = C(γ)

π∫

0

...

π∫

0

⎛

⎜
⎝

∫

∂G̃+

(

u
∂v

∂ν
− v

∂u

∂ν

)

θγ dS

⎞

⎟
⎠

n∏

i=1

sinγi−1 βi dβ,

where ∂G̃+ the boundary of G̃+, ν is a normal vector of the surface ∂G̃+.
In new coordinates

z1 = θ1 cosβ1, z2 = θ1 sin β1,

z3 = θ2 cosβ2, z4 = θ2 sin β2, . . . ,

z2n−1 = θn cosβn, z2n = θn sin βn,

such that z2i > 0, i = 1, ..., n, we can write

0 ≥ I = C(γ)

∫

∂W̃+

(

ũ
∂ṽ

∂ν̃
− ṽ

∂ũ

∂ν̃

) n∏

i=1

zγi−1
2i d S̃,

where ũ = u

(√
z21 + z22, ...,

√
z22n−1 + z22n

)

, ṽ = v

(√
z21 + z22, ...,

√
z22n−1 + z22n

)

,

∂W̃+ is a surface consisted of two spheres (or a parts of spheres in R2n) with center
at ξ ∈ R2n , ξ = (x1, 0, x2, 0, ..., x2n−1, 0) of radii ε and r such that 0 < ε < r :

S̃+
ε,ξ(2n) =

= {z ∈ R2n : (z1 − x1)
2 + z2 + · · · + (z2n−1 − xn)

2 + z22n = ε2},



B-subharmonic Functions 189

S̃+
r,ξ(2n) =

= {z ∈ R2n : (z1 − x1)
2 + z2 + · · · + (z2n−1 − xn)

2 + z22n = r2}

and possibly parts of coordinate plains, ν̃ is is a normal vector of the surface ∂W̃+,
d S̃ is the element of the surface ∂W̃+. Therefore,

0 ≥ I = C(γ)

⎡

⎢
⎣

⎛

⎜
⎝

∫

S̃+
ε,ξ(2n)

+
∫

S̃+
r,ξ(2n)

⎞

⎟
⎠ ũ

∂ṽ

∂ν̃

n∏

i=1

zγi−1
2i d S̃−

−
⎛

⎜
⎝

∫

S̃+
ε,ξ(2n)

+
∫

S̃+
r,ξ(2n)

⎞

⎟
⎠ ṽ

∂ũ

∂ν̃

n∏

i=1

zγi−1
2i d S̃

⎤

⎥
⎦ .

On S̃+
r,ξ(2n) we have ṽ = 0. Also, since �γu ≥ 0 and ν̃ is directed toward the

center of the S̃+
ε,ξ we get that

∫

S̃+
ε,ξ

ṽ ∂ũ
∂ν̃

n∏

i=1
zγi−1
2i d S̃ ≤ 0.

That means that

0 ≥ C(γ)

⎛

⎜
⎝

∫

S̃+
ε,ξ(2n)

+
∫

S̃+
r,ξ(2n)

⎞

⎟
⎠ ũ

∂ṽ

∂ν̃

n∏

i=1

zγi−1
2i d S̃.

For n + |γ| = 2 we get

0 ≥ C(γ)

⎛

⎜
⎝

∫

S̃+
ε,ξ(2n)

−
∫

S̃+
r,ξ(2n)

⎞

⎟
⎠

ũ(z)

|z − ξ|
n∏

i=1

zγi−1
2i d S̃

and for n + |γ| > 2 we get

0 ≥ C(γ)(n + |γ| − 2)

⎛

⎜
⎝

∫

S̃+
ε,ξ(2n)

−
∫

S̃+
r,ξ(2n)

⎞

⎟
⎠

ũ(z)

|z − ξ|n+|γ|−1

n∏

i=1

zγi−1
2i d S̃,

where ξ ∈ R2n , ξ = (x1, 0, x2, 0, ..., x2n−1, 0). In either case,

C(γ)

∫

S̃+
ε,ξ(2n)

ũ(z)

|z − ξ|n+|γ|−1

n∏

i=1

zγi−1
2i d S̃ ≤ C(γ)

∫

S̃+
r,ξ(2n)

ũ(z)

|z − ξ|n+|γ|−1

n∏

i=1

zγi−1
2i d S̃
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or
C(γ)

εn+|γ|−1

∫

S̃+
ε,ξ(2n)

ũ(z)
n∏

i=1

zγi−1
2i d S̃ ≤ C(γ)

rn+|γ|−1

∫

S̃+
r,ξ(2n)

ũ(z)
n∏

i=1

zγi−1
2i d S̃.

Returning to coordinates θ1, ..., θn by formulas z2i−1 = θi cosβi θ̃2i = θi sin βi , i =
1, ..., n we obtain

1

|S+
1 (n)|γεn+|γ|−1

∫

γTx
θ S

+
ε,x0

(n)

u(θ)θγdS ≤ 1

|S+
1 (n)|γrn+|γ|−1

∫

γTx
θ S

+
r,x0

(n)

u(θ)θγdS

or, using (7),

(Mγ
ε u)(x0) = 1

|S+
1 (n)|γ

∫

S+
1 (n)

γTεθ
x0u(x0)θγdS ≤

≤ 1

|S+
1 (n)|γ

∫

S+
1 (n)

γTrθ
x0u(x0)θγdS = (Mγ

r u)(x0).

Letting ε tend to 0 the left side tends to u(x0) by (4) and we obtain inequality

u(x0) ≤ (Mγ
r u)(x0).

Notes and Comments. There are a lot of properties of B-subharmonic functions need
to prove. For example, it is interesting to consider themaximumprinciple, criterion of
B-harmonicity in terms of B-subharmonic functions, the Perron method for solving
the Dirichlet problem for Laplace-Bessel operator, the connection to the B-potential
theory (for the B-potential theory see [15, 16]), Harnack inequality for singular
equations and other.
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