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Abstract We consider a Riemannian metric which generates the Beltrami-Laplace
operator coinciding with the B-elliptic operator up to a factor.
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1 K-Homogeneous Metric

Lety = (v1,...,7:) beavector with fixed numbers v;, i = 1..., n, which are not
equal to zero at the same time. We denote by R’ the set of points x = (x1, ..., x,) €
R" such that x; € R, wheny; =0, x; € (0, +00), when v; # 0.

If 4; # 0, the variable x; is called singular. As usual, we will use the notation

n
x) = l_[x?", x=(x1,...,x,) € R
i=1

Let the function u(x) be twice continuously differentiable in R’} .
We define the operator Ag by the formula

n 2 n X
Apu=Y Th B ()

2 ¥ Ox:
P 0x; = X Ox;
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Operators of the form (1) have been studied by I. A. Kipriyanov and his disciples
(see [1-5]).
The aim of this section is to find a positively defined in R’, symmetric quadratic

form (metric)
dS2 = ZZgijdx,- dxj s
i=1 j=1
such that the Beltrami—Laplace operator (see [6])

R S W

would coincide with the operator Az up to a multiplier. Here the functions g'/, i, j =
1,...,n, are the entries of the matrix ||g"/ ||, which is the inverse of the matrix ||g;; ||
(covariant metric tensor),

g = det |lg;;ll.

The study of the properties of elliptic differential operators using Riemannian metrics
has a long history (see, for example, [7, 8]).

Theorem 1 Ifn > 3, the entries of the matrix | g;; || are defined by formulas
g,,_é,,]_[x =0xX i, j=1,...,n, K=(Ki,..., Ky, (3)
where
Ki =2v;/(n —2), “4)

0;; is the Kronecker symbol.

Proof Indeed, since g;; = 0 for i # j, substituting (3) into (2), we get:

ou
kk
Ayu = WE o (g \/lgl—axk>, &)
where

gl =g =x" H an = H xR, 6)

i=1i=1 i=1

n
gkk — .X_K — l_[ xi—z’)’i/(ﬂ—z). (7

i=1
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Taking into account (6) and (7), it is possible to rewrite (5) in the following form:

Ou
K Kn/2 _
Autt = x"K/2 Z Ox; < 6‘xj) B

:fo i% _'_fon/Zi%

j=1 j=1 "7

(ﬁ sz(n—2>/2> Ou
, -
=1 8xj

e _ K(n—Z) | Ou
_ K Kn/2 Ki(n—2)/2 _
=x Zaz NI oo =
j=1""J Xi

j=11=1

"L 9%u K; (n —2) Ou
_ .~ K fK _ .= K
=X IX:I:W Z ] ax‘] =X AB,,M,

)
Ayt :x_KABWu, (3

which was required to be proved.

We will consider the set R, equipped with a Riemannian metric
n
ds2=xKdei2, K € R, 9)
i=1

as a Riemannian space; we will denote it by K I,,, and we will call metric (9) the
K-homogeneous Kipriyanov metric.

Theorem 2 Ifn = 2, the problem of finding a metric satisfying equality (8) has no
solution.

Proof Let
gu=E, gu=9u1=F, gn=0G.
Then g
= det ||g;j|l = EG — F?, g = (=1)!*/ —2L
g = det||g;ll =t
Hence
O*u 2
Au=G — 4+ E ——
/191 o2 /191 o2

0%u Oou Ou
—2F b —, — 1
/|g|8x18x2 + (8)61 ’ (9)62) ’ ( O)
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where @ denotes a summand that depends only on the first-order derivatives of the
function u. In order for expression (10) to coincide up to a multiplier with (1), it is

necessary that ' = 0. This will entail equalities

g=EG, ¢"" =1/E, ¢? =1/G, gn=gn =g =g =0.

ou _
(9)62 -
Ou
8)62 ’

Therefore,

Ju n 0 E
axl 6x2 G

n 0 G| Ou 0 E
8x1 E G

A 1 o ‘G
ot = ——| =— (/|
VIEG] \ ox; E

1 82u+ 1 &%u
 EOx} G 0x?

J’_ _
x| Oxa

The first two terms must have the same coefficients, from where £ = G. Then the
last two terms are equal to zero, which means that it is impossible to find a metric
satisfying equality (8) for n = 2.

2 Investigation of Isometric Transformations for the
K-Homogeneous Kipriyanov Metric

The fulfillment of the Killing requirements

¢ 9gij 0&s 0&s .
s is is T~ :0, ) =1,..., .
Z (6 8XS + g an + gj 3x,~ b "

s=1

is a necessary and sufficient condition for a one-parameter group G with an infinites-
imal operator

‘ 0
X=) &5
i=1 !

to be an isometry group.
Obviously,

ag,-j -5 KS)CK
Ox, 7 ox,

Therefore, the Killing equations will take the form

. - SN .
Z(éijé-sstk ! +XK <a_xj+a—le)> =0, ] = 1,...,}’!.

s=1
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By summing and reducing by x*, we get

N
&K 85, agj ..
=0,i,j=1,...,n. 11
; X 8x1 8x,~ " " (in

Fori # j, Eq. (11) can be written as
+—=0, i,j=1,...,n, 1 # j. (12)

Fori = j, Eq. (11) can be written in the form

0 K&
2>L —=0,i=1,...,n. 13
8xj+§ X ! " (13)

The vector
§=(1,....&), §=Cxlxj, (14)
where
P=(prsp) pr=pr=-=p,=Bf=—) K/2-1, (5
=1

is a solution to system (13), which can be checked by direct verification. Substituting
(14) into (12), taking into account (15), we obtain

05%+?=5xp(ﬁ+ﬂ>, =1, i
. -xi

X Xi
Hence we get

pr=p=-=p,=f=—) K/2—1=0, (16)
I=1

or, what is the same,

S Ki=-2, (17
=1

and considering (4),

i% —2—N. (18)
i=1
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3 Characteristics of the K-Homogeneous Kipriyanov
Metric in the Case of a Single Singular Variable

There is a well-known case of fulfillment of condition (16), or, what is the same,

(18). Whenvi =v =---=7,-1=0,v =2 —n, K = -2, the space K1, is the
Poincare model of the n —dimensional Lobachevsky geometry. Next, we will consider
thecase of vy = v = -+ = v,—1 = 0, 7, = 0. Metric (3) will now take the form
gij =0uyxX. i j=1,...n, (19)
where
K =2v/(n-2), (20)

0;; is the Kronecker symbol.
The following facts are established by direct calculation.

Theorem 3 The Christoffel symbols of the first kind, corresponding to metric (19),

have the form
KXK71
Tijx = ; (0ix0jn + 0jx0in — 0ij0kn)-

Proof From the definition of the Christoffel symbols of the first kind, taking into
account (19)—(20), we obtain:

1 (Ogik . Ogjx  Ogij
1—;4 - — | — _— e —— | =
) (6)6_,- * Ox;  Oxk

1
= §(§ik5j;1Kx,5<71 + 010 Kx K" — 6,6, KxX 1),

which was required to be proved.

Theorem 4 The Christoffel symbols of the second kind, corresponding to metric (9),
have the form

K
1—'/; = g(éikéjﬂ + (5jk5in - 5ij6kn)-

Proof From the definition of the Christoffel symbols of the second kind and the
previous theorem, we obtain:

n n
K _ _ .
F,-]; = E " = > E Senxy Kx XV Gindjn + 6 jndin — 01 0nn) =
h=1 =1

K
o (0kijn + OkjOin — 0ijOkn)-
n

The theorem is proved.
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Theorem 5 The components of the Riemann tensor, corresponding to metric (9),
have the form

R,l/k (% - %)(@iéinékn + 0ik0jndin — 0ijOkndin — 1k 6indjn)+
4x’zl 7 (0ij 01k — 0ikdrj)-

Proof In accordance to definition, the components of the Riemann tensor are calcu-
lated by the formulas

i
L 0T
ijk 8xj 8xk

l l
thM/_FmF k)

m=1

We will calculate the partial derivatives included in these formulas. We have

or;
ox, 225sn(5kz5/n+5’<151" 0ijOkn).

from where, we obtain

% = —%6]-”(51,-610, + 01k bin — 6ikOin),
or
8_x;; =—z= 25kn(5115jn + 01 0in — 0ij01n).
Therefore,
or] dr; K

ax Ox = _z_xz((sjnélk(sin - 5jn5ik51n - 5kn51j5in + 6kn6ij51n)-
J s n

Now we will calculate the last term in the definition. Taking into account Theorem 4,
we find:

n
Y TR = T o) =
m=1
K2 n
~ ax2

l‘lml

(6mi§kn§lm6jn + 6mi6kn51j5mn_

_5mi5kn5mj51n + §mk5iil6lm6jl‘l+
+6mk6in61j6mn - 6mk6i116mj61n - §ik5'nn§lm5jn - 6ik6mn61j6mn+

0ik OmnOmjOtn — Omi 0 jnOimOkn — Omi0 jnOtkOmn + Omi0 jnOmiOrm—
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_5mj 6in61m6kn - 5mj 5in51k5mn + 5mj6in(5mk61n + 6ij 5mn5lm 6kn+
+5ij5mn51k5mn - 5ij6mn5mk51n)~

Hence, taking into account the properties of the Kronecker symbol, in particular, the
formulas
dit = Ois

n
Z 5mi51m - 51’[7
m=1
after identical transformations, we obtain a statement of the theorem.

Theorem 6 The components of the Ricci tensor, corresponding to metric (9), have
the form

K
Rij = 1 (K =2)2 = n)8inbjn + (K(n —2) +2)6;5) .

n

Proof Directly from the definition of the components of the Ricci tensor

n
_ k
Rij = § , Rijk’
k=1

after identical transformations, we come to the validity of the theorem.

Theorem 7 The curvature of the space K I, is calculated by the formula

R Kn(n—2) 2vn
xK+2 xy(lZ’y+2n—4)/(n—2) :

Proof From the definition of curvature
n n
R=2_D d'Ry,
i=1 j=1

we come to the statement of the theorem by performing summation and identical
transformations.
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4 Investigation of Geodesic Lines for a K-Homogeneous
Kipriyanov Metric

Theorem 8 The system of equations for geodesic lines in the space K I, can be
reduced to a system of the first order

dxk Ck
—=—, k=1,...,n—1, 21
ds  xK " 1)

dx,\>* C, B
=2 _— 22
(%) T @
where

B = (23)

Proof The system of equations for geodesic lines in a given metric |/g;;|| has the
form
d? xk cdxi dx;
——=0,k=1,2,...,n,
Z Z s ds n

where s is the natural parameter (arc length). In our case, using the calculated
Christoffel symbols, we can write this system as

d’x; K dx, dx;
__—zo, k= ],..., _17 24
ds? +xn ds ds " e

d*x, K < dx; 2+ K [(dx, 2_0 25)
ds?  2x, — ds 2x, \ds |

Equation (24) can be written as

d dxk
K K
— — =0, k=1,...,n—1. 26
s (x" ds ) " (26)
Multiplying (26) by xX, integrating and dividing by xX, we get
dxk Ck
— , k=1, — 1. 27
ds xK 7)

Substituting (27) into (25), we get
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dx, KB K (dv\_ %)
ds?  2x2K+U T ox, \ds )

Equation (28) admits a reduction of the order in a standard way. Suppose

dx
p=p)=—= v=p*

ds
Then
d’x, , 1,
@ =g

After that, Eq. (28) will be reduced to the form

L B’K
V4 —v = ——,
X, 2K+
which is equivalent to the equation
d <) B’K
X, V) = .
dx, " X

Integrating and dividing by xX, we get

,  (dx,\* C, B
vV = = = —_———,
P ds xko x2K

It is known [9], that geodesic lines have the property

" dx; dx;

2D G g = et
i=1 j=1
In the case under consideration, this will lead to equality
n d : 2
fo <i> = const. 29)
P ds

From (21), it is easily deduced that the constant in equality (29) coincides with C,,.
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