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Abstract. The paper considers the class of Hamiltonian systems with two degrees of
freedom. Based on the classical normal form, according to the rules of Born—Jordan
and Weyl-MacCoy, its quantum analogs are constructed for which the eigenvalue
problem is solved and approximate formulas for the energy spectrum are found. For
particular values of the parameters of quantum normal forms using these formulas,
numerical calculations of the lower energy levels were performed, and the obtained
results were compared with the known data of other authors. It was found that the
best and good agreement with the known results is obtained using the Weyl-MacCoy
quantization rule. The procedure for normalizing the classical Hamilton function is
an extremely time-consuming task, since it involves hundreds and even thousands of
polynomials for the necessary transformations. Therefore, in the work, normalization
is performed using the REDUCE computer algebra system. It is shown that the use
of the Weyl-MacCoy and Born—Jordan correspondence rules leads to almost the same
values for the energy spectrum, while their proximity increases for large quantities of
quantum numbers, that is, for highly excited states. The canonical transformation is
used in the work, the quantum analog of which allows us to construct eigenfunctions
for the quantum normal form and thus obtain analytical formulas for the energy
spectra of different Hamiltonian systems. So, it is shown that quantization of classical
Hamiltonian systems, including those admitting the classical mode of motion, using
the method of normal forms gives a very accurate prediction of energy levels.

Key words and phrases: Hamilton function, normal form, Weyl-MacCoy rules,
Born—Jordan rule, quantum normal form, computer modeling, energy spectra

Introduction

Representation of the original classical Hamilton function in normal form
as the sum of homogeneous polynomials in canonically conjugate coordinates
and momenta [1] allows us to carry out its quantum-mechanical description.

The main provisions of the new quantum mechanics were discovered by
W. Heisenberg in 1925 [2]. In the same year, the paper was published by
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M. Born and P. Jordan [3], in which the commutation relation for the quantum-
mechanical operators of coordinate ¢ and momentum p was obtained for the
first time in the form

pq — qp = h/2mi, (1)

as well as the rule of matching to the classical monom of the form ¢™p",
(m,n=1,2,3,...) of its quantum analog, which we present as

n

BJ{qmpn:pnqm}_ n k’”m k (2)

The results obtained by P.A.M. Dirac [4] should be added to this. In this
paper P.A.M. Dirac wrote: “In a recent work [2|, Heisenberg put forward
a new theory, which suggests that not the equations of classical mechanics are
erroneous in any way, but that mathematical operations, by which physical
results are derived from these equations, need modification. Thus, all the
information provided by the classical theory can be used in the new theory...
We make the basic assumption that the difference of the Heisenberg products
of two quantum quantities is equal to the Poisson bracket of these quantities
multiplied by ih /27"

1. . 1
E[q,p] = h(
here {q;p} is the Poisson bracket, [, p] is the commutator for the operators,
q,p, h is Planck’s constant.

{¢,p} — ap —pq) =1, (3)

In 1927, G. Weyl published a paper [5], (see also [6]), in which the author,
on the basis of group-theoretic ideas, proposed the following rule of corre-
spondence between classical quantities and their quantum analogs in integral
form. Let the classical function f(q,p) be determined by the following Fourier
integral

fla,p) = // exp(iop +i7q)¢ (0, T)dodrT,
then the corresponding function F'(g,p) in quantum mechanics is given by

F(q,p) = // exp(iop + imq)( (o, T)dodT,

and the operators ¢, p satisfy the commutation relation (1). Based on these
assumptions for functions of polynomial form f(q,p) = ¢"*p", a number of
different relations were obtained [7], one of which can be written as

WMc{g™p" =p" ¢"} = 55 Z o gk, (4)

which we will call the Weyl-MacCoy quantization rule.
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In [8], the correspondence rule was obtained in the following form

n 1 Q 7’1,' ~k ~N~n—k
flq)p —>2—n§mp f(@)p"",

~

which is represented by repeating anti-commutators [a,b], = ab + ba as

follows:
f@p™ = [ [f(@), Pl Plys -]

In addition to the main works mentioned above, there are publications
in which the problem of the correspondence of classical quantities and their
quantum analogs is discussed from different perspectives (see, for example,

[91-[14]).-

A critical review of various quantization rules for classical Hamilton func-
tions was carried out in [15].

In this paper, for the Hamiltonian, in general, non-integrable system with
two degrees of freedom, we have received the classical normal Birkhoff—
Gustavson form for which the corresponding quantum analogs are obtained by
the Born—Jordan and Weyl-MacCoy quantization rules. For these quantum
analogs, i.e., Schrodinger operators, approximate formulas for energy spectra
are found. According to these formulas, for some specific numerical values of
the parameters, the energy spectra were calculated and compared with the
literature results obtained by direct numerical calculations.

1. A quantum analog of the classical normal form

The paper considers a classical system with two degrees of freedom, whose
Hamilton function is

1
H=§@%WQ+V@ﬂ%

1 1 2
Vg @) = 5 (3 +¢3)+0b (Q%QQ + gcé’) +eqigs +d (gt +43),

(5)

where the coordinates ¢;, ¢, and momenta p;, p, are canonically conjugate
variables, b, ¢, d are dimensionless parameters.

Since system (5) is resonant with a frequency ratio of 1:1, when we bring
it to normal form for the initial Hamilton function, we apply the canonical
transformation with a valence equal to an imaginary unit [16]:

1 1
Q1:Z(_Q1+Q2+P1_P2)7 Q2:§(Q1+Q2+P1+P2>7 ()
6
1 1
p1:§(Q1_Q2+P1_P2)7 pQZZ(Q1+Q2_P1_P2)7

and its inverse transformation is written in the form
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1 , i , 1 , v ,

Q= §(Q2_ZP2)+§(91—ZP1)7 @y = 5(@2—2192)—5@1 —ipy), ™
1 , i , 1 , { :

P = 5(@2 +1py) — E(Ch +ipy), P = 5(@12 +ipy) + 5(911 +ip)-

It directly follows from expressions (7) that the variables Q,, @5 are complex
conjugate to the variables P;, P, respectively.
Canonical transformations (7) using standard substitution

. .0 .
py%py:_z ) qV_>ql/:qy7 1/2132
dq,

with a known commutation rule (Planck constant A = 1)
[]A?w un] = iéuw p,v=1,2 (8>
(6

. — Kronecker symbol) will be presented by us in the operator form

A o~ L~ b o~ c~ =~ oA S ~ A S
Q, =ay +ia;, Qy=ay —iay, P, =ay—1ia,, P,=ay+1ia;, (9)

where ) .
&f = 5(@1 —@1)7 &;r = 5(@2 _iﬁz)a
1 (10)
a; = 5(91 +ipy), Gy = 5(@2 +iDsy),

where the upper “+” symbol denotes Hermitian conjugation. Taking into
account expressions (8), it is easy to verify that the operators (10) commute
by the rule

- . 1
4,08 = 5

J

pv?

and the operators (9) obey the rule

By Q5] = 0, (11)

However, the commutation (11) can be directly obtained from the Dirac
quantization condition (3), given that the classical canonical transformation
(6) has a valence equal to an imaginary unit.

From the expressions (9), (10) it follows that the operators P, and Q,),
(v = 1,2) are the annihilation and birth operators, respectively.
Using the quantization rules (2) and (4), we obtain two expressions of its

quantum analogs IA(?J and IAQ;V Me respectively, and each expression can be
represented as the sum of the diagonal and nondiagonal parts

L RB

nondiag*

>BJ _ 7-BJ
K6 _Kdiag

>WMc _ 7-WMc - WNMc
KG - Kdiag + Knondiag‘
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Below we present the diagonal parts only:

2 N S s LA E 5
~ o~ ~ o~ o~ o~ ~ 1 A o 5
+ Ky (lel + Qo P +2Q, P Qy P, + 5) + K3 [(Q1P1 —QuP5)” + 5] +

+ Koy [(@Py + @oPy 17 4+ (@ P2 +
+3@P) + QP+ GuP) + 5| -
— Ky [(Q1p1 +QoPy + 1)(Q) P + Qo Py +2Q, PQy Py + 3)} +
+ K [(Q1]51 + QP + 1) ((@1]51 — QP + i(@lpl + Q2ﬁ2)> -

~ ~ ~

~ SRR (12)

WM _ G P4 O, F TR 1
K(ml\g/IC:Q1P1+Q2P2+1+K41 |:<Q1P1+Q2P2+1)2+§:|+

+ Ky (©1]31 +Qy Py +2Q,P,Q, P, + %) + Ky3 [(Q1p1 —QoP)% + %] +
+ Koy [(@1]51 + Qo Py + 12 +2(Q, P + Q, P, + 1)] -
— Ky [(Q1p1 + Qo Py +1)(Q Py + Qu Py +2Q, PLQ, P, + 1)} +
+ Ko [(Q1P1 +QoPy +1) ((@1}31)2 +(QoPy)? — 20, PQ, P, + 1)] - (13)
We note that the quantum state vectors [2]

NA4+L\, (N—L\] Y% \nry ~ner
N = (S (F)] e o),

P,|0,0) = P,|0,0) = 0,

(14)

where N is the main quantum number, N =0, 1,2, 3, ..., and L is the orbital
quantum number, which for a given value N takes the following values:
L=+N, £(N —2), £(N —4), ..., £1(0), are eigenvectors for the diagonal
parts of quantum analogs (12) and (13). The presence of nondiagonal terms in
quantum analogs (12) and (13) is due to the fact that in the original classical
Hamiltonian system (5) there is a 1:1 resonance ratio between frequencies.

2. The energy spectra of quantum normal forms

Since vectors (14) represent an orthonormal basis, the energy spectra
of quantum normal forms (12) and (13) are determined by the following
expressions:
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EYF = (N,LIKS) IN, L)+ > (N, L'|KB] [N, L), (15)
N’,L’
BN = (N,LIKYM|N, L) + Y (N, L'|K¥M¢ [N, L), (16)
N’ L’/
Using the relations
N+L N-—L

QPIN.L) = (Z57 ) VL), QPIN.L) = (S5 ) IN. L),

from expressions (15) and (16) without taking into account the nondiagonal
terms, we obtain the formulas for the energy spectra

1 1
BNy, =N+ 1+ 5Ky (N> +4N +7) + S Kp(N? + 2N = L2 + 1)+

1 1
5 K3 (217 +5) + S Ky (8N? + 25N2 4+ T8N + L2 + 60)—

1
5K64(N3 +3N? +8N — NL? — L% +3)+

1
+ gK66(N2 + 14N + 8NL? + 9L* + 12), (17)

1 1
1%%%:N+1+§KM@N?+MV+$+§Kumﬂ+2N—L2+D+

1
+5K@@L”+U+JQAN3+3N2+MV+$—

1
— 5K64(N3 +3N? +2N — NL? — L + 1)+

+ Kg(N + NL?* + L?+1). (18)

As it can be seen, the energy spectrum in both cases of quantization is
degenerate by sign of the orbital quantum moment L. Besides, taking into
account the contributions of nondiagonal terms can lead to a shift of energy
levels, which differ in the value of the orbital quantum number by four and
six units. Therefore, it is expected that approximate formulas (17), (18) with
satisfactory accuracy describe the energy spectrum of the lowest states in the
vicinity of a stationary point located at the origin.

From the comparison of formulas (17), (18) for energy spectra, a general
conclusion can be drawn that the quantization rules of Born—Jordan and
Weyl-MacCoy predict different values for the ground state energy, which are
determined by the numerical values of the parameters b, ¢ and d.

More specific conclusions can be obtained by comparing the results of
numerical calculations using formulas (17), (18) with exact energy levels
calculated for any particular values of the parameters of the Hamiltonian,
which will be performed in the next section. In cases where the classical
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system (5) is integrable, approximate formulas (17), (18), expressed directly
through the parameters b, ¢ and d have the following form.

1. If there is a relationship ¢ = 4d, and the parameter b is not equal to or
is equal to zero, then the energy spectra are calculated by the formulas:

9 9 3
B =N+ 1+d ({4 N =312 46) -

27 4
— d? <8§5N3 + %NQ + %N - %LQ — %NLQ + %) -
— b2 (2N2+2N—25—4L2+§> +
+ db? (%N?’ + %NQ + %N — %LQ — %NL2 + %) —

, 9 9 3
EYVVgIC:N+1+d<ZN2+—N——L2+3)+

2 4
+ d? (gN?’ + %NQ + %N — 5—81L2 — %NP) —
— b2 (2N2+2N—25—4L2+2) —
— db? (%Ng + %NQ + 24—5N — %5L2 — %Nﬁ) +
+ b4 (:%ZN?’ + %NQ + ig;N - 322[% — ZngH) . (20)

2. If the parameters b = ¢ = 0, but the parameter d > 0, then the formulas
have the form:

1
E]%‘L:N+1+d<;N2+3N—§L2+4>—

17 75 9 27

, 3 1
EWO:N+1+d<§N2+3N—§L2+2>—

17 51 9 9 21
—d? <ZN3 + N2+ 19N — S L — - NL? + 7) . (22)

3. If the parameters b = 0, ¢ = —2d, d # 0, then we obtain the formulas:

9 9 3
E%]L=N+1+d<§N2+ZN—§L2+3>—
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85 1037 1479 187 51 561
—d? (N34 N2 N - 2 SN2 —> 2
d (32 BSTT 64 128 iVt ay) 23

| 9 , 9. 3, 3
EWC:N+1+d(§N2+—N——L2+—>—

4 8 2
187 061 391 153 153 o1
—d? (—N3 ——N?+ " N-—--——L[?-"—""NIL? —) . (24
32 * 32 * 16 32 32 * 4 (24)

3. The comparison of energy spectra

Unfortunately, the exact spectrum obtained, for example, by direct numeri-
cal calculations of the Schrodinger equation with its quantum analog of the
original Hamilton function (5), in which a well-known replacement is to be

made p; — D, = —ia—ql, Py — Dy = —ia—q2, ¢ — ¢ = q1, Go — Qo = qy for

arbitrary values of its parameters, is not available in the literature.

Also, direct numerical calculations using modern computer technologies
face the difficulty of solving eigenvalue problems, for example, even with the
help of carefully developed software packages based on the diagonalization
method, which is also the task of integrating the Schrédinger equation for
two or more independent variables.

Below we present the results of numerical calculations of energy spectra for
specific numerical values of the parameters b, ¢, d in cases where the classical
system (5) is integrable.

Table 1 shows the values of the lowest energy levels calculated by the
approximate formulas (19) and (20) in the first case of integrability, i.e.,
under the condition ¢ = 4d and b = 0.

Table 1
The comparison of energy levels at parameter values b = 0, ¢ = 0.02, d = 0.005, (¢ = 4d)

No| By, | EY, | ENMe | BY, - pwye [ 0N g [ gB g
1. | By | 1.028247 | 1.015000 | 0.013247 - -

2. | By 41 2.055166 | 2.045000 | 0.010166 1.030000 1.026919

3. E27i2 3.095512 | 3.089363 | 0.006149 1.044363 1.039953

4. E270 3.108259 | 3.106275 | 0.001984 0.016913 0.013141

5. E37i3 4.147469 | 4.147450 | 0.000019 1.041175 1.039209

6. E37i1 4.172475 | 4.182550 | —0.010075 0.035100 0.025006

7. | By g4 5211578 | 5.218625 | —0.007047 1.036075 1.039103

8. E47i2 5.247175 | 5.273188 | —0.026013 0.054563 0.035597

9. | E4o | 5.259041 | 5.291375 | —0.032334 0.018188 0.011866
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From the table 1, it follows that the Weyl-MacCoy quantization rule leads
to a lower energy level for the ground state and a greater decomposition of
the levels with respect to the orbital moment at a given value of the principal
quantum number N. In the classically integrable case under consideration,
there are no exact (analytical or numerical) values of the energy spectrum
in the current literature. However, the spectrum is known [17] in the second
classical case of integrability, when the parameters of the quantum analog of
the Hamilton function (5) are equal b =0, ¢ =0, d # 0.

Besides, the values of the energy spectrum of a one-dimensional anharmonic
oscillator are known and also with great accuracy, in particular, with a fourth
degree in potential energy. Knowing this spectrum, it is possible to construct
an approximate spectrum of a quantum analog of the original Hamilton
function (5), but already a two-dimensional Hamiltonian given the values of
parameters b = 0, ¢ = —2d, d # 0, for which system (5) is integrable in the
classical case.

We will compare below these well-known and very reliable numerical results
for the energy spectra with our results, which are calculated by formulas (23),
(24) according to the Born-Jordan and Weil-McCoy quantization rules.

For parameter values b = 0, ¢ = 0 and d # 0 the Schrodinger equation
corresponding to the classical Hamilton function (5) allows separation of
variables in polar coordinates, and the energy spectrum is characterized by
a radial quantum number n and orbital momentum /. In [17] a method for
numerical solving the radial Schrédinger equation was developed and energy
levels were calculated for the values of quantum numbers equal n,l = 0,1, 2
for a parameter value d = 0.000005. Quantum numbers n, [ are connected
with our numbers N, L by the following relations: N = 2n 41, |L| = .

Table 2 shows the energy levels obtained in [17], as well as their values
calculated for the same value of the parameter using formulas (21) and
(22) based on quantization of the classical normal form, according to the
Born—Jordan and Weil-McCoy rules, respectively.

Table 2 shows that a very good approximation to the exact spectrum is
given by the application of the Weyl-MacCoy quantization rule. In particular,
the ground state energy obtained using the Weyl-MacCoy quantization rule
differs from the result of [17] by 0.5 -1077%, and when quantized by the
Born—Jordan rule, by 0.001%. At the same time, for energy of level 14, these
errors are equal, respectively, 0.4 - 1078% and 0.0001%, i.e., the prediction
according to the Born—-Jordan rule improves.

In the third case (b =0, ¢ = —2d, d # 0) of integrability of the classical
system (5), with its quantum-mechanical description, it is necessary to solve
the following two-dimensional Schrédinger equation

2

(H, + H))¥ =2E¥, H, = i +¢? +2dgt, i=1,2, (25)
K3

where the variables are separated. Therefore, its solving is reduced to solving

two identical one-dimensional equations for the anharmonic oscillator, and the

energy spectrum is found in the form of the following sum 2F = 2FE, + 2F,.

The quantum numbers of an isotropic two-dimensional oscillator (N, L) are

connected with the quantum numbers (n1,n2) of one-dimensional oscillators
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by the following relations: N =nl + n2 and L = nl —n2. We note that the
ordering of the values of the energy spectrum levels by the value of quantum
numbers (N, L) as compared to another numbering of states has the advantage
that the values of the energy spectrum levels, numbered by quantum numbers
(N, L), grow with an increase of the main quantum number.

Table 2
The comparison of energy levels E]]?’\;]L and E%I\LIL with their values from [17]
for d = 0.000005

No. | 2Ey E¥ EXyMe Results [17]
1. | 2E,, | 2.0000399985 | 2.0000199995 | 2.0000199995
2. | 2E; 4, | 4.0000799961 | 4.0000599979 | 4.0000599981
3. | 2E, ., | 6.0001399918 | 6.0001199946 | 6.0001199949
4. | 2B, |6.0001599905 | 6.0001399933 | 6.0001399936
5. | 2F5 5 | 8.0002199853 | 8.0001999892 | 8.0001999892
6. | 2F;,,; | 8.0002599818 | 8.0002399856 | 8.0002399859
7. | 2B, ,, | 10.000319975 | 10.000299981 | 10.000299981
8. | 2E, ., | 10.000379969 | 10.000359974 | 10.000359975
9. | 2E,, |10.000399967 | 10.000379971 | 10.000379972
10. | 2E5 5 | 12.000439962 | 12.000419969 | 12.000419969
11. | 2E; 3 | 12.000519952 | 12.000499958 | 12.000499958
12. | 2E5 ;| 12.000559947 | 12.000539953 | 12.000539953
13. | 2E5 g | 14.000579946 | 14.000559953 | 14.000559953
14. | 2B 4 | 14.000679930 | 14.000659937 | 14.000659937
15. | 2Eg ., | 14.000739921 | 14.000719928 | 14.000719929
16. | 2B, | 14.000759918 | 14.000739925 | 14.000739925

Conclusions

In this paper for a classical system with two degrees of freedom with the
Hamilton function (5), a classical normal form is obtained in the Birkhoff-
Gustavson approach, for which its quantum analogs are constructed according
to the Born—Jordan and Weyl-MacCoy heuristic quantization rules. For these
quantum analogs, which are nothing but approximate differential expressions
for the exact Schrédinger operator, the eigenvalue problem is solved and the
formulas of energy spectra are found.
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Using these formulas, in two special cases with specific numerical values
of the parameters, the lower energy levels were calculated and the results
obtained were compared with the data available in the works published by
other authors. It was found that the best and good agreement with the known
results of calculating the energy spectrum is obtained using the Weyl-MacCoy
quantization rule in comparison with the Born—Jordan rule.

Both the Weyl-MacCoy and Born-Jordan quantization rules are derived
from the fundamental, but different postulates of classical and quantum me-
chanics. For the system under consideration, particular numerical results for
the energy spectrum reveal the advantage of the Weyl-MacCoy quantization
rule, however, it is probably premature to extend this conclusion to other
systems.
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KBaHTOBaHNEe KJIaCCUYECKUX ABYMEPHBIX I'aMMJIbTOHOBDBIX
CucCTremM

. H. Beaaesa

Benzopodcxuti 2ocydapecmeernnviti uccaedosamenvekutl yHusEpcumem
ya. Ilobedw, d. 85, Beazopod, 308015, Poccus

Amnnoranusi. B cratbe paccMarpuBaercs KJIacC raMUJILTOHOBBIX CUCTEM C JBYMS
crernensMu cBoOObI. Ha ocHOBe Kjtaccraeckoit HOPpMAaJIbHOM (DOPMBI, COTJIACHO TIPa-
sutam Bopra-opaama n Beitst- MakKos, HOCTPOEHBI €6 KBAHTOBBIE AHAJOTH, IS
KOTODPBIX DeIleHa 3aja4da Ha COOCTBEHHbIE 3HAYEHUS U HAN/IeHbI TPUOJIMKEHHDBIE
dOPMYJIBI JIJIS SHEPIreTUIECKOTO crieKTpa. JIjisd KOHKPETHBIX 3HAYEHUN TTapaAMEeTPOB
KBaAHTOBBIX HOPMAJBHBIX (DOPM C UCIIOJIH30BAHUEM ITUX (POPMYJI OBLIN MTPOBEICHDI
9HUCJIEHHBIE PACIETHI HIKHUX YHEPreTUIECKUX YPOBHEN, MOy I€HHBIE PE3YIbTAThI
OBLIIN COIIOCTABJIEHBI C U3BECTHBIMU JAHHBIMU JIPYTUX aBTOPOB. OOHADYIKEHO, ITO
HAWJIyYIllee COIVIACHE C M3BECTHBIMU PE3YJILTATAMU JIOCTUTAETCs C UCIOJIb30BAHUEM
npaBmia kBanTopanus Beiig—Maxkkosi. [Iporenypa HopMan3amm KaacCUIeCKOi
dbyukiun amunbrona siBisieTcs: KpafiHe TPyI0EMKO 3aja4eil, TaK KaK BOBJIEKAET
COTHU U JAXK€ TBICSYM MHOT'OYJIEHOB Jijisi HEOOXOJIMMBIX IpeobpazoBanuii. [Tosro-
My B paboTe HOPMAaJIM3AIUs BBITIOJHAETCHA C TOMOIIBIO CUCTEMbI KOMITBIOTEPHOI
asrebper REDUCE. Ilokazano, 9To MCIIOb30BaHUE IIPABUJI COOTBeTCTBUS BopHa—
Nopaama u Beitns—MakKosi IPUBOAUT MPAKTHYECKH K OJHAM M TEM K€ 3HAUCHUSIM
JIJIS SHEPTEeTUIECKOTO CIIEKTPA, IIPU 9TOM UX OJIM30CTH YBEJIMIUBACTCS JIJI OOJIBIITAX
BEJIMYMH KBAHTOBBIX YHCEJ, TO €CTb JIJI BHICOKOBO3OYKIEHHBIX cocTosiHMi. B pa-
60Te UCIIOIb30BAHO KAHOHUYECKOe TpeoOpa30BaHue, KBAHTOBBIN aHAJIOr KOTOPOTO
[TO3BOJISIET TIOCTPOUTH COOCTBEHHBIE (DYHKITUU JIjIs KBAHTOBOM HOPMAJIBLHON (DOPMBI
¥ TTOJIyIUTh TAKUM 00Pa30M aHAJTUTAIECKUE (POPMYJIBI JIJI IHEPrETUIECKUX CIEKTPOB
pPa3HBIX FAMWJIHBTOHOBBIX cucTeM. VTak, moka3aHo, 9T0 KBAHTOBAHUE KJIACCUIECKUX
FaMUJIBTOHOBBIX CUCTEM, B TOM YHUCJIE JIOMYCKAIONUX KJIACCUICCKUN PEXKUM JIBUKE-
HUS, C IPUMEHEHUEM METOJIa HOPMAJILHBIX (POPM JTAET OU€Hb TOYHOE IMPEICKAZAHNE
YPOBHEH HEPIuu.

KuroueBbie caoBa: dyukima [amuibrona, HopMasbHas Gpopma, IpaBuao Beiiisa—
Makxkos, mpasusio Bopra—lopnana, kBanToBass HOpMaabHasd (HopMa, KOMIBIOTEPHOE
MOJIEJTMPOBAHKE, SHEPTETUIECKHE CIIEKTPHI



