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Inverse Compton scattering is a promising x-ray source, very bright, quasi-monochromatic, and
compact. In this paper, we present a generalized theory of Compton backscattering in terms of luminosity,
suitable for both classical and quantum regimes. We show that the optimal parameters, which require a
certain mutual orientation and inclination of the fronts of the laser and electron beams described by 3D
Gaussians, correspond to the crab scheme. This scheme is widely used in particle physics but is not yet used
for x-ray sources. The constructed theory not only predicts the optimal geometry for laser and electron
beams but also describes the luminosity. Our results reveal the opportunity to sharply increase the
luminosity of compact x-ray sources based on Compton/Thomson backscattering.
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I. INTRODUCTION

Inverse Compton scattering from relativistic electrons is
one of the most prospective ways to generate quasi-
monochromatic x-ray beams [1–9]. It occurs when photons
of a laser pulse are scattered on relativistic electrons so that
the maximal energy of scattered photons is proportional to
the squared Lorentz factor.
To obtain a high-intensity x-ray beam, the most simple

and direct way is not to increase the laser power (this leads
to a decrease in the monochromaticity of the x-ray beam in
a nonlinear regime), but to tilt the fronts of electron and
laser beams so that they interact for the longest time. This
requires the beams to be oriented along the approach
velocity, see Fig. 1. This idea was proposed by Palmer
in 1988 [10] for linear colliders and called the “crab-
crossing scheme”; then it was developed for ring-shaped
machines [11], and now is generally accepted in almost
all large accelerator/colliding facilities under the kindred
names “crab cavity, crab waist scheme”: the world record in
luminosity in the particle physics at KEKB.
High Luminosity LHC [12] means tenfold times increas-

ing of luminosity in 2029; proton-proton stage for Future
Circular Collider, positron-electron collider [13], future
Electron-Ion Collider being constructed jointly by Jefferson
Lab and BNL [14], etc.—they all are based on crab
crossing [15,16].

In terms of inverse Compton scattering, the first steps
in the direction of the realization of the crab-crossing
scheme were made in the papers [17,18]. In [17], Bulyak
and Skomorokhov, using the luminosity representation,
showed that the maximal yield of scattered photons takes
place for a head-on collision of the electron and laser
beams. The theory constructed in terms of luminosity is
attractive as it allows one to take into account the effects
of not only classical but also quantum electrodynamics,
including nonlinear effects in strong laser fields, etc. Yet,
as the authors of [17] indicated, in the Compton sources,
the head-on collision is not acceptable for technological
reasons. In [18], Variola et al. elaborated the theory of [17]
considering the tilted electron beam to realize the crab-
crossing scheme. In [18], however, they did not consider
the tilt of the laser beam front, while, as one can see in
Fig. 1, or from the pioneer paper of Palmer [10], in ideal,
the true crab-crossing scheme requires both beams to be
tilted.
In this study, we have generalized the theory developed

in [17,18]. Having accounted for the arbitrary angle of
crossing the electron and photon pulses and arbitrary
orientations of their fronts, we derive the closed analytical
expressions describing the luminosity. In Sec. IV, we show
that the influence of nonzero tilt of the laser front is vital for
the realization of optimal conditions that prove to coincide
with the crab-crossing scheme.

II. COLLISION OF ELECTRON AND PHOTON
BEAMS WITH DIRECT FRONTS

In quantum electrodynamics, the process of inverse
Compton scattering is described in a more universal way
than in classical electrodynamics, based on the cross
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section and the luminosity of the process [19]. Using the
normalized 3D distribution FLðx; y; zÞ of photons in a laser
pulse, and introducing the analogous distribution for
electron bunch Feðx; y; zÞ, one obtains the number of
scattered photons Nph:

Nph ¼ NLNeσL;

L ¼ cð1þ β cos φÞ
Z

dxdydzdtFLðx; y − ct; zÞ

× Feðx; yþ βct; zÞ; ð1Þ

where NL and Ne are the total numbers of particles in
the photon pulse and the electron bunch, L—the luminos-
ity, σ—the total cross section of the inverse Compton
scattering process, βc—the speed of the electron bunch,
cð1þ β cos φÞ is the relative speed of approach of the
beams (Fig. 2).
The distribution of laser photons in a form of the

production of three Gaussians is defined in the laboratory
coordinate system rotated by an angle φ with respect to the
dashed one:

FLðx; y; z; tÞ ¼
1

ð2πÞ3=2σLxσLyσLz
exp

�
− 1

2

��
x0

σLx

�
2

þ
�
y0 − ct
σLy

�
2

þ
�

z0

σLz

�
2
��

; ð2Þ

where the dashed coordinates, corresponding to the system
rotated by an angle φ:

x0 ¼ x cos φ − y sin φ;

y0 ¼ x sin φþ y cos φ;

z0 ¼ z: ð3Þ

After the substitution of Eq. (3) into Eq. (2), in the
approximation β ¼ 1, the luminosity is calculated as

Lφ ¼
n
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ez þ σ2Lz

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ex þ σ2Lx þ ðσ2ey þ σ2LyÞtan2ðφ=2Þ

q o−1
: ð4Þ

Note that Eq. (4) equals zero at φ ¼ π. Therefore, the
sharp increase in the luminosity for φ → π shown in Fig. 3
of [17] appears to be incorrect. The general result obtained
in Sec. III confirms this conclusion, see Eq. (16) below.

III. COLLISION OF INCLINED ELECTRON
AND PHOTON BEAMS WITH TILTED FRONTS

(CRAB-CROSSING GEOMETRY)

For geometry shown in Fig. 3, the characteristics of
scattered photons will depend on three angular variables:
the angles of inclination for each of the beams (ξ for the
laser pulse and θ for the electron beam) and the angle of
noncollinearity φ—the angle between trajectories. To build
the theory that will let us consider the crab-crossing
geometry, we have to consider the collision of inclined
beams (arbitrary φ) having tilted fronts (arbitrary ξ, θ).
Considering the noncollinear geometry of collision

(Fig. 2), Bulyak and Skomorokhov suggested the method
that simplifies considerably calculation of luminosity [17].
Following them, we will use 3D Gaussian in the coordinate
frame x00, y00

FIG. 2. The layout of the process of inverse Compton scatter-
ing; both photon (left, orange) and electron beams (right, blue)
have direct fronts: the fronts are perpendicular to the trajectories.

FIG. 3. The layout of the process of inverse Compton scatter-
ing; both photon (left, orange) and electron beams (right, blue)
have tilted fronts.

FIG. 1. An optimal geometry—crab-crossing scheme: two
colliding beams are oriented along the velocity of approach
(dashed line).
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x00 ¼ x0 cos ξ − y0 sin ξ;

y00 ¼ x0 sin ξþ y0 cos ξ;

z00 ¼ z0 ð5Þ

to describe the laser pulse with the front tilted under the
angle ξ with respect to the direction of propagation of the
pulse. After the substitution of Eq. (5) into the initial 3D
distribution, it is necessary to replace y0 → y0 − ct as in
Eq. (2) and only after that to pass on to the nondashed
coordinates with respect to Eq. (3).
By analogy, to consider the distribution of electrons in

the electron beam with front tilted under the angle θ
(Fig. 3), we use the replacement

x000 ¼ x cos θ − ðyþ βctÞ sin θ;

y000 ¼ x sin θ þ ðyþ βctÞ cos θ;
z000 ¼ z: ð6Þ

After all the substitutions into Eq. (1), the argument of the
exponent in the integrand will be a quadratic form in all
four variables. For simplicity, replacing the variables

x; y; z; ct → x1; x2; x3; x4; ð7Þ

we write down this exponent as

exp

�
− 1

2

�X4
i;j

aijxixj

��
: ð8Þ

Cumbersome calculations allow one to obtain the coef-
ficients aij in Eq. (8) depending on three angles and six
parameters of the Gaussians as elements of the symmetrical
matrix:

a11 ¼
cos2ðθÞ
σ2ex

þ sin2ðθÞ
σ2ey

þ cos2ðξþ φÞ
σ2Lx

þ sin2ðξþ φÞ
σ2Ly

a22 ¼
sin2ðθÞ
σ2ex

þ cos2ðθÞ
σ2ey

þ sin2ðξþ φÞ
σ2Lx

þ cos2ðξþ φÞ
σ2Ly

a33 ¼
1

σ2ez
þ 1

σ2Lz
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�

a12 ¼
1

2

��
1

σ2ex
− 1

σ2ey

�
sinð2θÞ þ

�
1

σ2Lx
− 1

σ2Ly

�
sin½2ðξþ φÞ�

�

a14 ¼
1

2

�
β

�
1

σ2ey
− 1

σ2ex

�
sinð2θÞ −

�
1
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− 1

σ2Ly

�
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�
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1

2

�
−β
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1
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− 1
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1
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þ 1

σ2Ly

�
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1
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σ2Lx

�
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�
; ð9Þ

The rest coefficients are zero. For a direct (untilted, ξ ¼ 0)
electron beam and laser beam having a tilted front (θ is
arbitrary), the coefficients aij from Eq. (9) coincide exactly
with those from the paper [18].
When the matrix â is reduced to a diagonal form, the

exponent in Eq. (8) is written as

exp

�
− 1

2

�X4
i¼1

Aiη
2
i

��
: ð10Þ

Calculating the luminosity and using the replacement
fxig → fηig with a unit Jacobian of the transition, instead

of a fourfold integral, it is required to calculate the
production of four single integrals:

L ¼ 1

ð2πÞ3
1þ cosφ

σexσeyσezσLxσLyσLz

Y4
i¼1

Z
dηi exp

�
−Ai

2
η2i

�
:

ð11Þ

Having performed the elementary integrating (the limits of
change of the variables ηi rest infinite), we obtain

L ¼ 1

2π

1þ cosφ
σexσeyσezσLxσLyσLz

1ffiffiffiffiffiffiffiffiffiffi
detA

p : ð12Þ
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Thus, the main obstacle here is the calculation of the
determinant in the denominator. Having used the equality
det A ¼ det a, we obtain

det A ¼
�

1

σ2ez
þ 1

σ2Lz

�
×

�½β cos θþ cosðφ− θÞ�2
σ2eyσ

2
Lxσ

2
Ly

þ ½β sin θ− sinðφ− θÞ�2
σ2eyσ

2
Lxσ

2
Ly

þ ½cos ξþ β cosðφþ ξÞ�2
σ2eyσ

2
Lxσ

2
Ly

þ ½sinðξÞ þ β sinðφþ ξÞ�2
σ2eyσ

2
Lxσ

2
Ly

�
: ð13Þ

Following the designations from [18], one can present the
luminosity in Eq. (12) as

Lðφ; θ; ξÞ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ez þ σ2Lz

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
feðφ; θÞ þ fLðφ; ξÞ

p ; ð14Þ

feðφ; θÞ ¼ σ2ex

�
β cos θ þ cosðφ − θÞ

1þ β cos φ

�
2

þ σ2ey

�
β sin θ − sinðφ − θÞ

1þ β cos φ

�
2

; ð15Þ

fLðφ; ξÞ ¼ σ2Lx

�
cos ξþ β cosðφþ ξÞ

1þ β cos φ

�
2

þ σ2Ly

�
sinðξÞ þ β sinðφþ ξÞ

1þ β cos φ

�
2

: ð16Þ

The function feðφ; θÞ characterizing the inclined electron
bunch coincides with that from [18] (see Eq. (11a) in [18]).
Equation (14) transforms into Eq. (10) from [18] at ξ ¼ 0
(in [18] only case, ξ ¼ 0 was considered).

Note that Eqs. (15) and (16) depend on the inclination
angles ξ and θ the same way (up to the direction), as one
would expect. Moreover, each of Eqs. (15) and (16) is
invariant relatively to the simultaneous replacement (σey ↔
σex,σLy ↔ σLx) and (θ↔ θþ π=2, ξ↔ ξþ π=2). Indeed,
the first pair of replacements change the axes, while the
second one returns them with the corresponding rotation.

IV. RESULTS AND DISCUSSION

To define the optimal angles corresponding to the
maximal luminosity, one has to differentiate Eq. (15):

∂fe
∂θ

¼ 2

ð1þ β cos φÞ2 ðσ
2
ex − σ2eyÞΦeðφ; θÞΨeðφ; θÞ

∂
2fe
∂θ2

¼ 2

ð1þ β cos φÞ2 ðσ
2
ex − σ2eyÞfΨ2

eðφ; θÞ −Φ2
eðφ; θÞg

ð17Þ
Φeðφ; θÞ ¼ β cos θ þ cosðφ − θÞ
Ψeðφ; θÞ ¼ −β sin θ þ sinðφ − θÞ ð18Þ

Similarly, from Eq. (16), one obtains

∂fL
∂ξ

¼ 2

ð1þ β cos φÞ2 ðσ
2
Ly− σ2LxÞΦLðφ;−ξÞΨLðφ;−ξÞ

∂
2fL
∂ξ2

¼ 2

ð1þ β cos φÞ2 ðσ
2
Lx− σ2LyÞ

×fΨ2
Lðφ;−ξÞ−Φ2

Lðφ;−ξÞg
ΦLðφ;ξÞ ¼ cosξþ β×cosðφ− ξÞ;
ΨLðφ;ξÞ ¼−sinξþ β sinðφ− ξÞ: ð19Þ

Thus, Eq. (14) is maximal when

σ2ey > σ2ex ⇒ tan θoptimal ¼
sin φ

β þ cos φ
; tan ξoptimal ¼ − sin φ

β−1 þ cos φ
;

σ2ey < σ2ex ⇒ tan θoptimal ¼ − β þ cos φ
sin φ

; tan ξoptimal ¼
β−1 þ cos φ

sin φ
: ð20Þ

Note that Eq. (20) defines the optimal angles θoptimal and ξoptimal at which the luminosity is maximal; and although these
optimal angles do not depend on the beam’s sizes, the optimalor maximal luminosity does, see Eq. (14).
Within the approximation β ¼ 1, Eq. (20) reads

σ2ey > σ2ex ⇒ θoptimal ¼ φ=2; ξoptimal ¼ −φ=2;
σ2ey < σ2ex ⇒ θoptimal ¼ φ=2þ π=2; ξoptimal ¼ −φ=2þ π=2: ð21Þ

Of these conditions, the condition ξoptimal ¼ − φ
2

was
obtained in [1] from geometrical optics by Debus et al.,
who were the first to propose the idea of using a laser pulse
with a tilted front to increase the effective length of

interaction between electrons and photons (the size of
the electron beam was neglected, and hence the angle θwas
not involved); the condition θoptimal ¼ φ=2 was obtained in
[18] in terms of luminosity representation.
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The reason why Eq. (21) contains two conditions
different for the beams of different forms is understandable:
the luminosity is maximal when the beams go through each
other being parallel to the direction along their “elongation”
(see Fig. 4 and also Fig. 1), and a change in the beam
shapes can lead to a rotation of this direction up to π=2.
Thus, the maxima of elongated beams correspond to the
minima of the short beams and vice versa. As the elongated
beams are optimal, below we will consider this very case.

In Figs. 4(b) and 4(c), we demonstrate that when two
chains containing N particles each (the limiting case of
elongated beams) collide, the effective number of colliding
particles depends on the orientation of the chains:N2 if they
are parallel to the velocity [Fig. 4(b)], and N if they are
perpendicular [Fig. 4(c)]. Thus, in general case, when the
number of particles in longitudinal and transversal direc-
tions is NL and NTr correspondingly, then the effective
number of particles’ collisions is N2

LNTr. Therefore, in
general case, it is advantageous for the elongated beams to
be oriented along the approach velocity, which coincides
with the crab-crossing scheme, see Fig. 1.
Note that a simple overlap of two beams in the collision

point is not sufficient: the key factor here is that both beams
while overlapping move along the directions of their
elongation. For example, both situations in Figs. 4(b)
and 4(c) imply a complete overlap of two beams, but only
Fig. 4(b) provides the optimal conditions of crab crossing.
It is evident therefore that the attempt to realize the crab-
crossing scheme undertaken in [18] without nonzero angle
ξ could not lead to the optimal conditions; below we will
see what role the angle ξ plays.
Now let us analyze the dependence of the luminosity

from Eq. (14) on the characteristics of the laser pulse,
neglecting the dependence on the size of the electron beam
(σe → 0). For simplicity, we consider the symmetric form
of the laser pulse, i.e., σLx ¼ σLz ¼ σL. Then Eq. (14) reads

Lðφ; 0Þ ¼ 1

2πσ2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðσLy=σLÞ2ð sin φ

1þcos φÞ2
q : ð22Þ

FIG. 4. Collision of the beams of different shapes: (a) general
case (the beams have finite thickness and length), (b) elongated
beams (each particle interacts with each: N2 collisions), (c) short
beams (each particle interacts with another: N collisions). For
simplicity, the beams are depicted as having identical forms or
sizes.

FIG. 5. Dependence of the luminosity on the noncollinearity angle φ for in the case of scattering of the laser pulse on the electron
bunch with negligible sizes (σe → 0) for various lengths of the pulse σLy: (a)—left—the laser pulse has perpendicular front (ξ ¼ 0),
(b)—right—the front of the laser pulse is tilted, ξ ¼ −φ=2 (optimal angle ξ).
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In Fig. 5(a), we show the dependences of the luminosity
on the noncollinearity angle φ for the standard pulse with
perpendicular front (ξ ¼ 0) for various lengths of the
pulse σLy.
As follows from Fig. 5(a), for a short laser pulse,

noncollinearity (φ ≠ 0) practically does not reduce the
luminosity compared with the head-on collision (φ ¼ 0).
On the other hand, with increasing the pulse length, in the
case of σLy > σL, noncollinearity leads to the significant
suppression of the luminosity.
Yet, for the laser pulse with a front tilted at the angle

ξ ¼ −φ=2, the luminosity does not depend on the pulse
length and is definedby the transverse size only, see Fig. 5(b):

L1ðφ; ξ ¼ −φ=2Þ ¼ cosðφ=2Þ
2πσ2L

: ð23Þ

Naturally, for a spherically symmetric pulse σLy ¼ σL, the
luminosity does not depend on the angle ξ.
For a long laser pulse (σLy=σL ¼ 5), the luminosity has a

maximum if ξ ¼ −φ=2 (see Fig. 6). The authors of [18]
considered the laser beam with a perpendicular front ξ ¼ 0;
the luminosity, in this case, is maximal only at φ ¼ 0,
otherwise it is reduced, see Figs. 5 and 6.
Let us consider the geometry when both beams, electron

and photon, have tilted fronts. To analyze the influence
of the sizes of both tilted beams on the luminosity, we
consider the ratio called the geometric factor in [18]:

Gðϕ; θ; ξÞ ¼ Lðϕ; θ; ξÞ=Lð0; 0; 0Þ ð24Þ

In Fig. 7, the geometric factor Gðπ=10; π=20; ξÞ as a
function of the angle ξ is shown for noncollinear collision
at φ ¼ π=10 and θ ¼ π=20. As follows from the figure,
there is a maximum at ξ ¼ −φ=2.
Note that results of [18], being obtained for the case of

untilted laser fronts only, correspond to the vertical line
ξ ¼ 0 in ξ-dependences in Figs. 6 and 7. We see that the
accounting for the nonzero angle ξ is of primary importance
for reaching a maximum radiation intensity.

VI. CONCLUSION

In this paper, we described colliding bunches by three-
dimensional Gaussians, which is more realistic than the
classical approach [1,2]. To consider the parameters of
colliding bunches in the next approximation depending on
the Rayleigh length for the laser and on the beta function
for the electron beam, it is necessary to simulate numeri-
cally the process of inverse Compton scattering [4,6,20].
Yet, the general theory developed above for an arbitrary
geometry, including all conceivable angles of mutual
orientation and inclination of the fronts of the laser and
electron beams, predicts the optimal geometry, expressed
by Eq. (20) (which corresponds to the crab-crossing
scheme well known in particle physics), and gives ana-
lytical formulas for the luminosity and the number of
scattered photons based on Eqs. (14)–(16), which are
applicable in a wide range of parameters, both within
the frames of classical electrodynamics (moderate laser
fields and linear effects) and quantum electrodynamics
(intense laser fields and nonlinear effects).

FIG. 6. The luminosity depending on the angle of tilt ξ of the
front of a laser pulse for the long pulse (σLy=σL ¼ 5).

FIG. 7. Geometric factor Gðπ=10; π=20; ξÞ depending on the
inclination angle of the laser pulse ξ for various ratios of its
longitudinal and transversal sizes when colliding with an inclined
electron bunch.
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On the other hand, the theory developed above is based
on the description of the process in terms of luminosity.
Using Eq. (1) only gives the total number of scattered
photons and does not provide any information about the
energy spectrum, divergence, and energy-angle correlation
of scattered photons. The spectral and angular distributions
of radiated or scattered photons, however, are possible
to obtain using a differential cross section instead of
the integral one in Eq. (1), see, e.g., [21]. Yet the quick
evaluation of the integral number of scattered photons as a
function of parameters of colliding beams is useful to
design Compton sources.
Allowing for the possibility of mutual rotation of laser

and electron pulses is the key to implementing the crab
scheme. As in particle and accelerator physics, this scheme
leads to a sharp increase in luminosity, we may hope that
the theory developed above can pave the way for a more
efficient x-ray source based on inverse Compton scattering.
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