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Abstract We consider a Riemannian metric which generates the Beltrami-Laplace
operator coinciding with the B-elliptic operator up to a factor.
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1 K-Homogeneous Metric

Let γ = (γ1, . . . , γn) be a vector with fixed numbers γi , i = 1 . . . , n, which are not
equal to zero at the same time. We denote by Rn+ the set of points x = (x1, . . . , xn) ∈
Rn such that xi ∈ R, when γi = 0, xi ∈ (0,+∞), when γi �= 0.

If γi �= 0, the variable xi is called singular. As usual, we will use the notation

(x)γ =
n∏

i=1

xγi
i , x = (x1, . . . , xn) ∈ Rn

+.

Let the function u(x) be twice continuously differentiable in Rn+.
We define the operator ΔBγ

by the formula

ΔBγ
u =

n∑

i=1

∂2u

∂x2i
+

n∑

i=1

γi

xi

∂u

∂xi
. (1)
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Operators of the form (1) have been studied by I. A. Kipriyanov and his disciples
(see [1–5]).

The aim of this section is to find a positively defined in Rn+ symmetric quadratic
form (metric)

ds2 =
n∑

i=1

n∑

j=1

gi j dxi dx j ,

such that the Beltrami–Laplace operator (see [6])

Δω = 1√|g|
n∑

i=1

∂

∂xi

n∑

k=1

gik
√|g| ∂

∂xk
(2)

would coincidewith the operatorΔBγ
up to amultiplier.Here the functions gi j , i, j =

1, . . . , n, are the entries of the matrix ‖gi j‖, which is the inverse of the matrix ‖gi j‖
(covariant metric tensor),

g = det ‖gi j‖.

The study of the properties of elliptic differential operators usingRiemannianmetrics
has a long history (see, for example, [7, 8]).

Theorem 1 If n ≥ 3, the entries of the matrix ‖gi j‖ are defined by formulas

gi j = δi j

n∏

i=1

xKi
i = δi j x

K , i, j = 1, . . . , n, K = (K1, . . . , Kn), (3)

where
Ki = 2γi/(n − 2), (4)

δi j is the Kronecker symbol.

Proof Indeed, since gi j = 0 for i �= j , substituting (3) into (2), we get:

Δωu = 1√|g|
n∑

k=1

∂

∂xk

(
gkk

√|g| ∂u

∂xk

)
, (5)

where

|g| = g = xnK =
n∏

i=1

N∏

i=1

n xKi
i =

n∏

i=1

x2nγi /(n−2)
i , (6)

gkk = x−K =
n∏

i=1

x−2γi /(n−2)
i . (7)
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Taking into account (6) and (7), it is possible to rewrite (5) in the following form:

Δωu = 1

xnK/2

n∑

j=1

∂

∂x j

(
x−K xKn/2 ∂u

∂x j

)
=

= x−K
n∑

j=1

∂2u

∂x2j
+ x−Kn/2

n∑

j=1

∂u

∂x j

(
n∏

l=1

xKl (n−2)/2
l

)
∂u

∂x j
=

= x−K
n∑

j=1

∂2u

∂x2j
+ x−Kn/2

n∑

j=1

n∏

l=1

xKl (n−2)/2
l

K j (n − 2)

2
x−1
j

∂u

∂x j
=

= x−K
n∑

j=1

∂2u

∂x2j
+ x−K

n∑

j=1

K j (n − 2)

2x j

∂u

∂x j
= x−KΔBγ

u,

so
Δωu = x−KΔBγ

u, (8)

which was required to be proved.

We will consider the set Rn+ equipped with a Riemannian metric

ds2 = xK
n∑

i=1

dx2i , K ∈ R, (9)

as a Riemannian space; we will denote it by K In , and we will call metric (9) the
K-homogeneous Kipriyanov metric.

Theorem 2 If n = 2, the problem of finding a metric satisfying equality (8) has no
solution.

Proof Let
g11 = E, g12 = g21 = F, g22 = G.

Then
g = det ‖gi j‖ = EG − F2, gi j = (−1)i+ j gi j

EG − F2
.

Hence

Δωu = G/|g| ∂2u

∂x21
+ E/|g| ∂2u

∂x22
−

− 2F/ |g| ∂2u

∂x1∂x2
+ Φ

(
∂u

∂x1
,

∂u

∂x2

)
, (10)
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where Φ denotes a summand that depends only on the first-order derivatives of the
function u. In order for expression (10) to coincide up to a multiplier with (1), it is
necessary that F ≡ 0. This will entail equalities

g = EG, g11 = 1/E, g22 = 1/G, g12 = g21 = g12 = g21 = 0.

Therefore,

Δωu = 1√|EG|

(
∂

∂x1

(√∣∣∣∣
G

E

∣∣∣∣
∂u

∂x1

)
+ ∂

∂x2

(√∣∣∣∣
E

G

∣∣∣∣
∂u

∂x2

))
=

= 1

E

∂2u

∂x21
+ 1

G

∂2u

∂x22
+ ∂

∂x1

√∣∣∣∣
G

E

∣∣∣∣
∂u

∂x1
+ ∂

∂x2

√∣∣∣∣
E

G

∣∣∣∣
∂u

∂x2
.

The first two terms must have the same coefficients, from where E = G. Then the
last two terms are equal to zero, which means that it is impossible to find a metric
satisfying equality (8) for n = 2.

2 Investigation of Isometric Transformations for the
K-Homogeneous Kipriyanov Metric

The fulfillment of the Killing requirements

n∑

s=1

(
ξs

∂gi j

∂xs
+ gis

∂ξs

∂x j
+ g js

∂ξs

∂xi

)
= 0, i, j = 1, . . . , n.

is a necessary and sufficient condition for a one-parameter group G with an infinites-
imal operator

X =
n∑

i=1

ξi (x)
∂

∂xi

to be an isometry group.
Obviously,

∂gi j

∂xs
= δi j

Ksx K

xs
.

Therefore, the Killing equations will take the form

n∑

s=1

(
δi jξs Ksx

K−1 + xK

(
∂ξi

∂x j
+ ∂ξ j

∂xi

))
= 0, i, j = 1, . . . , n.
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By summing and reducing by xK , we get

δi j

N∑

s=1

ξs Ks

xs
+ ∂ξi

∂x j
+ ∂ξ j

∂xi
= 0, i, j = 1, . . . , n. (11)

For i �= j , Eq. (11) can be written as

∂ξi

∂x j
+ ∂ξ j

∂xi
= 0, i, j = 1, . . . , n, i �= j. (12)

For i = j , Eq. (11) can be written in the form

2
∂ξ j

∂x j
+

n∑

s=1

Ksξs

xs
= 0, i = 1, . . . , n. (13)

The vector
ξ = (ξ1, . . . , ξn), ξ j = C x px j , (14)

where

p = (p1, . . . , pn), p1 = p2 = · · · = pn = β = −
n∑

l=1

Kl/2 − 1, (15)

is a solution to system (13), which can be checked by direct verification. Substituting
(14) into (12), taking into account (15), we obtain

0 ≡ ∂ξi

∂x j
+ ∂ξ j

∂xi
= βx p

(
xi
x j

+ x j

xi

)
, i, j = 1, . . . , n, i �= j.

Hence we get

p1 = p2 = · · · = pn = β = −
n∑

l=1

Kl/2 − 1 = 0, (16)

or, what is the same,
n∑

l=1

Kl = −2, (17)

and considering (4),
n∑

i=1

γi = 2 − N . (18)
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3 Characteristics of the K-Homogeneous Kipriyanov
Metric in the Case of a Single Singular Variable

There is a well-known case of fulfillment of condition (16), or, what is the same,
(18). When γ1 = γ2 = · · · = γn−1 = 0, γn = 2 − n, K = −2, the space K In is the
Poincaremodel of then−dimensional Lobachevsky geometry.Next,wewill consider
the case of γ1 = γ2 = · · · = γn−1 = 0, γn = 0. Metric (3) will now take the form

gi j = δi j x
K
n , i, j = 1, . . . , n, (19)

where
K = 2γ/(n − 2), (20)

δi j is the Kronecker symbol.
The following facts are established by direct calculation.

Theorem 3 The Christoffel symbols of the first kind, corresponding to metric (19),
have the form

Γi j,k = KxK−1
n

2
(δikδ jn + δ jkδin − δi jδkn).

Proof From the definition of the Christoffel symbols of the first kind, taking into
account (19)–(20), we obtain:

Γi j,k = 1

2

(
∂gik

∂x j
+ ∂g jk

∂xi
− ∂gi j

∂xk

)
=

= 1

2
(δikδ jn K xK−1

n + δ jkδin K xK−1
n − δi jδknK xK−1

n ),

which was required to be proved.

Theorem 4 The Christoffel symbols of the second kind, corresponding to metric (9),
have the form

Γ k
i j = K

2xn
(δikδ jn + δ jkδin − δi jδkn).

Proof From the definition of the Christoffel symbols of the second kind and the
previous theorem, we obtain:

Γ k
i j =

n∑

h=1

gkhΓi j,h = K

2

n∑

h=1

δkh x
−K
n xK−1

n (δihδ jn + δ jhδin − δi j δhn) =

K

2xn
(δkiδ jn + δk j δin − δi j δkn).

The theorem is proved.
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Theorem 5 The components of the Riemann tensor, corresponding to metric (9),
have the form

Rl
i jk = ( K 2

4x2n
− K

2x2n
)(δliδinδkn + δikδ jnδl n − δi j δknδl n − δlkδinδ jn)+

+ K 2

4x2n
(δi j δlk − δikδl j ).

Proof In accordance to definition, the components of the Riemann tensor are calcu-
lated by the formulas

Rl
i jk = ∂Γ l

ik

∂x j
− ∂Γ l

i j

∂xk
+

n∑

m=1

(Γ m
ik Γ l

m j − Γ m
i j Γ

l
mk).

We will calculate the partial derivatives included in these formulas. We have

∂Γ k
i j

∂xs
= − K

2x2n
δsn(δkiδ jn + δk jδin − δi jδkn),

from where, we obtain

∂Γ l
ik

∂x j
= − K

2x2n
δ jn(δliδkn + δlkδin − δikδln),

∂Γ l
i j

∂xk
= − K

2x2n
δkn(δliδ jn + δl jδin − δi jδln).

Therefore,

∂Γ l
i

∂x j
− ∂Γ l

i j

∂xs
= − K

2x2n
(δ jnδlkδin − δ jnδikδln − δknδl jδin + δknδi jδln).

Nowwe will calculate the last term in the definition. Taking into account Theorem 4,
we find:

n∑

m=1

(Γ m
ik Γ l

m j − Γ m
i j Γ

l
mk) =

= K 2

4x2n

n∑

m=1

(δmiδknδlmδ jn + δmiδknδl jδmn−

−δmiδknδmjδln + δmkδinδlmδ jn+

+δmkδinδl jδmn − δmkδinδmjδln − δikδmnδlmδ jn − δikδmnδl jδmn+

δikδmnδmjδln − δmiδ jnδlmδkn − δmiδ jnδlkδmn + δmiδ jnδmkδln−
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−δmjδinδlmδkn − δmjδinδlkδmn + δmjδinδmkδln + δi jδmnδlmδkn+

+δi jδmnδlkδmn − δi jδmnδmkδln).

Hence, taking into account the properties of the Kronecker symbol, in particular, the
formulas

δil = δli ,

n∑

m=1

δmiδlm = δil,

after identical transformations, we obtain a statement of the theorem.

Theorem 6 The components of the Ricci tensor, corresponding to metric (9), have
the form

Ri j = K

4x2n

(
(K − 2)(2 − n)δinδ jn + (K (n − 2) + 2)δi j

)
.

Proof Directly from the definition of the components of the Ricci tensor

Ri j =
n∑

k=1

Rk
i jk,

after identical transformations, we come to the validity of the theorem.

Theorem 7 The curvature of the space K In is calculated by the formula

R = Kn(n − 2)

xK+2
n

= 2γn

x (2γ+2n−4)/(n−2)
n

.

Proof From the definition of curvature

R =
n∑

i=1

n∑

j=1

gi j Ri j ,

we come to the statement of the theorem by performing summation and identical
transformations.
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4 Investigation of Geodesic Lines for a K-Homogeneous
Kipriyanov Metric

Theorem 8 The system of equations for geodesic lines in the space K In can be
reduced to a system of the first order

dxk
ds

= Ck

xK
n

, k = 1, . . . , n − 1, (21)

(
dxn
ds

)2

= Cn

xK
n

− B2

x2Kn
, (22)

where

B =
√√√√

n−1∑

k=1

C2
k . (23)

Proof The system of equations for geodesic lines in a given metric ‖gi j‖ has the
form

d2xk
ds2

+
n∑

i=1

n∑

j=1

Γ k
i j

dxi
ds

dx j

ds
= 0, k = 1, 2, . . . , n,

where s is the natural parameter (arc length). In our case, using the calculated
Christoffel symbols, we can write this system as

d2xk
ds2

+ K

xn

dxn
ds

dxk
ds

= 0, k = 1, . . . , n − 1, (24)

d2xn
ds2

− K

2xn

n∑

i=1

(
dxi
ds

)2

+ K

2xn

(
dxn
ds

)2

= 0. (25)

Equation (24) can be written as

x−K
n

d

ds

(
xK
n

dxk
ds

)
= 0, k = 1, . . . , n − 1. (26)

Multiplying (26) by xK
n , integrating and dividing by xK

n , we get

dxk
ds

= Ck

xK
n

, k = 1, . . . , n − 1. (27)

Substituting (27) into (25), we get
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d2xn
ds2

− K B2

2x2K+1
n

+ K

2xn

(
dxn
ds

)2

= 0. (28)

Equation (28) admits a reduction of the order in a standard way. Suppose

p = p(xn) = dxn
ds

, v = p2.

Then
d2xn
ds2

= p′ p = 1

2
v′.

After that, Eq. (28) will be reduced to the form

v′ + K

xn
v = B2K

x2K+1
n

,

which is equivalent to the equation

d

dxn
(xK

n v) = B2K

xK+1
n

.

Integrating and dividing by xK
n , we get

v = p2 =
(
dxn
ds

)2

= Cn

xK
n

− B2

x2Kn
.

It is known [9], that geodesic lines have the property

n∑

i=1

n∑

j=1

gi j
dxi
ds

dx j

ds
= const.

In the case under consideration, this will lead to equality

n∑

i=1

xK
n

(
dxi
ds

)2

= const. (29)

From (21), it is easily deduced that the constant in equality (29) coincides with Cn .
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