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On a Difference Scheme for the Growth-Propagation Equation
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Abstract—The article presents a model written in the form of a diffusion-logistic equation, which is
most often used in tasks of describing the quantitative growth and distribution of certain substances,
for example, biological populations. We are interested in the finite-difference approximation of this
equation. For this aim, a two-layer difference scheme with weights was used. This scheme made it
possible to achieve the order of approximation O(h2 + τ) and reduce the problem of finding a solution
to a nonlinear equation to solving a system of linear algebraic equations by the run-through method.
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1. INTRODUCTION

For the first time the problem of population growth was considered in the works by the Italian scientist
L. Fibonacci. The question was posed as follows: “A person grows rabbits in a closed space surrounded
by a high wall. How many couples of rabbits are born in one year from one couple, if a month later a
couple of rabbits gives birth to another couple, and rabbits reproduce offspring from the second month
after birth”. The solution to this problem is a sequence of the Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, ...,
which can be given both recursively fn+2 = fn + fn+1, n = 1, 2, . . . , and by the formula of a common
element

fn =
1√
5

((
1 +

√
5

2

)n

−
(
1−

√
5

2

)n)
.

It means that in the absence of external restrictions, population growth is proportional to its size.
A slightly simplified version of the reasoning leading to a differential growth model can be described as

follows. Consider the amount of population growth Δu = (R− S)Δt, where R is the number of births,
and S is the number of deceased individuals during Δt. Dividing the left and right parts by Δt and going
to the limit at t → 0, as a result we get the differential equation du

dt = R− S. Assuming that linearization
of the form R− S = ru is acceptable (the net increase in the population is proportional to its current
population), we get du

dt = ru(t). Solving this equation, we come to exponential growth dynamics

u(t) = u0e
rt. (1)
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Equation (1) is called the Malthusian growth model in honor of the English demographer T. Malthus [1].
In the case when the growth rate of r is negative, the population dies out, otherwise the population grows.
Over time, population growth becomes faster and rushes to infinity. The population growth described by
the exponential model is correctly considered only for a certain limited period of time, since the supply of
resources is being exhausted. In practice, there are different scenarios for the development of events after
the exhaustion of resources. One of the most common options in practical ecology is a slow deceleration
of growth as it approaches a certain level. The model describing such dynamics is called logistic. The
logistic equation [2] was proposed in 1838 by the Belgian mathematician P.F. Verhulst. It has the form

du

dt
= ru(1− u/K). (2)

The main difference between model (2) and the previous exponential growth model (1) is the condition of
limited resources. The variable K means the saturated capacity of the environment, i.e., the maximum
possible population size consuming all available resources. At small values of x, the number increases
sharply, almost exponentially, and at sufficiently large values of u it approaches the threshold of K. Using
the standard method of solving the equation, we obtain the dependence of the population size on time

u(t) =
u0Kert

K − u0 + u0ert
.

Until the beginning of the 20th century, the logistic curve had been considered the universal law of the
growth of all living things. However, even then, assumptions that this mathematical model does not
contain all the parameters of the real process being modeled began to appear.

A new class of mathematical models appeared after adding a term with a spatial coordinate to the
logistic equation. So the basic model of the environment in which self-organization processes are
possible is the reaction–diffusion equation (RDE)

∂u

∂t
= D∇2u+ f(u).

In 1921, Harold Hotelling suggested this equation with f(u) = A(s− u)u as a tool for researching of
the population growth and migration processes. A significant weakness of the Hotelling model is that
livelihood stocks are assumed to be equal to a given constant, not depending on time and population
(labor force). Therefore, this model is more suitable for animal populations. The simplest RDE is given
in one spatial dimension. In 1937, Fischer [4] and Soviet mathematicians Kolmogorov, Petrovsky, and
Piskunov [5] developed independently a model describing the distribution of biological populations

ut = uxx + u(1 − u). (3)

Equation (3) is called the Kolmogorov–Petrovsky–Piskunov equation. A large number of papers related
to the propagation of waves of various nature in space, including waves of population density [6] have
been devoted to this equation. In [7], exact solutions of equation (3) are found for some special cases.

2. DIFFERENCE APPROXIMATION
OF A ONE-DIMENSIONAL DIFFUSION-LOGISTIC EQUATION

Let’s consider a mathematical model describing the spread of epidemics and population dynamics,
which is based on the diffusion-logistic equation. This model leads to the next problem: it is necessary
to find the function u = u(x, t), satisfying the equation

∂u

∂t
=

∂2u

∂x2
+Au(S − u), (4)

at the rectangle D = {(x, t) : 0 < x < 1, 0 < t � T}, the initial condition u(x, 0) = u0(x), 0 � x � 1,
and the boundary conditions u(0, t) = u1(t), u(1, t) = u2(t), 0 � t � T. We divide the segments [0, 1] of
the Ox axis and [0, T ] of the Ot axis into N and M parts, respectively. Thus the grid

whτ = wh × wτ = {xi = ih, i = 0, 1, .., N} × {tj = jτ, j = 0, 1, ..,M}
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with steps h = 1/N and τ = T/M is introduced. To approximate the operator L = ∂
∂t −

∂2

∂x2 , we use a
six-point pattern consisting of nodes (xi±1, tj+1), (xi, tj+1), (xi±1, tj), centered at (xi, tj+1) [8]. The
value of the grid function in the node (xi, tj) is denoted by yji .

In order to make a difference approximation, we replace the derivative ∂u/∂t with the first difference
derivative, and the second derivative ∂2u/∂x2 with respect to the spatial variable with the second
difference derivative. Using the notation

uxx = Λu =
u(x+ h, t) + u(x− h, t) − 2u(x, t)

h2
, Λyi =

yi−1 − 2yi + yi+1

h2
,

and introducing arbitrary real parameters σ, β ∈ (0, 1), we obtain a difference scheme “with weights” [8]

yj+1
i − yji

τ
= Λ(σyj+1

i + (1− σ)yji ) + φj
i , 0 < i < N, 0 ≤ j < M, (5)

where φj
i is the grid approximation of the right side of the equation f(u) = Au(S − u) on internal grid

nodes. The initial and boundary conditions are approximated exactly

yj0 = u1(tj), yjN = u2(tj); y0i = y(xi, 0) = u0(xi).

To estimate the error of the scheme under consideration, it is necessary to estimate the difference
zji = yji − uji between the grid function and the continuous function u = u(x, t) in the grid nodes. Let’s
move onto the non-index notation yji = y, yj+1

i = ŷ, yt =
ŷ−y
τ . Then, the problem (5) can be rewritten as⎧⎪⎨

⎪⎩
yt = Λ(σŷ + (1− σ)y) + φ, (x, t) ∈ whτ ,

y(0, t) = u1(t), y(1, t) = u2(t), , t ∈ wτ ,

y(x, 0) = u0(x), x ∈ wh.

(6)

Substituting y = z + u in (6), we proceed to the problem for z:⎧⎪⎨
⎪⎩
zt = Λ(σẑ + (1− σ)z) + ψ, (x, t) ∈ whτ ,

z(0, t) = z(1, t) = 0, t ∈ wτ ,

z(x, 0) = 0, x ∈ wh.

The discrepancy of the scheme on the solutions is determined by the equation

ψ = Λ(σû+ (1− σ)u)− ut + φ,

φ = (A− β)(S − u)û+ β(S − û)u.

Let the function u(x, t) be sufficiently smooth. Then, using the Taylor expansion in the neighborhood of
the point (x, t) and considering the operator Λ linear, we get

ψ = σ
(
Λu+ τΛut +O(τ2)

)
+ (1− σ)Λu− ut + (A− β)(S − u)û+ β(S − û)u. (7)

Considering that

Λu = u′′ +
h2

12
u(4) +O(h4) = Lu+

h2

12
L2u+O(h4), Lu =

∂2u

∂x2
,

ut =
û− u

τ
=

1

τ

(
u+ τ u̇+O(τ2)− u

)
=

1

τ

(
τ u̇+O(τ2)

)
= u̇+O(τ2),

we can rewrite (7) as

ψ = σ

(
Lu+

h2

12
L2u+ τ(Lu̇+

h2

12
L2u̇)

)
+ (1− σ)

(
Lu+

h2

12
L2u

)
− u̇+ φ+O(h4 + τ2).

In the final form, the approximation error is determined by the equality

ψ = Lu− u̇+ φ+O(h2 + τ). (8)
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Since u̇ = Lu+Au(S − u), then substituting in (8), we get

ψ = −Au(S − u) + (A− β)(S − u)û+ β(S − û)u+O(h2 + τ).

Let us apply the well-known expansion û = u+ τ u̇+O(τ2) = u+ o(τ), then

ψ = −Au(S − u) + (A− β)(S − u)u+ β(S − u)u+O(h2 + τ) = O(h2 + τ).

Consequently, the considered difference equation approximates (4) with the second order of approxima-
tion error with respect to h and the first order with respect to τ .

The resulting system of equations for finding a set of values of the desired solution on the next layer
is reduced to a system with a tridiagonal matrix, which is solved by the run-through method [9].

3. CONCLUSIONS

The scheme we suggested allowed to achieve the order of approximation of O(h2 + τ) and the
reduction of the nonlinear equation (4) to a system of linear algebraic equations with a tridiagonal matrix,
which solution is carried out by the run-through method. When a system with a tridiagonal matrix is
solved by the run-through method, the number of arithmetic operations is proportional to the number of
grid nodes, which means that the time algorithm complexity is not great. Thus we constructed pretty
exact and economical difference scheme.
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