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Abstract—The purpose of this paper is to address questions related to transmutation theory and
applications of the integral transforms composition method (ITCM) for obtaining a general concept
of generalized transmutations operators via integral transforms. This method allows us to obtain
a wide range of transmutation operators. Classical integral transforms are implied in the ITCM
as fundamentals blocks, among them are Hankel, Y, Mellin, Laplace, Fourier, sine- and cosine-
Fourier, and some generalized transforms. In [5] the ITCM and transmutations derived by it are
applied to get connection formulas for solutions of singular differential equations and more simple
nonsingular ones. The main conclusion is the fact that approach via ITCM for constructing
transmutations is very important and constructive tool for obtaining connection formulas and
explicit representations of solutions to a wide class of singular differential equations, including those
with Bessel operators.
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1. INTRODUCTION AND PRELIMINARIES

In order to fix some ideas before dealing with the main aim of this paper, we first state some basic
concepts and tools that would be required for representation of our results.

Further we provide definitions and brief information on the differential Bessel operator, the transmu-
tation theory, the special functions, some classes of functions and integral transforms.

1.1. The Differential Bessel Operator

The differential Bessel operator is given by

Bν = D2 +
ν

x
D, ν ≥ 0, D :=

d

dx
, (1)

and its fractional powers (Bν)
α, α ∈ R, have been studied in many papers. However, in the majority of

them, they were defined implicitly as a power function multiplication under Hankel transform. In [10]
fractional powers of the Bessel operators were derived in the form

(B−α
ν,b−f)(x)=

1

Γ(2α)

b∫

x

(
y2−x2

2y

)2α−1

2F1

(
α+

ν−1

2
, α; 2α; 1−x2

y2

)
f(y)dy, (2)
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1030 SITNIK, JEBABLI

for f ∈ C [2α]+1(0, b], b ∈ (0,+∞), and

(B−α
ν,a+f)(x)=

1

Γ(2α)

x∫

a

(y
x

)ν
(
x2−y2

2x

)2α−1

2F1

(
α+

ν−1

2
, α; 2α; 1− y2

x2

)
f(y)dy, (3)

for f ∈ C [2α]+1[a,+∞), a∈(0,+∞). The operators (2) and (3) are called the right- and left-sided
fractional Bessel integrals. they are given explicitly in the integral form without using integral
transforms in their definitions.

The defined fractional powers of the Bessel differential operator (1) are also generalizations of
Riemann–Liouville fractional integrals, as it is easy to derive that for ν = 0

(B−α
0,b−f)(x) = (I2αb−f)(x), (B−α

0,a+f)(x)y = (I2αa+f)(x),

where I2αb− and I2αa+ are the right-sided and left-sided Riemann–Liouville fractional integrals given
respectively by

Iαb− [f ](ξ) =
1

Γ(α)

b∫

ξ

(ξ − λ)α−1f(λ)dλ, α > 0, ξ ∈ [a, b). (4)

and

Iαa+ [f ](ξ) =
1

Γ(α)

ξ∫

a

(ξ − λ)α−1f(λ)dλ, α > 0, ξ ∈ (a, b], (5)

Iαa+ [f ] and Iαb− [f ] are defined on (a, b) for f ∈ L1(a, b;R), cf. [9, 15].

1.2. Transmutation Theory

Let’s consider the following second order linear differential

L := − d2

dx2
+ q(x), (6)

where q is an L2-function defined on a finite interval. The next equation is called the one-dimensional
Sturm–Liouville equation

Ly(x) = γy(x), γ ∈ C, (7)

taking in consideration that Liouville transformation reduces a large variety of linear ordinary second
order equations to this form.

An intertwining operator is sought to relate L to the simplest linear second order expression B =

− d2

dx2 by the formula LT = TB.
Let (A,B) be a given pair of operators. An operator T is called transmutation (or intertwining)

operator if the following property is valid on elements of some functional spaces

TA = BT. (8)

1.3. Some Special Functions

Here are some definitions and brief information some special functions and classes of functions.
Let 2F1 be the hypergeometric function defined by the power series

2F1(a, b; c; t) =

∞∑
n=0

(a)n(b)n
(c)n

tn

n!
, where |t| < 1. (9)
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The Bessel functions of the first and second kind of order ν, respectively Jν and Yν , are defined as
follows by series expansions near t = 0

Jν(t) =

∞∑
m=0

(−1)m

m! Γ(m+ ν + 1)

(
t

2

)2m+ν

, (10)

and

Yν(t) =
cos πνJν(t)− J−ν(t)

sinπν
(11)

where �ν > −1/2 and is non-integer.
Normalized (or “small”) Bessel function of the first kind jν is defined by the formula

jν(x) =
2νΓ(ν + 1)

xν
Jν(x), (12)

where Jν is Bessel function of the first kind. Its basic property is jν(0) = 1.

We denote by Hν the Struve function given by the following power series expansion

Hν(t) =

∞∑
m=0

(−1)m

Γ(m+ 3
2) Γ(m+ ν + 3

2 )

(
t

2

)2m+ν+1

. (13)

The best reference on Bessel and connected functions is still [16]

1.4. Integral Transforms

After introducing some special functions we now consider integral transforms, which use the above
defined special functions as kernels.

The one-dimentional Hankel transform of a function f∈L1,ν(R
1
+) is defined as

Hν[f ](ξ) = Hν [f(x)](ξ) = f̂(ξ) =

∞∫

0

f(x) j ν−1
2
(xξ)xνdx, (14)

where ν > 0, and jν is the normalized Bessel function of the first kind (12).
From now on, we assume f ∈ S, where S is the space of rapidly decreasing functions on (0,∞)

S =

{
f ∈ C∞(0,∞) : sup

t∈(0,∞)

∣∣∣taDbf(t)
∣∣∣ < ∞ ∀a, b ∈ Z+

}
.

Let the Hankel, Y and Struve transforms be the integral transforms of order ν of a function f defined
as follow

(Hνf) (x) =

+∞∫

0

(xt)
1
2Jν(xt)f(t)dt, (15)

(Yνf) (x) =

+∞∫

0

(xt)
1
2Yν(xt)f(t)dt, (16)

(Sνf) (x) =

+∞∫

0

(xt)
1
2Hν(xt)f(t)dt. (17)

It is known that (15), (16) and (17) are invertible transforms, where (Hν)
(−1) = Hν , (Yν)

(−1) = Sν .
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1.5. The Integral Transform Composition Method

What is the integral transform composition method (ITCM), and how does it work? In transmutation
theory, explicit operators were derived based on different ideas and methods, often not connecting
altogether. Therefore, there is an urgent need in transmutation theory to develop a general method
for obtaining known and new classes of transmutations.

In this section, we give such a method for constructing transmutation operators. We call this method
Integral Transform Composition Method, or ITCM for short. The method is based on the representation
of transmutation operators as compositions of basic integral transforms. The Integral Transform Com-
position Method (ITCM) gives the algorithm not only for constructing new transmutation operators,
but also for all now explicitly known classes of transmutations, including Poisson, Sonine, Vekua–
Erdelyi–Lowndes, Buschman–Erdelyi, Sonin–Katrakhov and Poisson–Katrakhov ones, cf. [1–4, 6, 7,
12–15] as well as the classes of elliptic, hyperbolic and parabolic transmutation operators introduced by
R. Carroll [1–3]. This method, with many applications and examples, was essentially introduced and
developed by S.M. Sitnik.

The formal algorithm of ITCM is next. Let us take as input a pair of arbitrary operators A,B, and also
connect with them generalized Fourier transforms FA, FB , which are invertible and act by the formulas

FAA = g(t)FA, FBB = g(t)FB , (18)

t is a dual variable, g is an arbitrary function with suitable properties. It is often convenient to
choose g(t) = −t2 or g(t) = −tα, α ∈ R. Then, the essence of ITCM is to obtain formally a pair of
transmutation operators P and S as the method output by the next formulas

S = F−1
B

1

w(t)
FA, P = F−1

A w(t)FB (19)

with arbitrary function w(t). When P and S are transmutation operators intertwining A and B

SA = BS, PB = AP. (20)

A formal checking of (20) can be obtained by direct substitution. The main difficulty is the calculation of
compositions (19) in an explicit integral form, as well as the choice of domains of operators P and S.

The main advantages of Integral Transform Composition Method (ITCM) have been listed in [5, 11].
One obstacle to which to apply ITCM is the next one: we know acting of classical integral transforms

usually on standard spaces like L2, Lp, C
k, variable exponent Lebesgue spaces and so on. However, for

application of transmutations to differential equations, we usually need more conditions to hold, say, at
zero or at infinity. For these problems, we may first construct a transmutation by ITCM and then expand
it to the needed functional classes.

Let us stress that formulas of the type (19) of course are not new for integral transforms and its
applications to differential equations. However, ITCM is new when applied to transmutation theory!
In other fields of integral transforms and connected differential equations, theory compositions (19) for
the choice of classical Fourier transform leads to famous pseudo-differential operators with symbol
function w(t). For the choice of the classical Fourier transform and the function w(t) = (±it)−s we
get fractional integrals on the whole real axis, while for w(t) = |x|−s we get M. Riesz potential, also for
w(t) = (1 + t2)−s in formulas (19) we get Bessel potential and for w(t) = (1± it)−s – modified Bessel
potentials [9].

The next choice for algorithm of ITCM

A = B = Bν , FA = FB = Hν , g(t) = −t2, w(t) = jν(st) (21)

leads to generalized translation operators of Delsarte [15], for this case we have to choose in the
algorithm defined by (18), (19) the above values (21) in which Bν is the Bessel operator (1), Hν is the
Hankel transform (14), jν is the normalized Bessel function (12).

It is possible to apply ITCM instead of classical approaches for getting fractional powers of Bessel
operators [14, 15]. Therefore, we may conclude that the method we consider in the paper for obtaining
transmutations – ITCM is effective; it is connected to many known methods and problems, it gives all
known classes of explicit transmutations and works as a tool to construct new classes of transmutations.
Application of ITCM needs the following three steps:
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• For a given pair of operators A,B and connected generalized Fourier transforms FA, FB define
and calculate a pair of transmutations P, S by basic formulas (18), (19).

• Derive exact conditions and find classes of functions for which transmutations obtained by step 1
satisfy proper intertwining properties.

• Apply now correctly defined transmutations by the first an second steps on proper classes of
functions to deriving connection formulas for solutions of differential equations.

1.6. Some Previous Results

In this section we collect some of our results on the applications of ITCM from papers [5, 11]. We
start by investigating composition operators of the form

T = Hμ Yν , T = Yμ Yν , T = Yμ Hν , T = Hμ Hν . (22)

where Hμ and Yν are the Hankel and Y-transforms defined by (15) and (16). The operators T defined
in (22) commute with the differential operator (23) given by

Lν =
d2

dx2
+

1

x

d

dx
− ν2

x2
, (23)

and obeying the transmutation property (8) in the form T Lν = Lμ T. The compositions Hμ Yν and
Yμ Hν are considered as generalizations of Hilbert operators.

For the special case ν = ∓1
2 , it is easy to see that the operator Hν Yν equals to Hilbert transform on

semi-axes

H 1
2
[Y 1

2
f ](x) =

2

π

∞∫

0

xf(t)

t2 − x2
dt.

The norms of Hν , Yν and their compositions in L2(0,∞) are also studied in this section and it is shown

that ||HνYν ||L2 = ||YνHν||L2 . By applying ITCM of the form T
(ϕ)
ν, μ = F−1

μ

(
ϕ(t)Fν

)
, we obtain an

interesting and important family of transmutations including index shift B–hyperbolic transmutations,
“descent” operators, classical Sonine and Poisson-type transmutations, explicit integral represen-
tations for fractional powers of the Bessel operator, generalized translations of Delsarte and other

transmutations or “shift operators”, such that T (ϕ)
ν, μBν = BμT

(ϕ)
ν, μ .

For ϕ(t) = Ctα, C ∈ R, and T
(ϕ)
ν, μ = T

(α)
ν, μ we proved in [5, 11] the following integral representation

(
T (α)
ν, μf

)
(x) = C

2α+1Γ
(
α+μ+1

2

)

Γ
(
μ+1
2

)
⎡
⎣x−1−μ−α

Γ
(
−α

2

)
x∫

0

f(y)2F1

(
α+ μ+ 1

2
,
α

2
+ 1;

ν + 1

2
;
y2

x2

)
yνdy

+
Γ
(
ν+1
2

)
Γ
(
μ+1
2

)
Γ
(ν−μ−α

2

)
∞∫

x

f(y)2F1

(
α+ μ+ 1

2
,
α+ μ− ν

2
+ 1;

μ+ 1

2
;
x2

y2

)
yν−μ−α−1dy

⎤
⎦ ,

where 2F1 is the Gauss hypergeometric function.

2. GENERALIZATIONS OF FRACTIONAL BESSEL OPERATORS

The next operators constructed by ITCM may be considered as generalized fractional powers of the
Bessel operator, as they annihilate integer powers of classical Bessel operators.
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Theorem 1. Let f ∈ L2(0,∞), x, y > 0, Re(s) < 0 and Re(s+ ν +1) > 0. Then, for the transmu-
tation operator T1 obtained by ITCM in the form (T1f) (x) = Hν

[
(−t2)sHνf

]
(x) the next integral

representation is true

Hν

[
(−t2)sHνf

]
(x) = Cs,ν x

−2s−ν− 3
2

x∫

0

2F1

(
ν + s+ 1, s + 1; ν + 1;

y2

x2

)
yν+

1
2 f(y) dy

+ Cs,ν x
ν+ 1

2

+∞∫

x

2F1

(
ν + s+ 1, s + 1; ν + 1;

x2

y2

)
y−2s−ν− 3

2 f(y) dy, (24)

where Cs,ν = (−1)s22s+1 Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
and 2F1 is the Gauss hypergeometric function.

Proof. Applying the ITCM for the Hankel transform given by (15) and the dual variable t such that
(−(d2))s = (−t2)s, we have

Hν

[
(−t2)sHνf

]
(x) = (−1)s

+∞∫

0

(xt)
1
2Jν(xt)t

2sdt

+∞∫

0

(yt)
1
2Jν(yt) f(y) dy

= (−1)s
+∞∫

0

(xy)
1
2 f(y)dy

+∞∫

0

t2s+1Jν(xt) Jν(yt) dt

= (−1)s
+∞∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(xt) Jν(yt) dt

= (−1)s
x∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(xt) Jν(yt) dt

+ (−1)s
+∞∫

x

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(xt) Jν(yt) dt.

Using ([1], formula 2.12.31, page 209) we derive
+∞∫

0

xα−1 Jμ(bx) Jν(cx) dx = Aα
μ,ν , b, c, Re(α + μ+ ν) > 0, Re(α) < 2. (25)

Aα
μ,ν = 2α−1b−ν−αcν

Γ(ν+μ+α
2 )

Γ(μ−ν−α
2 + 1)Γ(ν + 1)

2F1

(
ν + μ+ α

2
,
ν − μ+ α

2
; ν + 1;

c2

b2

)
, 0 < c < b,

Aα
μ,ν = 2α−1bμc−μ−α Γ(α+μ+ν

2 )

Γ(ν−μ−α
2 + 1)Γ(μ + 1)

2F1

(
α+ μ+ ν

2
,
α+ μ− ν

2
;μ+ 1;

b2

c2

)
, 0 < b < c.

Thus, for μ = ν, α = 2(s + 1), b = x, c = y, we get

• for 0 < y < x,
+∞∫

0

t2s+1 Jν(xt) Jν(yt) dt

= 22s+1x−ν−2(s+1)yν
Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
2F1

(
ν + s+ 1, s + 1; ν + 1;

y2

x2

)
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ON APPLICATIONS OF INTEGRAL TRANSFORMS 1035

=
1

2

(
2

x

)2(s+1) (y
x

)ν Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
2F1

(
ν + s+ 1, s + 1; ν + 1;

y2

x2

)
.

• for 0 < x < y,

+∞∫

0

t2s+1 Jν(xt) Jν(yt) dt

= 22s+1xνy−ν−2(s+1) Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
2F1

(
ν + s+ 1, s + 1; ν + 1;

x2

y2

)

=
1

2

(
2

y

)2(s+1) (x

y

)ν Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
2F1

(
ν + s+ 1, s + 1; ν + 1;

x2

y2

)
.

Here we have Re(2(s + 1)) < 2 for Re(s) < 0, and x, y, Re(2(s + ν + 1)) > 0. Hence

Hν

[
(−t2)sHνf

]
(x)

=
(−1)s

2

x∫

0

(y
x

)ν− 1
2

(
2

x

)2(s+1) Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
2F1

(
ν + s+ 1, s + 1; ν + 1;

y2

x2

)
y f(y) dy

+
(−1)s

2

+∞∫

x

(
x

y

)ν+ 1
2
(
2

y

)2(s+1) Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
2F1

(
ν + s+ 1, s + 1; ν + 1;

x2

y2

)
yf(y)dy

=
(−1)s

2

Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)

(
2

x

)2(s+1)
x∫

0

(y
x

)ν− 1
2

2F1

(
ν + s+ 1, s + 1; ν + 1;

y2

x2

)
y f(y) dy

+
(−1)s

2

Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
22(s+1)

+∞∫

x

(
x

y

)ν+ 1
2

2F1

(
ν + s+ 1, s + 1; ν + 1;

x2

y2

)
y−2s−1f(y)dy

= (−1)s22s+1 Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
x−2s−ν− 3

2

x∫

0

2F1

(
ν + s+ 1, s + 1; ν + 1;

y2

x2

)
yν+

1
2 f(y) dy

+ (−1)s22s+1 Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
xν+

1
2

+∞∫

x

2F1

(
ν + s+ 1, s + 1; ν + 1;

x2

y2

)
y−2s−ν− 1

2 f(y) dy.

Thus,

Hν

[
(−t2)sHνf

]
(x) = Cs,ν x

−2s−ν− 3
2

x∫

0

2F1

(
ν + s+ 1, s + 1; ν + 1;

y2

x2

)
yν+

1
2 f(y) dy

+ Cs,ν x
ν+ 1

2

+∞∫

x

2F1

(
ν + s+ 1, s + 1; ν + 1;

x2

y2

)
y−2s−ν− 3

2 f(y) dy,

where Cs,ν = (−1)s22s+1 Γ(ν + s+ 1)

Γ(−s)Γ(ν + 1)
. �
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3. OPERATORS COMMUTING WITH THE BESSEL OPERATOR
AND GENERALIZATIONS OF HILBERT OPERATORS

In this section we construct some more examples by ITCM method.

Theorem 2. Let f ∈ L2(0,∞), x, y > 0, Re(s) < 0, −Re ν < Re 2(s + 1) < 2. We have that for
an operator (T2f) (x) = Hν

[
(−t2)sYνf

]
(x), the next integral representation is true

(T2f)(x) =
(−1)s+1

2π

(
2

x

)2(s+1)

cos(νπ)
Γ(−ν)Γ(s+ 1 + ν)

Γ(−s)

×
x∫

0

(y
x

)ν− 1
2

2F1

(
s+ 1, s + 1 + ν; 1 + ν;

y2

x2

)
y f(y) dy

+
(−1)s+1

2π

(
2

x

)2(s+1) Γ(ν)Γ(s+ 1)

Γ(ν − s)

x∫

0

(
x

y

)ν+ 1
2

2F1

(
s+ 1, s + 1− ν; 1− ν;

y2

x2

)
y f(y) dy

+
(−1)s

2π
22(s+1) cos(sπ)

Γ(s + 1 + ν)Γ(s+ 1)

Γ(ν + 1)

×
+∞∫

x

(
x

y

)ν+ 1
2

2F1

(
s+ 1, s+ 1− ν; 1− ν;

x2

y2

)
y−2s−1 f(y) dy. (26)

Proof. Applying the ITCM for the Hankel and the Y-transforms given by (15) and (16), and the dual
variable t such that (−(d2))s = (−t2)s, we have

Hν

[
(−t2)sYνf

]
(x) =

+∞∫

0

(xt)
1
2Jν(xt)

⎡
⎣(−t2)s

+∞∫

0

(yt)
1
2Yν(yt)f(y)dy

⎤
⎦ dt

= (−1)s
+∞∫

0

(xt)
1
2Jν(xt)t

2sdt

+∞∫

0

(yt)
1
2Yν(yt) f(y) dy

= (−1)s
+∞∫

0

y
1
2 f(y)dy

+∞∫

0

(x)
1
2 t2s+1Jν(xt) Yν(yt) dt

= (−1)s
+∞∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(xt) Yν(yt) dt

= (−1)s
x∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(xt) Yν(yt) dt

+ (−1)s
+∞∫

x

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(xt) Yν(yt) dt.

Using (formula 4. 2.13.15 from [1], p. 272) of the form

• for 0 < b < c
+∞∫

0

xα−1 Jμ(bx) Yν(cx) dx = −2α−1 bμ

π cα+μ
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× cos

(
α+ μ− ν

2
π

)
Γ(α+μ+ν

2 )Γ(α+μ−ν
2 )

Γ(μ+ 1)
2F1

(
α+ μ+ ν

2
,
α+ μ− ν

2
;μ+ 1;

b2

c2

)
; (27)

• for 0 < c < b
+∞∫

0

xα−1 Jμ(bx) Yν(cx) dx

= −2α−1 cν

π bα+ν
cos (νπ)

Γ(−ν)Γ(α+μ+ν
2 )

Γ(1− α+μ−ν
2 )

2F1

(
α− μ+ ν

2
,
α+ μ+ ν

2
; 1 + ν;

c2

b2

)

− 2α−1 bν−α

πcν
Γ(ν)Γ(α+μ−ν

2 )

Γ(1 + ν+μ−α
2 )

2F1

(
α− μ− ν

2
,
α+ μ− ν

2
; 1− ν;

c2

b2

)
; (28)

where b, c > 0; |Re ν| −Re μ < Re α. Thus, for α = 2(s + 1), μ = ν, x = t, b = x, c = y, we obtain
+∞∫

0

t2s+1 Jν(xt) Yν(yt) dt

=
22s+1 xν

π y2(s+1)+ν
cos (sπ)

Γ(s+ 1 + ν)Γ(s+ 1)

Γ(ν + 1)
2F1

(
s+ 1 + ν, s+ 1; ν + 1;

x2

y2

)
,

for 0 < x < y;

and also
+∞∫

0

t2s+1 Jν(xt) Yν(yt) dt

= − 22s+1 yν

π x2(s+1)+ν
cos (νπ)

Γ(−ν)Γ(s+ 1 + ν)

Γ(−s)
2F1

(
s+ 1, s + 1 + ν; 1 + ν;

y2

x2

)

− 22s+1 xν−2(s+1)

πyν
Γ(ν)Γ(s+ 1)

Γ(ν − s)
2F1

(
s+ 1, s + 1− ν; 1− ν;

y2

x2

)
,

for 0 < y < x;

x, y > 0;−Re ν < Re 2(s+ 1) < 2, where Re(s) < 0. Hence,

Hν

[
(−t2)sYνf

]
(x) = (−1)s

x∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(xt) Yν(yt) dt

+ (−1)s
+∞∫

x

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(xt) Yν(yt) dt = I1 + I2,

where

I1 = (−1)s
x∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(xt) Yν(yt) dt

=
(−1)s+1

2π

(
2

x

)2(s+1)

cos(νπ)
Γ(−ν)Γ(s+ 1 + ν)

Γ(−s)

×
x∫

0

(y
x

)ν− 1
2

2F1

(
s+ 1, s + 1 + ν; 1 + ν;

y2

x2

)
y f(y) dy
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+
(−1)s+1

2π

(
2

x

)2(s+1) Γ(ν)Γ(s+ 1)

Γ(ν − s)

x∫

0

(
x

y

)ν+ 1
2

2F1

(
s+ 1, s + 1− ν; 1− ν;

y2

x2

)
y f(y) dy,

and at last we get the final formula

I2 = (−1)s
+∞∫

x

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(xt) Yν(yt) dt

=
(−1)s

2π
22(s+1) cos(sπ)

Γ(s + 1 + ν)Γ(s+ 1)

Γ(ν + 1)

×
+∞∫

x

(
x

y

)ν+ 1
2

2F1

(
s+ 1, s+ 1− ν; 1− ν;

x2

y2

)
y−2s−1 f(y) dy.

�

It is easy to see that for ν = 1
2 the operator Hν Yν equals to Hilbert transform on semi-axes

[H 1
2
Y 1

2
f ](x) =

2

π

∞∫

0

xf(y)

y2 − x2
dy.

Now we calculate another useful composition by ITCM method, it is again a transmutation operator.
Theorem 3. Let f ∈ L2(0,∞), x, y > 0; Re(s) < 0,−Reν < Re 2(s + 1) < 2. Define an operator

T3(f) = Yν(−t2)sHν(f). (29)

Then, the next integral representation holds true

(T3f)(x) =
(−1)s

2π

(
2

x

)2(s+1)

cos(sπ)
Γ(s+ 1 + ν)Γ(s+ 1)

Γ(ν + 1)

×
x∫

0

(y
x

)ν− 1
2

2F1

(
s+ 1, s + 1 + ν; 1 + ν;

y2

x2

)
y f(y) dy

+
(−1)s+122s+1

π
cos(νπ)

Γ(−ν)Γ(s+ 1 + ν)

Γ(−s)

×
+∞∫

x

(
x

y

)ν+ 1
2

y−2(s+1)
2F1

(
s+ 1, s+ 1 + ν; 1 + ν;

x2

y2

)
y f(y) dy

+
(−1)s+122s+1

π

Γ(ν)Γ(s + 1)

Γ(ν − s)

×
+∞∫

x

(y
x

)ν− 1
2
y−2(s+1)

2F1

(
s+ 1, s + 1− ν; 1− ν;

x2

y2

)
y f(y) dy. (30)

Proof. Applying the ITCM for the Hankel and the Y-transforms given by (15) and (16), and the dual
variable (−(d2))s = (−t2)s, we have

[
Yν(−t2)sHνf

]
(x) =

+∞∫

0

(xt)
1
2Yν(xt)

⎡
⎣(−t2)s

+∞∫

0

(yt)
1
2Jν(yt)f(y)dy

⎤
⎦ dt

= (−1)s
+∞∫

0

(x)
1
2Yν(xt)t

2s+1dt

+∞∫

0

(y)
1
2Jν(yt) f(y) dy

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 3 2023



ON APPLICATIONS OF INTEGRAL TRANSFORMS 1039

= (−1)s
+∞∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1Jν(yt) Yν(xt) dt

= (−1)s
x∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(yt) Yν(xt) dt

+ (−1)s
+∞∫

x

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(yt) Yν(xt) dt.

Using formula (27) and (28) for α = 2(s + 1), μ = ν, x = t, b = y, c = x, we obtain for 0 < y < x,
+∞∫

0

t2s+1 Jν(yt) Yν(xt) dt

=
22s+1 yν

π x2(s+1)+ν
cos (sπ)

Γ(s+ 1 + ν)Γ(s+ 1)

Γ(ν + 1)
2F1

(
s+ 1, s + 1 + ν; ν + 1;

y2

x2

)
,

and also the next is valid for 0 < x < y

+∞∫

0

t2s+1 Jν(yt) Yν(xt) dt

= − 22s+1 xν

π y2(s+1)+ν
cos (νπ)

Γ(−ν)Γ(s+ 1 + ν)

Γ(−s)
2F1

(
s+ 1, s + 1 + ν; 1 + ν;

x2

y2

)

− 22s+1 yν−2(s+1)

πxν
Γ(ν)Γ(s+ 1)

Γ(ν − s)
2F1

(
s+ 1, s + 1− ν; 1− ν;

x2

y2

)
.

x, y > 0;−Re ν < Re 2(s+ 1). Thus,

[
Yν(−t2)sHνf

]
(x) = (−1)s

x∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(yt) Yν(xt) dt

+ (−1)s
+∞∫

x

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(yt) Yν(xt) dt = J1 + J2,

where

J1 = (−1)s
x∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(yt) Yν(xt) dt

=
(−1)s22s+1

π x2(s+1)
cos (sπ)

Γ(s+ 1 + ν)Γ(s+ 1)

Γ(ν + 1)

×
x∫

0

(y
x

)ν− 1
2

2F1

(
s+ 1, s + 1 + ν; ν + 1;

y2

x2

)
yf(y)dy

and

J2 = (−1)s
+∞∫

x

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Jν(yt) Yν(xt) dt
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=
(−1)s+122s+1

π
cos (νπ)

Γ(−ν)Γ(s+ 1 + ν)

Γ(−s)

×
+∞∫

x

(
x

y

)ν+ 1
2

2F1

(
s+ 1, s + 1 + ν; 1 + ν;

x2

y2

)
y−2s−1f(y)dy

+ (−1)s+1 2
2s+1

π

Γ(ν)Γ(s+ 1)

Γ(ν − s)

+∞∫

x

(y
x

)ν− 1
2

2F1

(
s+ 1, s + 1− ν; 1− ν;

x2

y2

)
y−2s−1f(y)dy.

�

Remark. The special case when s tends to 0:

lim
s→0

[
Yν(−t2)sHνf

]
(x) = lim

s→0
[J1 + J2] ⇔ [YνHνf ] (x) = lim

s→0
J1 + lim

s→0
J2,

where

lim
s→0

J1 =
2

π x2

x∫

0

(y
x

)ν− 1
2

2F1

(
1, 1 + ν; ν + 1;

y2

x2

)
yf(y)dy =

2

π

x∫

0

(y
x

)ν− 1
2 yf(y)

x2 − y2
dy

and

lim
s→0

J2 = − 2

π

+∞∫

x

(y
x

)ν− 1
2

2F1

(
1, 1 − ν; 1− ν;

x2

y2

)
y−1f(y)dy =

2

π

+∞∫

x

(y
x

)ν− 1
2 yf(y)

x2 − y2
dy.

Hence

[YνHνf ] (x) =
2

π

+∞∫

0

(y
x

)ν− 1
2 yf(y)

x2 − y2
dy =

2

π

+∞∫

0

(
x

y

) 1
2
−ν yf(y)

x2 − y2
dy.

For ν = −1
2 the operator YνHν equals to Hilbert transform on semi-axes

−[Y− 1
2
H− 1

2
f ](x) = [H 1

2
Y 1

2
f ](x) =

2

π

∞∫

0

xf(y)

y2 − x2
dy.

Theorem 4. Let f be a proper function, |Re(ν)|2 < Re(2(s+1) < 2 and Re(s) < 0. Then, for the
transmutation operator T4 obtained by ITCM such that T4(f) = Yν(−t2)sYν(f) the next integral
representation is true

[
Yν(−t2)sYνf

]
(x) = (−1)s

22s+1

π2
xν+

1
2 cos(νπ) cos ((s+ 1)π) Γ(−ν)Γ(s+ 1 + ν)Γ(s+ 1)

×
+∞∫

x

y−2(s+1)−ν+ 1
2 f(y) 2F1

(
s+ 1 + ν, s+ 1; 1 + ν;

x2

y2

)
dy

+ (−1)s
22s+1

π2
x−ν+ 1

2 cos ((s+ 1− ν)π) Γ(ν)Γ(s + 1− ν)Γ(s+ 1)

×
+∞∫

x

y−2(s+1)+ν+ 1
2 f(y) 2F1

(
s+ 1, s + 1− ν; 1− ν;

x2

y2

)
dy, (31)

where 2F1 is the Gauss hypergeometric function.
Proof. We have

[
Yν(−t2)sYνf

]
(x) = (−1)s

+∞∫

0

(xt)
1
2Yν(xt)t

2sdt

+∞∫

0

(yt)
1
2Yν(yt) f(y) dy
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= (−1)s
+∞∫

0

(xy)
1
2 f(y)dy

+∞∫

0

t2s+1Yν(xt) Yν(yt) dt

= (−1)s
+∞∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Yν(xt) Yν(yt) dt.

Using ([8], formula 2.13.20, page 278), we derive

+∞∫

0

xα−1 Yμ(bx) Yν(cx) dx =
2α−1bμ

π2cα+μ
cos(μπ) cos

(
α+ μ− ν

2
π

)

× Γ(−μ)Γ(
α+ μ+ ν

2
)Γ(

α+ μ− ν

2
)2F1

(
α+ μ+ ν

2
,
α+ μ− ν

2
; 1 + μ;

b2

c2

)

+
2α−1cμ−α

π2bμ
cos

(
α− μ− ν

2
π

)

× Γ(μ)Γ(
α− μ+ ν

2
)Γ(

α− μ− ν

2
)2F1

(
α− μ+ ν

2
,
α− μ− ν

2
; 1− μ;

b2

c2

)
,

0 < c < b, |Re(μ)| |+Re(ν)| < Re(α) < 2. (32)

Thus, for μ = ν, α = 2(s + 1), x = t, b = x, c = y, and Re(s) < 0, we obtain

+∞∫

0

t2s+1 Yν(xt) Yν(yt) dt =
22s+1xν

π2y2(s+1)+μ
cos(νπ) cos ((s+ 1)π)

× Γ(−ν)Γ(s+ 1 + ν)Γ(s+ 1)2F1

(
s+ 1 + ν, s+ 1; 1 + ν;

x2

y2

)

+
22s+1yν−2(s+1)

π2xν
cos ((s+ 1− ν)π) Γ(ν)Γ(s+ 1)Γ(s + 1− ν)2F1

(
s+ 1, s + 1− ν; 1− ν;

x2

y2

)
,

0 < x < y, |Re(ν)|2 < Re(2(s + 1)) < 2.

Thus,

[
Yν(−t2)sYνf

]
(x) = (−1)s

+∞∫

0

(
x

y

) 1
2

yf(y)dy

+∞∫

0

t2(s+1)−1 Yν(xt) Yν(yt) dt

= (−1)s
22s+1xν

π2
cos(νπ) cos ((s+ 1)π) Γ(−ν)Γ(s+ 1 + ν)Γ(s+ 1)

×
+∞∫

x

(
x

y

) 1
2

y−(2(s+1)+μ)yf(y)2F1

(
s+ 1 + ν, s+ 1; 1 + ν;

x2

y2

)
dy

+
22s+1

π2xν
cos ((s+ 1− ν)π) Γ(ν)Γ(s+ 1)Γ(s + 1− ν)

×
+∞∫

x

(
x

y

) 1
2

yν−2(s+1)yf(y)2F1

(
s+ 1, s + 1− ν; 1− ν;

x2

y2

)
dy

= (−1)s
22s+1

π2
xν+

1
2 cos(νπ) cos ((s+ 1)π) Γ(−ν)Γ(s+ 1 + ν)Γ(s+ 1)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 3 2023



1042 SITNIK, JEBABLI

×
+∞∫

x

y−2(s+1)−ν+ 1
2 f(y) 2F1

(
s+ 1 + ν, s+ 1; 1 + ν;

x2

y2

)
dy

+ (−1)s
22s+1

π2
x−ν+ 1

2 cos ((s+ 1− ν)π) Γ(ν)Γ(s + 1− ν)Γ(s+ 1)

3×
+∞∫

x

y−2(s+1)+ν+ 1
2 f(y) 2F1

(
s+ 1, s + 1− ν; 1− ν;

x2

y2

)
dy.

�

So we proved a collection of composition formulas for Hankel and Y transforms with different
parameters by ITCM method, these compositions are also transmutations for differential operators
connected with singular Bessel operator.
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