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Abstract
A huge number of physical, geometric, and probabilistic problems lead to the con-
struction and study of parabolic partial differential equations. The emergence of new
problems of information propagation and processes with memory leads to the need to
consider parabolic type equations with various operators acting on spatial variables.
In this article, mean value theorems for the singular parabolic equation were obtained.
The singularity is due to the presence of the Laplace–Bessel operator.
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1 Introduction

Despite the large number of papers related to singular differential equations, some
issues remain unexplored. The generalized divergence theorem and the secondGreen’s
formula for the Laplace–Bessel operator, published in [1], made possible to obtain
significant progress in questions of existence and uniqueness theorems for solutions
of singular differential equations, as well as mean value theorems. This article devoted
to study of singular parabolic equation. Parabolic equations appeared in the study of
the phenomena of heat propagation and diffusion by means of mathematics. The
simplest but most important representative of parabolic equations is the heat equation
ut = a2�u.

Book [2] presents a modern qualitative theory of partial differential equa-
tions, including parabolic equations second order. In [3], the Cauchy problem for
one-dimensional parabolic equations involving Bessel operator was considered. Sta-
bilization of solutions of certain singular quasilinear parabolic equation was obtained
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in [4]. In [5–7], the Cauchy problem for differential–difference equations of parabolic
type was studied.

2 Definitions

LetRn be n-dimensional Euclidean space, x ∈ R
n . In the theory of weighted harmonic

analysis, we use the weight measure of the form xγ dx , where x = (x1, . . . , xn),
γ = (γ1, . . . , γn), γ1 > 0, ..., γn > 0, xγ = xγ1

1 · ... · xγn
n . If at least one of the

variables xi in the weight xγ is negative, then raising it to a real power gives a multi-
valued mapping, which is not convenient for work. On the other hand, by their nature,
the functions that appear when working with the Bessel operator are usually even.
Therefore, we will consider the orthant

R
n+ = {x ∈ R

n, x1>0, . . . , xn>0},

and

R
n+ = {x ∈ R

n, x1≥0, . . . , xn≥0}.

On negative semiaxes, all functions will be continued in an even way.
Spaces Lγ

p(R
n+) = Lγ

p , 1≤p<∞ are spaces of measurable functions, even with
respect to each variable xi , i = 1, ..., n, such that their pth power is integrable with
weight xγ by Rn+. The Lγ

p–norm of f is given by

‖ f ‖p,γ =
( ∫

R
n+

| f (x)|pxγ dx

)1/p

.

In [8], it was shown that Lγ
p is a Banach space.

In weighed harmonic analysis, the Hankel transform, or Fourier–Bessel transform,
expresses a given function f (x), x ∈ R

n+ as a weighted integral of a product of the
normalized Bessel functions of the first type

Fγ [ f ](ξ) = Fγ [ f (x)](ξ) = f̃ (ξ) =
∫
R
n+

f (x) jγ (x; ξ)xγ dx .

In this formula

jγ (x; ξ) =
n∏

i=1

j γi−1
2

(xiξi ), γ1 > 0, ..., γn > 0,
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the symbol jν is used for the normalized Bessel function of the first kind

jν(x)=2ν�(ν + 1)

xν
Jν(x), where Jν is Bessel function of the first kind [9]. All nor-

malized Bessel functions j γi−1
2

(xiξi ) in the product
n∏

i=1
j γi−1

2
(xiξi ) differ by an indices

γi−1
2 . The Hankel transform is defined on functions from Lγ

1 (Rn+).
The inversion formula is

F−1
γ [ f̃ (ξ)](x) = f (x) = 2n−|γ |

n∏
j=1

�2
( γ j+1

2

)
∫
R
n+

jγ (x, ξ) f̃ (ξ)ξγ dξ.

Similar to the Fourier transform, the Hankel transform reduces the Laplace-Bessel
operator to multiplication by the minus square of module of variables (see [8] for the
one-dimensional case)

Fγ [�γ f ](ξ) = − | ξ |2 f̃ (ξ), (1)

where

�γ =
n∑

k=1

(Bγk )xk (2)

is the Laplace–Bessel operator

(Bγk )xk = ∂2

∂x2k
+ γk

xk

∂

∂xk

is the Bessel operator and k = 1, ..., n.
On the space of functions summable with a weight xγ on R

n+, consider the
generalized translation operator

(γTy
x f )(x) = γTy

x f (x) = ( γ1T y1
x1 ... γn T yn

xn f )(x), (3)

where each of one-dimensional generalized translation γi T yi
xi acts for i=1, ..., n

according to

( γi T yi
xi f )(x)=

�
(

γi+1
2

)
√

π�
( γi
2

)×

×
π∫

0

f (x1, ..., xi−1,

√
x2i + τ 2i − 2xi yi cosϕi , xi+1, ..., xn) sinγi−1 ϕi dϕi .
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Next, we will use notation

C(γ ) = π− n
2

n∏
i=1

�
(

γi+1
2

)
�

( γi
2

) .

The generalized convolution constructed by (3) is

( f ∗ g)γ (x) = ( f ∗ g)γ =
∫
R
n+

f (y)(γTy
x g)(x)y

γ dy. (4)

The modified Bessel function of the first kind Iα(x) of a non-integer order α is
defined as the sum of the series (see [9])

Iα(x) = i−α Jα(i x) =
∞∑

m=0

1

m! �(m + α + 1)

( x
2

)2m+α

. (5)

For integer values of α, the function (5) is defined by taking the limit in the expression
presented above. Let

iγ (x, ξ) =
n∏

i=1

i γi−1
2

(xiξi ), (6)

where iν(x) = 2ν�(ν+1)
xν Iν(x) is normalizedmodified Bessel function of the first kind.

3 Maximum andminimum principle for the singular parabolic
equation

In this section, we consider a maximum and minimum principle for a solution to the
singular parabolic equation of the form

ut = a2�γ u, u = u(x, t). (7)

Classical results concerning to the topics of maximum and minimum principle for the
heat equation ut = a2�u can be found in [2].

Let t ∈ [0, T ], x ∈ �+, where �+ is a bounded simply connected domain in R
n+,

S+ = ∂�+. We deal with a cylinderC+
T in the spaceRn+1+ = {(x, t) : x ∈ R

n+, t ≥ 0}
of the form

C+
T = {(x, t) : x ∈ �+, 0 < t < T }.

Its closure is

C+
T = {(x, t) : x ∈ �+, 0 ≤ t ≤ T }.
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The part of the boundary of the cylinder C+
T , consisting of its lower base where t = 0

and surface, will be denoted by �+.

Theorem 1 The function u = u(x, t) that satisfies Eq. (7) in the cylinder C+
T and is

continuous up to its boundary takes the maximal and minimal values on �+.

Proof Since the theorem for minimum reduces to the theorem for maximum by
reversing the sign of u = u(x, t), we prove only the maximum theorem.

Denote by the maximum value of the function u = u(x, t) in the cylinderC+
T by M

and the maximum value of the function u = u(x, t) on �+ bym. We have M ≥ m and
we should prove that M = m. Assume the opposite. Suppose that there is a solution
u = u(x, t) of (7) for which M > m. Let this function takes the value M at the point
(x0, t0) where x0 ∈ �+, 0 < t0 ≤ T . Consider the function

v(x, t) = u(x, t) + a2
M − m

2(n+ | γ |)d2 | x − x0 |2,

where d is the diameter of the region �+. On �+ we have | x − x0 |≤ d, v(x, t) < M
and v(x0, t0) = M . Therefore, v(x, t) does not attain its maximum on �+. Let v(x, t)
has a maximum at (x∗, t∗), x∗ ∈ �+, 0 < t∗ ≤ T . That means

∂v

∂xi
= 0,

∂2v

∂x2i
≤ 0

for all i = 1, ..., n and ∂v
∂t = 0 for 0 < t∗ < T and ∂v

∂t ≥ 0 for t∗ = T , therefore at
(x∗, t∗) should be

vt − a2�γ v ≥ 0.

From the other side

vt − a2�γ v = ut − a2�γ u − a2
M − m

d2
= −a2

M − m

d2
< 0.

Therefore, we obtain a contradiction. That means that M = m. 	

Let functions ϕ(x) and ψ(x, t) are continuous in �+ and C+

T , respectively, and the
values of ψ(x, t) coincide with the values of ϕ(x) at the S+ for t = 0. From Theorem
1, it immediately follows that the solution to the problem

⎧⎪⎪⎨
⎪⎪⎩

ut = a2(�γ )xu,

u(x, 0) = ϕ(x),
∂u
∂xi

|xi=0= 0, i = 1, . . . , n,

u |S+= ψ(x, t), x ∈ S+
(8)

is unique.
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4 Fundamental solution for themultidimensional singular heat
equation

In this section, we will find the fundamental solution of a linear differential operator.
The construction of this solution is an important task, since all other solutions can be
constructed from it.

Let ϕ(x) is a continuous and bounded function in�+. We consider the problem for
the multidimensional singular heat equation

{
ut = a2(�γ )xu,

u(x, 0) = ϕ(x),
(9)

where | u(x, t) |< ∞.
ApplyingmultidimensionalHankel transformFγ by x ∈ R

n+ to (9), we obtain by (1)
{
ũt + a2ξ2ũ = 0,
ũ(ξ, 0) = ϕ̃(ξ).

(10)

Multiplying the first equality of (10) by ea
2|ξ |2t , we can write

ea
2|ξ |2t ũt + a2ξ2ea

2|ξ |2t ũ = 0 ⇒ ∂

∂t
(ea

2|ξ |2t ũ) = 0.

That means that

ea
2|ξ |2t ũ(ξ, t) = f (ξ),

where f (ξ) is an arbitrary function and

ũ(ξ, t) = e−a2|ξ |2t f (ξ).

Using the second equality of (10), we get

ũ(ξ, 0) = ϕ̃(ξ) ⇒ f (ξ) = ϕ̃(ξ).

Therefore, we can write the multidimensional Hankel transform Fγ of u(x, t) in the
form of generalized convolution

ũ(ξ, t) = e−a2|ξ |2t ϕ̃(ξ) = (Fγ )x ((F−1
γ )ξ {e−a2|ξ |2t }(x) ∗ ϕ(x))γ .

Using formula (17), we get

u(x, t) = (
Sγ (·, t) ∗ ϕ(·))

γ
(x) =

= 1

2|γ |an+|γ |t
n+|γ |

2 �
(
n+|γ |

2

) n∏
j=1

�
(

γ j+1
2

)
∫
R
n+

ϕ(y)

(
γTy

x e
− |x |2

4a2 t

)
yγ dy,
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where

Sγ (x, t) = (F−1
γ )ξ {e−a2ξ2t }(x) = C(n, γ, a)

e
− |x |2

4a2 t

t
n+|γ |

2

,

C(n, γ, a) = 1

2|γ |an+|γ |t
n+|γ |

2 �
(
n+|γ |

2

) n∏
j=1

�
(

γ j+1
2

)
.

This representation is the generalized Poisson formula. Denote

Gγ (x, y, t) = C(n, γ, a)
1

t
n+|γ |

2

γTy
x e

− |x |2
4a2 t .

Then

u(x, t) =
∫
R
n+

Gγ (x, y, t)ϕ(y)yγ dy.

The functionGγ (x, y, t) is called the fundamental solution of themultidimensional
singular heat equation.

5 Mean value theorems for the singular heat equation

In the theory of boundary value problems for elliptic, parabolic, and hyperbolic equa-
tions, mean value theorems play an important role in questions of uniqueness and
qualitative study of the solutions’ behavior. An approach related to accompanying
distributions, which allows, from a general point of view, to consider mean value
formulas for solutions of linear partial differential equations was proposed in [10].
Mean value theorems for weighted spherical means connected with singular hyper-
bolic and ultrahyperbolic equations were given in [11, 12]. Here, we consider mean
value theorems connected with singular parabolic equation.

It is known that with the help of the Laplace–Bessel operator, integration over
volume can be replaced by integration over the surface. The second Green’s formula
for the Laplace–Bessel operator of the form (2) was given in [1] in the form

∫
G+

(v�γ u − u�γ v) xγ dx =
∫
S+

(
v
∂u

∂˚
− u

∂v

∂˚

)
xγ dS, (11)

where u, v ∈ C2(G+), such that ∂u
∂xi

|xi=0= 0, ∂v
∂xi

|xi=0= 0, for i = 1, . . . , n, the

domain G+ ∈ R
n+ and S+ = ∂G+, ˚ = e1 cos η1 + · · ·+ en cos ηn is an outer surface

normal vector for S+. If u, v are B-harmonic: �γ u = 0, �γ v = 0 on G+, then (11)
reduces to
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∫
S+

(
v
∂u

∂˚
− u

∂v

∂˚

)
xγ dS = 0. (12)

If, additionally, v = 1, then (12) can be written in the form

∫
S+

∂u

∂˚
xγ dS = 0.

We are interesting in the obtaining analogy of this property for the singular parabolic
operator.

Let Dt = ∂
∂t , Lγ is the singular parabolic operator

Lγ = (�γ )x − Dt ,

and L∗
γ is its adjoint

L∗
γ = (�γ )x + Dt .

We can write

uL∗
γ v − vLγ u = u�γ v − v�γ u + (uv)t = ((∇′

γ )x · (u(∇′′
γ )xv − v(∇′′

γ )xu)) + (uv)t ,

where (see [1])

(∇′
γ )x =

(
1

xγ1
1

∂

∂x1
, . . . ,

1

xγn
n

∂

∂xn

)
, (∇′′

γ )x =
(
xγ1
1

∂

∂x1
, . . . , xγn

n
∂

∂xn

)
.

The domain G+ ⊂ R
n+ is called Green-suitable if G+ is a union of domains

G+
1 , . . . ,G+

m without common interior points. Each domain G+
j ⊂ R

n+ be such that
each line perpendicular to the plane xi = 0, i = 1, . . . , n, either does not intersect
G+

j or has only one common segment with G+
j (possibly degenerating into a point)

of the form

α
j
i (x

′) ≤ xi ≤ β
j
i (x ′), x ′=(x1, . . . , xi−1, xi+1, . . . , xn), i = 1, . . . , n,

where αi , βi are smooth for i=1, ..., n.

Theorem 2 Let D+⊂R
n+1+ be Green-suitable domain. A function u=u(x, t), such that

u∈C2(D+), uxi |xi=0= 0, i = 1, .., n, be a solution of the equation

(�γ )xu − ut = 0

if and only if the equality

∫
∂D+

(
− ∂u

∂˚ ′ + uνn+1

)
xγ dS = 0 (13)
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holds. In (13) ˚ = (˚ ′, νn+1) is the exterior unit normal to ∂D+, ˚ ′ = (ν1, ..., νn) is
vector consisting of the first n components of ˚, ∂u

∂˚ ′ = ∂u
∂x1

ν1 + ... + ∂u
∂xn

νn.

Proof Let first u = u(x, t) ∈ C2(D+), uxi |xi=0= 0, i = 1, .., n, be a solution of
Lγ u = 0. We take a vector

Q =
(
u∇′′

γ v − v∇′′
γ u, uv

)

=
(
u · xγ1

1
∂v

∂x1
− v · xγ1

1
∂u

∂x1
, . . . , u · xγn

n
∂v

∂xn
− v · xγn

n
∂u

∂xn
, uv

)

=
(
xγ1
1

(
u

∂v

∂x1
− v

∂u

∂x1

)
, . . . , xγn

n

(
u

∂v

∂xn
− v

∂u

∂xn

)
, uv

)
,

and a vector operator Hγ = ((∇′
γ )x , Dt ). Let

h =
(
u

∂v

∂x1
− v

∂u

∂x1
, . . . , u

∂v

∂xn
− v

∂u

∂xn
, uv

)
.

Then, the scalar product (Hγ · Q) is

(Hγ · Q) = (∇′
γ · (u∇′′

γ v − v∇′′
γ u)) + (uv)t

=
n∑

i=1

(
1

xγi
i

∂

∂xi

(
u · xγi

i
∂v

∂xi

)
− 1

xγi
i

∂

∂xi

(
v · xγi

i
∂u

∂xi

))
+ (uv)t

=
n∑

i=1

(
1

xγi
i

∂u

∂xi
· xγi

i
∂v

∂xi
+ u · 1

xγi
i

∂

∂xi
xγi
i

∂v

∂xi
−

− 1

xγi
i

∂v

∂xi
· xγi

i
∂u

∂xi
− v · 1

xγi
i

∂

∂xi
xγi
i

∂u

∂xi

)
+ (uv)t

=
n∑

i=1

(
u · 1

xγi
i

∂

∂xi
xγi
i

∂v

∂xi
− v · 1

xγi
i

∂

∂xi
xγi
i

∂u

∂xi

)
+ (uv)t

=
n∑

i=1

(
uBγi v − vBγi u

) + (uv)t = v�γ u − u�γ v + (uv)t .

Then, combine formula (11) from [1] of the form

∫
G+

(∇′
γ · F) xγ dx =

∫
∂G+

(g · ˚) xγ dS,

where G+⊂R
n+ is Green-suitable domain. Here, �F is a vector-function

�F=(F1(x), . . . , Fn(x)), F1(x)=xγ1
1 g1(x), ..., Fn(x)=xγn

n gn(x), �g =
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(g1(x), . . . , gn(x)) is a vector-function continuously differentiable in G+ and the
classical divergence theorem. We obtain

∫
D+

(Hγ · F) xγ dxdt =
∫
D+

(uL∗
γ v − vLγ u) xγ dxdt

=
∫
D+

(u�γ v − v�γ u + (uv)t ) x
γ dxdt

=
∫

∂D+

(
u

∂v

∂˚ ′ − v
∂u

∂˚ ′ + uvνn+1

)
xγ dS,

where �ν = (˚ ′, νn+1) is the exterior unit normal to ∂D+, �ν ′ = (ν1, ..., νn) is vector
consisting of the first n components of ˚, ∂u

∂˚ ′ = ∂u
∂x1

ν1+ ...+ ∂u
∂xn

νn . If Lγ u = L∗
γ v = 0

in D+, then we get

∫
∂D+

(
u

∂v

∂˚ ′ − v
∂u

∂˚ ′ + uvνn+1

)
xγ dS = 0. (14)

If v = 1, this equality reduces to (13).
Sufficiency is proved by reproducing the proof of necessity in reverse order. The

theorem has been proven. 	

Now, let consider

kγ (x0, x, t0, t) =
⎧⎨
⎩

1

(t0−t)
n+|γ |

2

γTx0
x e

− |x |2
4a2(t0−t) , t > 0,

0, t ≤ 0,

where (see (18))

γTx0
x e

− |x |2
4a2(t0−t) = e

− |x |2+|x0 |2
4a2(t0−t) iγ

(
x,

x0

2a2(t0 − t)

)
.

In particular, for n = 1

γ T x0
x e

− x2

4a2 t =

= 2
γ−1
2 �

(
γ + 1

2

)(
2a2(t0 − t)

xx0

) γ−1
2

e
− x2+x20

4a2(t0−t) I γ−1
2

(
xx0

2a2(t0 − t)

)
.

For a fixed point (x0, t0) ∈ R
n+1+ and for small enough r > 0, we define the

so-called generalized parabolic sphere

�γ (x0, t0, r) =
{
(x, t) ∈ R

n+1+ : kγ (x0, x, t0, t) = r−(n+|γ |)
}
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and generalized parabolic ball

�γ (x0, t0, r) = {(x, t) ∈ R
n+1+ : kγ (x0, x, t0, t) < r−(n+|γ |)}

with “center” at (x0, t0) and radius r . It is easy to see that when r → 0 the generalized
parabolic balls �γ (x0, t0, r) shrink to the center (x0, t0).

Theorem 3 Let u = u(x, t) ∈ C2(D+) uxi |xi=0= 0, i = 1, .., n, be a solution to the
equation

(�γ )xu − ut = 0

in a Green-suitable domain D+ ⊂ R
n+1+ . Then, for (x0, t0) ∈ D+ and for almost

every sufficiently small r , the next formula is valid

u(x0, t0) = −
∫

�γ (x0,t0,r)

u
∂kγ (x0, x, t0, t)

∂˚ ′ xγ dS. (15)

dS is the n-dimensional measure on surface �γ (x0, t0, r), ˚ = (˚ ′, νn+1) is the exte-
rior unit normal to �γ (x0, t0, r), ˚ ′ = (ν1, ..., νn) is vector consisting of the first n

components of ˚, ∂kγ (x0,x,t0,t)
∂˚ ′ = ∂kγ (x0,x,t0,t)

∂x1
ν1 + ... + ∂kγ (x0,x,t0,t)

∂xn
νn.

Proof Assume that r is fixed and define for each τ ∈ (t0 − r2, t0) the next sets

�s
γ (x0, t0, r) = {(x, t) ∈ �γ (x0, t0, r) : t < s},

T s
γ (x0, t0, r) = {(x, t) ∈ �γ (x0, t0, r) : t = s},

�s
γ (x0, t0, r) = {(x, t) ∈ �γ (x0, t0, r) : t < s}.

Let u such that (�γ )xu−ut = 0.Applying (14) to functions u and v = kγ (x0, x, t0, t),
we obtain

∫

�s
γ (x0,t0,r)∪T s

γ (x0,t0,r)

(
u

∂kγ (x0, x, t0, t)

∂˚ ′ −

−kγ (x0, x, t0, t)
∂u

∂˚ ′ + ukγ (x0, x, t0, t)νn+1

)
xγ dS = 0.

On �s
γ (x0, t0, r) function kγ (x0, x, t0, t) = r−(n+|γ |). Also, on �s

γ (x0, t0, r), we have
˚ ′ = 0 and νn+1 = 1; therefore
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∫

�s
γ (x0,t0,r)

u
∂kγ (x0, x, t0, t)

∂˚ ′ xγ dS +

+r−(n+|γ |)
∫

�s
γ (x0,t0,r)

(
− ∂u

∂˚ ′ + uνn+1

)
xγ dS

+
∫

T s
γ (x0,t0,r)

ukγ (x0, x, t0, t) x
γ dS = 0.

Passing to the limit in the last term, we get

lim
s→t0−0

∫

T s
γ (x0,t0,r)

ukγ (x0, x, t0, t) x
γ dS = u(x0, t0).

Therefore, taking into account (13), we obtain (15). 	
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6 Appendix

In this section, we give some formulas and calculations used in the article.

Proposition 1 [13] Integral
∫

S+
1 (n)

jγ (rθ, ξ)θγ dS is calculated by the formula

∫

S+
1 (n)

jγ (x, rθ)θγ dS =

n∏
i=1

�
(

γi+1
2

)

2n−1�
(
n+|γ |

2

) j n+|γ |
2 −1(r | x |), (16)

where

S+
1 (n) = {x ∈ R

n+ :| x |= 1} ∪ {x ∈ R
n+ : xi = 0, | x | ≤r , i = 1, . . . , n}

is the part of the unit sphere belonging to Rn+.
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Proposition 2 The next formula is valid

(F−1
γ )ξ {e−a2|ξ |2t }(x) = 2−|γ |

an+|γ |t
n+|γ |

2 �
(
n+|γ |

2

) n∏
j=1

�
(

γ j+1
2

) e
− |x |2

4a2 t . (17)

Proof We have

(F−1
γ )ξ {e−a2|ξ |2t }(x) = 2n−|γ |

n∏
j=1

�2
(

γ j+1
2

)
∫
R
n+

jγ (x, ξ)e−a2|ξ |2tξγ dξ = {ξ = rθ} =

= 2n−|γ |
n∏
j=1

�2
(

γ j+1
2

)
∞∫
0

e−a2r2t rn+|γ |−1dr
∫

S+
1 (n)

jγ (x, rθ)θγ dS.

Using formula (16), we obtain

(F−1
γ )ξ {e−a2|ξ |2t }(x)

= 21−|γ |

�
(
n+|γ |

2

) n∏
j=1

�
(

γ j+1
2

)
∞∫
0

e−a2r2t j n+|γ |
2 −1(r | x |)rn+|γ |−1dr

= 2
n−|γ |

2

�
(
n+|γ |

2

) n∏
j=1

�
(

γ j+1
2

) 1

| x | n+|γ |
2 −1

∞∫
0

e−a2r2t J n+|γ |
2 −1(r | x |)r n+|γ |

2 dr

= 2−|γ |

an+|γ |t
n+|γ |

2 �
(
n+|γ |

2

) n∏
j=1

�
(

γ j+1
2

) e
− |x |2

4a2 t .

	

Proposition 3 The next formula is valid

γTy
x e

− |x |2
4a2 t = e

− |x |2+|y|2
4a2 t iγ

(
x,

y

2a2t

)
, (18)

where iγ is defined by (6).

Proof We have

γTy
x e

− |x |2
4a2 t =

n∏
k=1

γ T yk
xk e

− 1
4a2 t

x2k .
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Using the formula 3.154 from [13], we obtain

γ T yk
xk e

− 1
4a2 t

x2k =

= 2γkC(γk)

(4xk yk)γk−1

xk+yk∫
|xk−yk |

ze
− 1

4a2 t
z2 [(z2 − (xk − yk)

2)((xk + yk)
2 − z2)] γk

2 −1dz.

Find the integral

I =
xk+yk∫

|xk−yk |
ze

− 1
4a2 t

z2 [(z2 − (xk − yk)
2)((xk + yk)

2 − z2)] γk
2 −1dz = {z2 = ζ } =

= 1

2

(xk+yk)2∫

(xk−yk)2

e
− 1

4a2 t
ζ [(ζ − (xk − yk)

2)((xk + yk)
2 − ζ )] γk

2 −1dζ

= {ζ − (xk − yk)
2 = w} =

= 1

2
e
− (xk−yk )2

4a2 t

4xk yk∫
0

e
− 1

4a2 t
w[w(4xk yk − w)] γk

2 −1dw.

Applying formula 2.3.6.2 from [14] of the form

a∫
0

xα−1(a − x)α−1e−pxdx = √
π�(α)

(
a

p

)α−1/2

e−ap/2 Iα−1/2(ap/2),

Reα > 0, (19)

we get

4xk yk∫
0

e
− 1

4a2 t
w[w(4xk yk − w)] γk

2 −1dw =

= (4a)γk−1√π�
(γk

2

)
e
− xk yk

2a2 t (t xk yk)
γk−1
2 I γk−1

2

( xk yk
2a2t

)

and

I = 22γk−3aγk−1√π�
(γk

2

)
e
− x2k+y2k

4a2 t (t xk yk)
γk−1
2 I γk−1

2

( xk yk
2a2t

)
.

Then, substituting the resulting formula into the product
n∏

k=1

γ T yk
xk e

− 1
4a2 t

x2k after

simplification, we get (18). 	
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7 Conclusion

Parabolic equations are the main sources of diffusion problems and the theory of
stochastic processes. If diffusion is slowed down or accelerated, or if the process
has memory, then instead of the Laplace operator, other operators appear in the heat
equation. Themain attention in the articlewas given to a detailed study of the properties
of a parabolic equationwith a Bessel operator acting on all spatial variables.Maximum
and minimum principle for the singular parabolic equation as well as the uniqueness
of its solution were given. Using the form of fundamental solution of the singular
parabolic equation, mean value theorems were obtained.
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