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Abstract—For the first time, in the quasi-stationary Stokes approximation at low Reynolds and Peclet num-
bers, a theory has been constructed that takes into account the effect of convective heat transfer on the pho-
tophoresis of a heated large spherical aerosol particle using the method of matched asymptotic expansions.
When solving gasdynamics equations, the power-law form of the dependences of the molecular transfer coef-
ficients (viscosity, thermal conductivity) and density of the gaseous medium on temperature is taken into
account.
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INTRODUCTION
In gaseous media thermodynamically nonequilib-

rium in temperature, an ordered motion of aerosol
particles suspended in them arises, due to molecular
forces, in particular, photophoretic motion [1, 2]. The
photophoresis mechanism can be briefly described as
follows. When electromagnetic radiation interacts
with a particle inside it, thermal energy is released with
a certain volume density , which heats its surface
inhomogeneously. The gas molecules surrounding the
particle, after colliding with its surface, are reflected
from the heated side with a greater momentum than
from the opposite side. As a result, the particle
acquires uncompensated momentum directed from
the hot side of the surface to the colder side. Depend-
ing on the size and shape of the particle surface, the
optical properties of its material, and the radiation
wavelength, both the illuminated and shadow sides of
the surface can be heated. Therefore, both positive
(movement of the particle in the direction of radiation
propagation) and negative (movement in the opposite
direction) photophoresis is observed. The photopho-
resis phenomenon almost always accompanies aero-
disperse systems that are thermodynamically non-
equilibrium in temperature.

The problem of the behavior of a light-absorbing
particle in a viscous gaseous medium is therefore
divided into two interrelated parts: determination of
the distribution of electromagnetic energy in the vol-
ume of the particle, based on the theory of light scat-
tering, e.g., the Mie problem [3], and calculation of
the photophoretic force and velocity of the particle in
an inhomogeneous surrounding gas heated by it.

The photophoretic force can have a significant
effect on the deposition of particles in the channels of
heat and mass exchangers and on the movement of
particles in the zones of enlightenment of disperse sys-
tems and in the vicinity of leaching particles. It can be
used for fine purification of gases with small volumes,
sampling of aerosol samples, application of special
coatings of a given thickness from particles, etc.

When describing the behavior of particles sus-
pended in thermodynamically nonequilibrium, in
terms of temperature, viscous gaseous media, the
dimensionless parameter  is introduced, characteriz-
ing the difference between the average particle surface
temperature  and temperature of the gaseous
medium far from it , in relation to the latter, i.e.,

. The relative temperature difference
is considered small if the inequality , and signif-
icant if . When the first condition is met, the
coefficients of molecular transfer (viscosity, thermal
conductivity) and density of a viscous gaseous
medium can be considered constant, and the viscous
medium itself can be considered isothermal. This con-
dition greatly simplifies the procedure of finding
expressions for the force and speed of photophoresis.
The main results for such a description were obtained
in [2, 4, 5]. If , a particle is called heated
(heating of the surface of the particle can be due, e.g.,
to a volumetric chemical reaction, the radioactive
decay of the particle’s substance, absorption of elec-
tromagnetic radiation, etc.) and a viscous medium is
considered nonisothermal. When finding the force
and speed of photophoresis in this case, it is necessary
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to take into account the temperature dependence of
the molecular transfer coefficients and density of a vis-
cous gaseous medium, while the system of gas-
dynamic equations that describes such a medium
becomes essentially nonlinear. There are few papers in
the scientific literature that study this case; in particu-
lar, they consider, e.g., the gravitational motion of
heated particles [6, 7], photophoresis of heated large
particles [8], thermophoresis of large heated particles
[9], and diffusion evaporation (sublimation) [10].
These studies showed that the heating of particle sur-
faces significantly affects their behavior in a gaseous
medium.

It should be noted that the effect of heat transfer on
the behavior of a particle in a viscous nonisothermal
gaseous medium was not studied in [6–10]. The sta-
tionary equation of convective heat transfer has the
form [11, 12]

Here, the left-hand side of the equation is responsible
for convective heat transfer, while the right-hand side
is responsible for molecular heat transfer. For small
Reynolds numbers and relative temperature f luctua-
tions in the gas, convective heat transfer can
be neglected. This article studies the case for small
Reynolds numbers, but significant temperature f luc-
tuations in the gas; here, convective heat transfer is
comparable in order of magnitude to molecular heat
transfer.

FORMULATION OF THE PROBLEM
We consider is a solid spherical particle with radius

R suspended in a gas with density , thermal conduc-
tivity , and dynamic viscosity ; the surface is
heated nonuniformly by electromagnetic radiation.
Nonuniform heating leads to a nonuniform tempera-
ture distribution along the surface of the particle.

The gas interacting with the inhomogeneously
heated surface begins to move along the surface in the
direction of increasing temperature. This phenome-
non is called thermal gas slip, and it causes the photo-
phoretic force. Under the action of the photophoretic
force, the particle begins to move. In addition, the vis-
cous drag force of the medium acts on the particle.
When both these forces are balanced, the particle
begins to move uniformly at a constant speed, which is
called the photophoretic speed .

When describing the properties of a gaseous
medium and a particle, the power-law form of the
dependences of the molecular transfer coefficients
and density on temperature is taken into account [13]:

, , , , where
, , ,
,  ( ), ,

. The exponents of the molecular transport
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coefficients, e.g., for air are ,  at 273
≤ Te ≥ 900 K. The relative error does not exceed 5%
[13]. Subscripts e and i refer to the gas and particle,
respectively; S are the values of the physical quantities
taken at the average particle surface temperature, and

 characterize the gaseous medium far from the par-
ticle.

The theoretical description of photophoresis
assumes that, due to the short thermal relaxation time,
the heat transfer process in the particle–gas system
proceeds as quasi-stationary. The motion of a large [1]
particle is considered at low Peclet and Reynolds
numbers, neglecting free convection (the Grashof
number is much less than unity). The problem is
solved by the hydrodynamic method; i.e., the gas-
dynamic equations are solved with the corresponding
boundary conditions.

Photophoresis is conveniently described in a spher-
ical coordinate system ( ), which is related to the
center of mass of the aerosol particle; the  axis is
directed towards the propagation of a homogeneous
radiation flux with intensity . The problem is
reduced to analyzing an infinite plane-parallel gas
flow around a particle, the velocity  of which is to
be determined (  ). With this choice of the ori-
gin, the particle can be considered stationary and the
gaseous medium can be considered as moving in the
opposite direction of the actual particle motion (  =
− ). The velocity, pressure, and temperature distri-
butions are axially symmetric with respect to the 
axis; i.e., they are functions of two variables 
( ).

Under the formulated assumptions, the following
system of gas dynamic equations is solved [11, 12]:

(1)

Here  are the Cartesian coordinates,  are the
mass velocity components ,  is pressure, and

 is the heat capacity at constant pressure.
The determining parameters in the problem are the

material constants , ,  and the particles that
remain in motion ,  and  (  = ). From
these parameters, the dimensionless Reynolds num-
ber  can be determined, which
plays the role of a small parameter in the problem
being solved.

For  ( ), we seek the solution to the
hydrodynamics equations in the form
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where  = / .

GENERAL SOLUTION OF A VELOCITY-
LINEARIZED SYSTEM OF NAVIER–STOKES 

EQUATIONS

Based on the given formulation, the expressions for
the dimensionless mass velocity components  and

 should be sought as expansions in Legendre and
Gegenbauer polynomials [12]. To determine the total
force acting on a particle, we confine ourselves to the
first terms of these expansions [12]. Given this expres-
sion, the mass velocity components can be sought in
the form

with boundary conditions

Here  and  are arbitrary functions depending
on the coordinate .

The study of the velocity-linearized system of
Navier–Stokes equations in spherical coordinates (1)
showed that if the thermal conductivity of a particle is
much larger than the thermal conductivity of a gas
(weak angular asymmetry of the temperature distribu-
tion, which occurs for most gases), then this equation
can be reduced to an inhomogeneous third-order dif-
ferential equation with an isolated singularity. We seek
the solution of the resulting equation in the form of
generalized power series (a detailed analysis was car-
ried out in [14]).

Thus, the general expressions for the mass velocity
components that satisfy the condition of boundedness
of the solution at , and the pressures have the
form
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Here

The values of the coefficients ,

, and  are determined by the fol-
lowing recurrence relations:
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  are the first and second deriva-
tives with respect to y from the corresponding func-
tions.

When calculating coefficients  and  by
the recursive formulas, it is necessary to take into
account that

and the coefficients  and  for  are 0.
The integration constants  are determined

from the boundary conditions of the problem.

TEMPERATURE FIELDS OUTSIDE 
AND INSIDE A PARTICLE

To find the photophoretic force and speed, we need
to know the temperature fields. For this, it is necessary
to solve Eqs. (1) with the following boundary condi-
tions: on the particle surface , the equality of
temperatures and the continuity of radial heat f luxes
are taken into account, including the heat associated
with radiation

The temperature far from the particle and the
finiteness of the temperature at its center are taken into
account in the boundary conditions

Here  is the Stefan–Boltzmann constant and  is
the integral degree of blackness.
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It was shown in [15] for the thermal problem that,
near the sphere, the inertial and convective terms
assume the same order as the terms describing molec-
ular transfer; therefore, the usual method of expansion
in a small parameter yields a known error; i.e., it can
be used to rigorously satisfy the boundary conditions
at infinity and obtain an exact unified solution that is
uniformly valid for the entire f low region. Therefore,
the solution to the equation describing the tempera-
ture field outside the particle is found by the method
of matched asymptotic expansions [16], in which the
temperature field is represented as two asymptotic
expansions. In this case, the internal and external
asymptotic expansions of the dimensionless tempera-
ture are written as

(2)

where  is the “compressed” radial coordinate
[15].

At the same time, it is necessary that

The missing boundary conditions for the internal
and external expansions follow from the condition that
the asymptotic continuations of both are identical to
some intermediate region, i.e.,

The asymptotic expansion for the temperature field
inside the particle, as shown by the boundary condi-
tions on its surface, should be sought in a form similar
to (2):

As for functions  and , it is only
assumed that their order of smallness in  increases
with increasing n.

In dimensionless variables, convective heat equa-
tion (1) has the form
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and taking into account the compressed radial coordi-
nate, we obtain the following equation for the tem-

perature :

Here ,  are the compo-

nents of the vector ; ;  is the unit vec-
tor in the direction of the  axis.

When finding expressions for the photophoretic
force and speed, we confine ourselves to the zero and
first asymptotic expansions for the temperature fields:
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 is the Prandtl number and

 is the dipole moment of the density of heat

sources [2, 4, 8], . Integration
here is carried out over the entire particle volume.

The average particle surface temperature 
is determined by solving the following system of equa-
tions:
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(3)

PHOTOPHORETIC FORCE AND SPEED: 
ANALYSIS OF THE RESULTS

To find the force and speed of photophoresis, the
boundary conditions for the mass velocity compo-
nents on the particle surface are required:

(4)

where  is the thermal slip coefficient.
Numerical estimates require the values of thermal

slip coefficients. The thermal slip coefficient is deter-
mined from the solution the Boltzmann equation in
the Knudsen layer and, in the general case, depends on
the type of intermolecular interaction model used and
average particle surface temperature [1, 17, 18]. Since
in this problem we confine ourselves to calculating the
force and speed of photophoresis up to the first order
of smallness in , it is necessary to expand the slip
coefficient in a series in the small parameter, and tak-
ing into account the boundary condition for the tan-
gential mass velocity component (4), as well as [17,
18], we can take  as the zero approxima-
tion for numerical estimates of photophoretic force
and speed [1, 17, 18].

The resulting force acting on a particle is deter-
mined by integrating the stress tensor over the surface
[11]:

(5)

Here  are the stress tensor components [11].
After substituting the expressions obtained above

into (5) and integrating, we find that the resulting
force is the sum of the force of the viscous resistance of
the medium , photophoretic force  (“pure photo-
phoresis”), and force  due to convective heat trans-
fer:

(6)

The values of coefficients  and  can be
estimated by the following formulas:
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mf qh, mhf f
etc., are the first derivatives of the corresponding
functions and  is the  kinematic viscosity
of the gaseous medium. Functions , etc.,
are taken for .

The speed of uniform particle motion  is deter-
mined from the condition of equality to zero of the
total force acting on it. It can be seen from (6) that the
speed also consists of two terms: the photophoretic
speed (pure photophoresis) and the speed caused by
movement of the medium:

CONCLUSIONS

In this study, for the first time, expressions were
obtained that take into account the contribution of
convective heat transfer to the pure photophoresis
(force and speed) of a large heated solid spherical par-
ticle.

The resulting formulas for the force and speed of
photophoresis can also be used for small relative tem-
perature f luctuations, i.e., when heating of the particle
surface is low. In this case, the average particle surface
temperature differs slightly from the temperature of
the surrounding gaseous medium far from it, and for

 we have

Numerical estimates for the  val-
ues in the temperature range from 273 to 1000 K
showed that heating of the particle surface signifi-
cantly affects the functions , etc.,
and their derivatives compared with the values of the
functions for small relative temperature f luctuations.
This indicates a nonlinear nature of the dependence of
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the photophoretic force and speed on the average
heating temperature of the particle surface.

Convective heat transfer is proportional to the

coefficient . For most gases, the Prandtl

number is on the order of unity and the coefficient

 depends on the average relative heat-

ing temperature of the particle surface , determined
by formula (3). For example, when ,

 K and , . Consequently, this
contribution to the force and speed of pure photopho-
resis is greater, the more strongly the particle is heated.
Thus, when describing photophoresis with significant
temperature drops, it is necessary to take into account
the convective term in the heat transfer equation.

This method for solving the convective heat trans-
fer equation can also be applied to solve other similar
physical problems, e.g., the convective diffusion equa-
tion, the influence of convective heat and mass trans-
fer on the process of evaporation of a heated drop, etc.
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