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INTRODUCTION

Let A be a closed operator with dense domain D(A) in a Banach space E. For k > 0, consider
the Euler–Poisson–Darboux equation

u′′(t) +
k

t
u′(t) = Au(t), t > 0. (1)

It follows from the results in the papers [1, 2] that the well-posed statement of initial conditions
for Eq. (1) consists in setting the initial conditions at the point t = 0,

u(0) = u0, u′(0) = 0; (2)

moreover, if k ≥ 1, then the initial condition u′(0) = 0 is removed; this is typical for a number of
equations with a singularity in the coefficients at t = 0.

The well-posed statement of the initial conditions depending on the parameter k ∈ R, as well as
the solution of the corresponding initial value problems in the case where A is the Laplace operator
in the spatial variables, is given in [3, Ch. 1]. Further research on the theory of singular partial
differential equations can be found in [4–8]. As to the abstract Euler–Poisson–Darboux equation (1),
it was considered earlier in [9; 10, Ch. 1; 11] under various assumptions about the operator A.

The papers [1, 2] provide conditions on the operator A that ensure the well-posed solvability
of problem (1), (2). In [2], these conditions are stated in terms of an estimate for the norm of
the resolvent R(λ,A) of the operator A and its weighted derivatives, and in [1], in terms of the
fractional power of the resolvent and its ordinary derivatives. The set of operators A for which
problem (1), (2) is uniformly well posed for k ≥ 0 will be denoted by Gk, and the resolving operator
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of this problem will be denoted by Yk(t) and called the Bessel operator function. In what follows,
the assumption A ∈ Gk for some k ≥ 0 means, in particular, that the Cauchy problem (1), (2)
with the operator A is uniformly well posed and Yk(t) is the resolving operator of this problem,
with Y0(t) = C(t) being the cosine operator function (for more details on the cosine operator
function, e.g., see [12; 13, p. 175; 14; 15]).

The Bessel operator function Yk(t) (Yk(0) = I, Y ′
k(0) = 0) was introduced in [1, 2] as the resolving

operator of the Cauchy problem for the Euler–Poisson–Darboux equation. However, just as in the
theory of semigroups and cosine operator functions, the family of Bessel operator functions can be
introduced (see [16]) independently of the Euler–Poisson–Darboux differential equation with which
it is ultimately connected.

The paper [17] studied the Cauchy problem for the Bessel–Struve equation

u′′(t) +
k

t

(
u′(t)− u′(0)

)
= Au(t), t > 0, (3)

u(0) = 0, u′(0) = u1, (4)

indicated the explicit form of the resolving operator of this problem, which was called the Struve
operator function and denoted by Lk(t) (Lk(0) = 0, L′

k(0) = I), and also provided formulas that
connect the Bessel operator function Yk(t) and the Struve operator function Lk(t) with the integrated
cosine operator function.

The concept of integrated cosine operator function was inspired (see [18–21]) by the researchers’
desire to relax the requirements on the operator coefficient of the Cauchy problem for abstract
second-order differential equations. Let us further recall the definition of integrated cosine operator
function.

Definition. Let α > 0. A one-parameter family of linear bounded operators Cα(t), t ≥ 0, is
called an α times integrated cosine operator function if

1. 2Γ(α)Cα(t)Cα(s) =
∫ t+s

t
(t+s−r)α−1Cα(r) dr−

∫ s

0
(t+s−r)α−1Cα(r) dr+

∫ t

t−s
(r− t+s)α−1×

Cα(r) dr +
∫ s

0
(r + t− s)α−1Cα(r) dr, t > s > 0, where Γ(·) is the Euler gamma function.

2. Cα(0) = 0.
3. For each x ∈ E, the function Cα(t)x is continuous in t ≥ 0.
4. There exist constants M > 0 and ω ≥ 0 such that∥∥Cα(t)

∥∥ ≤Meωt, t ≥ 0.

The generator A of the integrated cosine operator function Cα(t) is defined as follows: D(A) the
set of elements x ∈ E such that there exists an element y ∈ E satisfying the equality

Cα(t)x− tα

Γ(α+ 1)
x =

t∫
0

(t− r)Cα(r)y dr, t ≥ 0, (5)

and in this case we set Ax = y.
A criterion for the operator A to be the generator of an integrated cosine operator function Cα(t)

is that its resolvent R(λ2, A) has the estimate (e.g., see Theorem 2.2.5 in [21])∥∥∥∥ dndλn

(
λ1−αR(λ2, A)

)∥∥∥∥ ≤ Mn!

(λ− ω)n+1
, λ > ω, n ∈ N.

Let Pν(t) be the spherical Legendre function (see [22, p. 205]). The formulas connecting the
Bessel operator function Yk(t) and the Struve operator function Lk(t) with the integrated cosine
operator function Cα(t) are contained in the following two theorems.
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Theorem 1 [17]. Let k = 2α > 0, let an operator A be the generator of an α times integrated
cosine operator function Cα(t), and let u0 ∈ D(A). Then problem (1), (2) is uniformly well posed;
i.e., A ∈ Gk , and the corresponding Bessel operator function is representable in the form

Yk(t)u0 =
2αΓ(α+ 1/2)√

πtα

Cα(t)u0 −
1∫

0

P ′
α−1(τ)Cα(tτ)u0 dτ

 . (6)

It follows from Theorem 1 that the function u(t) = Yk(t)u0 defined by relation (6) is the only
solution of the Cauchy problem (1), (2).

Theorem 2 [17]. Let u1 ∈ D(A), let k = 2α > 0, and let an operator A be the generator of
an α times integrated cosine operator function Cα(t). Then the function u(t) = Lk(t)u1 , where

Lk(t)u1 =
2α Γ(α+ 1)

tα−1

1∫
0

Pα−1(τ)Cα(tτ)u1 dτ, (7)

is a solution of problem (3), (4).

Note also that the condition for the existence of the operator functions Yk(t) and Lk(t) in
relations (6) and (7) is the condition A ∈ Gk (see [17, 23]).

Example 1. If the operator A is the operator of multiplication by a number, then

Yk(t) = Γ(k/2 + 1/2)

∞∑
j=0

(t2A/4)j

j! Γ(j + k/2 + 1/2)
= Γ(k/2 + 1/2)

(
t
√
A/2

)1/2−k/2

Ik/2−1/2

(
t
√
A
)
,

Lk(t) =

√
π

2
Γ(k/2 + 1)

∞∑
j=0

t(t2A/4)j

Γ(j + 3/2)Γ(j + k/2 + 1)
=

2k/2−1/2
√
πΓ(k/2 + 1)

Ak/4+1/4tk/2−1/2
Lk/2−1/2

(
t
√
A
)
,

where Iν(z) is the modified Bessel function and Lν(z) is the modified Struve function [24, p. 655].
That is why the operator function Yk(t) was called the Bessel operator function and the operator
function Lk(t) was called the Struve operator function.

In the present paper, we consider an Euler–Poisson–Darboux functional-differential equation of
the form

u′′(t) +
2(µ+ ν) + 1

t

(
u′(t)− u′(0)

)
+

4µν

t2
(
u(t)− u(0)− tu′(0)

)
= Au(t), t > 0. (8)

Following [21, 22], the functional-differential equation (8) generalizing the Euler–Poisson–
Darboux and Bessel–Struve equations can also be called a weakly loaded Euler–Poisson–Darboux
equation. The interest in the study of loaded differential equations is explained by the scope of their
applications and the fact that loaded equations constitute a special class of functional-differential
equations with their own specific problems. A survey of publications on loaded differential equations
can be found in the monographs [25, 26].

1. CAUCHY PROBLEM

Next, we consider the initial value problem and find a solution of the singular functional-
differential equation (8) with the initial conditions

u(0) = u0, u′(0) = u1. (9)
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If ν = 0, µ ≥ −1/2, and A ∈ G2µ+1, then Eq. (8) turns into the Bessel–Struve equation, and by
virtue of Theorems 1 and 2, the only solution of problem (8), (9) is the function

uµ,0(t) = Y2µ+1(t)u0 + L2µ+1(t)u1. (10)

Now let ν > 0 and µ ≥ −1/2. In this case, we will seek a solution of problem (8), (9) in the form
of the Erdelyi–Kober type integral

u(t) =

1∫
0

s(1− s2)ν−1U(ts)u2 ds, (11)

where U(ts) and u2 are the twice differentiable operator function and the initial element to be
determined.

Let us calculate the derivatives of the function u(t) defined by relation (11) to obtain, after
integrating by parts,

u′(t) =

1∫
0

s2(1− s2)ν−1U ′(ts)u2 ds = − 1

2ν

1∫
0

d

ds
(1− s2)νsU ′(ts)u2 ds

=
1

2ν

1∫
0

(1− s2)ν(tsU ′′(ts)u2 + U ′(ts)u2) ds,

(12)

u′′(t) =

1∫
0

s3(1− s2)ν−1U ′′(ts)u2 ds. (13)

Assume that the function U(t)u2 satisfies the relation

AU(t)u2 = U ′′(t)u2 +
2µ+ 1

t

(
U ′(t)− U ′(0)

)
u2; (14)

then, taking into account (12)–(14) and the elementary integral (2.2.4.8) in [27], after integration
by parts we have

u′′(t) +
2(µ+ ν) + 1

t

(
u′(t)− u′(0)

)
+

4µν

t2
(
u(t)− u(0)− tu′(0)

)
−Au(t)

=

1∫
0

s(1− s2)ν−1

(
2(µ+ ν) + 1

2ν
(1− s2) + s2 − 1

)
U ′′(ts)u2 ds

+
1

t

1∫
0

(1− s2)ν−1

(
2(µ+ ν) + 1

2ν
(1− s2)− 2µ− 1

)
U ′(ts)u2 ds

+
2µ+ 1

t

1∫
0

(1− s2)ν−1U ′(0)u2 ds−
2(µ+ ν) + 1

t

1∫
0

s2(1− s2)ν−1U ′(0)u2 ds

− 4µν

t

1∫
0

s2(1− s2)ν−1U ′(0)u2 ds+
4µν

t2

1∫
0

s(1− s2)ν−1U(ts)u2 ds
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− 4µν

t2

1∫
0

s(1− s2)ν−1U(0)u2 ds

=
2µ+ 1

2νt

1∫
0

s(1− s2)ν
d

ds
U ′(ts)u2 ds

+
1

t

1∫
0

(1− s2)ν−1

(
2(µ+ ν) + 1

2ν
(1− s2)− 2µ− 1

)
U ′(ts)u2 ds

+
4µν

t2

1∫
0

s(1− s2)ν−1U(ts)u2 ds−
2µ

t2
U(0)u2

= −2µ

t

1∫
0

(1− s2)νU ′(ts)u2 ds+
4µν

t2

1∫
0

s(1− s2)ν−1U(ts)u2 ds−
2µ

t2
U(0)u2

=
2µ

t2
U(0)u2 −

4µν

t2

1∫
0

s(1− s2)ν−1U(ts)u2 ds

+
4µν

t2

1∫
0

s(1− s2)ν−1U(ts)u2 ds−
2µ

t2
U(0)u2 = 0.

Therefore, if relation (14) is satisfied, then the function u(t) defined by relation (11) is a solution
of Eq. (8).

As follows from Theorem 1, the function Y2µ+1(t)u2 satisfies relation (14), and if we take
U(t) = Y2µ+1(t) and u2 = 2νu0, then the function u(t) = Y2µ+1(t)u2 will obviously satisfy the
conditions u(0) = u0 and u′(0) = 0.

By Theorem 2, the function L2µ+1(t)u2 also satisfies relation (14), and if we take

U(t) = L2µ+1(t), u2 =
4Γ(ν + 3/2)√

πΓ(ν)
u1,

then the function u(t) = L2µ+1(t)u2 will satisfy the conditions u(0) = 0 and u′(0) = u1.
Thus, if ν > 0 and µ ≥ −1/2, then the solution of problem (8), (9) is the function

uµ,ν(t) = 2ν

1∫
0

s(1− s2)ν−1Y2µ+1(ts)u0 ds+
4Γ(ν + 3/2)√

π Γ(ν)

1∫
0

s(1− s2)ν−1L2µ+1(ts)u1 ds. (15)

Example 2. If the operator A is the operator of multiplication by a number, then, taking
into account the results in Example 1, the integrals in the expression (15) are calculated (see,
respectively, the integrals (2.15.2.5) in [28] and (2.7. 4.1) in [24]) and the solution uµ,ν(t;u0, u1) of
problem (8), (9) takes the form

uµ,ν(t) = 1F2

(
1;µ+ 1, ν + 1;

t2A

4

)
u0 + t 1F2

(
1;µ+

3

2
, ν +

3

2
;
t2A

4

)
u1, (16)

where 1F2(·) is the hypergeometric function

1F2

(
1;α, β;

t2A

4

)
=

∞∑
j=0

Γ(α)Γ(β)

Γ(j + α)Γ(j + β)

(
t2A

4

)j

.
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Naturally, the definition of a solution in the form of hypergeometric series according to for-
mula (16) also holds for any bounded operator A acting in E. We also point out that earlier
results on the solvability of some integro-differential equations for other values of the parameters of
hypergeometric series were found in the paper [29].

The above reasoning leads to the following assertion.

Theorem 3. Let ν > 0 and µ ≥ −1/2, let u0, u1 ∈ D(A), and let A ∈ G2µ+1. Then the
function uµ,ν(t) defined by relation (15) is the only solution of problem (8), (9).

Proof. To prove the theorem, all that remains is to prove the uniqueness of the solution of
problem (8), (9), which we will establish by contradiction. Let u1(t) and u2(t) be two solutions of
the problem. Consider the function of two variables

w(t, s) = f
(
Y2µ+1(s)

(
u1(t)− u2(t)

))
,

where f ∈ E∗ (E∗ is the dual space) and t, s ≥ 0. Obviously, this function satisfies the equation

∂2w(t, s)

∂t2
+

2(µ+ ν) + 1

t

∂w(t, s)

∂t
+

4µν

t2
w(t, s) =

∂2w(t, s)

∂s2
+

2µ+ 1

s

∂w(t, s)

∂s
, t, s > 0, (17)

and the conditions
lim
t→0

w(t, s) = lim
t→0

∂w(t, s)

∂t
= lim

s→0

∂w(t, s)

∂s
= 0. (18)

Just as was done in [30], by w(t, s) we understand a distribution of tempered growth and apply
the Fourier–Bessel transform over the variable s,

ŵ(t, λ) =

∞∫
0

s2µ+1 jµ(λs)w(t, s) ds,

w(t, s) = γµ

∞∫
0

λ2µ+1jµ(λs)ŵ(t, λ) dλ,

γµ =
1

22µΓ2(µ+ 1)
, jµ(s) =

2µΓ(µ+ 1)

sµ
Jµ(s),

where Jµ(·) is the Bessel function.
From (17) and (18), for the transform ŵ(t, λ) we obtain the problem

∂2ŵ(t, λ)

∂t2
+

2(µ+ ν) + 1

t

∂ŵ(t, λ)

∂t
+

4µν

t2
ŵ(t, λ) = −λ2 ŵ(t, λ), t > 0, (19)

lim
t→0

ŵ(t, λ) = lim
t→0

∂ŵ(t, λ)

∂t
= 0. (20)

By virtue of Example 2, the general solution of the differential equation (19) has the form

ŵ(t, λ) = c1(λ) 1F2

(
1;µ+ 1, ν + 1;− t

2λ2

4

)
+ c2(λ)t 1F2

(
1;µ+

3

2
, ν +

3

2
;− t

2λ2

4

)
,

and the initial conditions (20) obviously imply the equalities c1(λ) = c2(λ) = 0. Consequently,
ŵ(t, λ) = w(t, s) = 0 for each s ≥ 0. In view of the arbitrariness of the functional f ∈ E∗ for s = 0,
we obtain the relation u1(t) ≡ u2(t), therewith establishing the uniqueness of the solution of the
problem under consideration. The proof of the theorem is complete.
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The Struve operator function L2µ+1(t) defined by relation (7) is expressed via the Bessel operator
function Y2µ+2(t) according to the formula (see [17])

L2µ+1(t)u1 =

t∫
0

ξ√
t2 − ξ2

Y2µ+2(ξ)u1 dξ;

therefore, the second term in the representation (15) can be brought to the form

4Γ(ν + 3/2)√
πΓ(ν)

1∫
0

s(1− s2)ν−1L2µ+1(ts)u1 ds

=
4Γ(ν + 3/2)√

πΓ(ν)

1∫
0

s(1− s2)ν−1

ts∫
0

ξ√
t2s2 − ξ2

Y2µ+2(ξ)u1 dξ ds

=
4Γ(ν + 3/2)√

πΓ(ν)

t∫
0

ξY2µ+2(ξ)u1

1∫
ξ/t

s(1− s2)ν−1 ds√
t2s2 − ξ2

dξ

=
2Γ(ν + 3/2)√
πΓ(ν)t2ν

t∫
0

ξY2µ+2(ξ)u1

t2∫
ξ2

(t2 − η)ν−1 dη√
η − ξ2

dξ

=
2Γ(ν + 3/2)√
πΓ(ν)t2ν

√
πΓ(ν)

Γ(ν + 1/2)

t∫
0

ξ(t2 − ξ2)ν−1/2Y2µ+2(ξ)u1 dξ

= (2ν + 1)t

1∫
0

s(1− s2)ν−1/2Y2µ+2(ts)u1 ds,

by virtue of which we have the following assertion.

Corollary 1. Under the assumptions of Theorem 3, the solution uµ,ν(t) defined by relation (15)
can be written in the form

uµ,ν(t) = 2ν

1∫
0

s(1− s2)ν−1Y2µ+1(ts)u0 ds+ (2ν + 1)t

1∫
0

s(1− s2)ν−1/2Y2µ+2(ts)u1 ds. (21)

Since the parameters µ and ν occur in Eq. (8) symmetrically, naturally, the following two state-
ments are true as well.

Theorem 4. Let µ > 0 and ν ≥ −1/2, let u0, u1 ∈ D(A), and let A ∈ G2ν+1. Then the
function uµ,ν(t) defined by the relation

uµ,ν(t) = 2µ

1∫
0

s(1− s2)µ−1Y2ν+1(ts)u0 ds+
4Γ(µ+ 3/2)√

πΓ(µ)

1∫
0

s(1− s2)µ−1L2ν+1(ts)u1 ds

is the unique solution of problem (8), (9).

Corollary 2. Under the assumptions of Theorem 4, the solution uµ,ν(t) can be written in the
form

uµ,ν(t) = 2µ

1∫
0

s(1− s2)µ−1Y2ν+1(ts)u0 ds+ (2µ+ 1)t

1∫
0

s(1− s2)µ−1/2Y2ν+2(ts)u1 ds.
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If the assumptions of Theorems 3 and 4 are simultaneously satisfied and it is necessary to relax
the requirements on the operator A, then one should choose a theorem that uses operator functions
with a larger index, since Gk ⊂ Gm for k < m (see [1, 16]).

Let us give examples of equations for which integrals in the representation (15) can be calculated.

Example 3. In Eq. (8), let µ > 0 and ν = 1/2, and let A be the operator of multiplication by
a number A ̸= 0. Then, according to formula (16), the only solution of the problem

u′′(t) +
2µ+ 2

t

(
u′(t)− u′(0)

)
+

2µ

t2
(
u(t)− u(0)− tu′(0)

)
= Au(t), t > 0, (22)

u(0) = u0, u′(0) = u1, (23)

by virtue of relations (7.14.1.11) and (7.14.1.12) in [24], is the function

uµ,1/2(t) = 1F2

(
1;

3

2
, µ+ 1;

t2A

4

)
u0 + t 1F2

(
1; 2, µ+

3

2
;
t2A

4

)
u1

=

√
π

2
Γ(µ+ 1)

(
t
√
A

2

)−µ−1/2

Lµ−1/2

(
t
√
A
)
u0

+
4µ+ 2

tA

(
Γ

(
µ+

1

2

)(
t
√
A

2

)1/2−µ

Iµ−1/2

(
t
√
A
)
− 1

)
u1

=
1

t
L2µ(t)u0 +

4µ+ 2

tA

(
Y2µ(t)− 1

)
u1.

If an unbounded operator A ∈ G2µ has an inverse, then the representation of the solution of
problem (22), (23) in the form

uµ,1/2(t) =
1

t
L2µ(t)u0 +

4µ+ 2

t

(
Y2µ(t)− I

)
A−1u1

is retained, as easily shown by a straightforward verification.
In particular, if the operator A is the generator of a cosine operator function C(t), then, taking

into account the examples of operator functions given in [17], for µ = 1 we obtain

u1,1/2(t) =
1

t2
(
C(t)− I

)
A−1u0 +

6

t2
(
S(t)− tI

)
A−1u1,

where S(t) = C1(t) is the sine operator function.

Theorem 5. Let the conditions in Theorem 3 be satisfied. Then, uniformly in t ∈ [0, T ], T > 0,
one has the limit relation

lim
ν→+0

uµ,ν(t) = uµ,0(t), (24)

where uµ,0(t) is defined by relation (10).

Proof. Taking into account the representations (15) and (10), for each δ > 0 we have

uµ,ν(t)− uµ,0(t) = 2ν

 1−δ/T∫
0

+

1∫
1−δ/T

 s(1− s2)ν−1
(
Y2µ+1(ts)− Y2µ+1(t)

)
u0 ds

+
4Γ(ν + 3/2)√

πΓ(ν)

 1−δ/T∫
0

+

1∫
1−δ/T

 s(1− s2)ν−1
(
L2µ+1(ts)− L2µ+1(t)

)
u1 ds.
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Owing to the strong continuity of the operator functions Y2µ+1(t) and L2µ+1(t), for any ε > 0

there exists a number δ > 0 such that∥∥∥(Y2µ+1(ts)− Y2µ+1(t)
)
u0

∥∥∥+ ∥∥∥(L2µ+1(ts)− L2µ+1(t)
)
u1

∥∥∥ < ε

as long as |s− 1| < δ/T . Let us fix such a δ > 0. In addition, we also suppose that

M(T ) = sup
[0,T ]

(∥∥Y2µ+1(t)u0

∥∥+ ∥∥L2µ+1(t)u1

∥∥).
Then after obvious estimates we obtain

∥uµ,ν(t)− uµ,0(t)∥

≤ 2ν

(
1 +

2Γ(ν + 3/2)√
πΓ(ν + 1)

)2M(T )

1−δ/T∫
0

s(1− s2)ν−1 ds+ 2ε

1∫
1−δ/T

s(1− s2)ν−1 ds


=

(
1 +

2Γ(ν + 3/2)√
πΓ(ν + 1)

)(
2M(T )

(
1−

(
1− δ2

T 2

)ν )
+ 2ε

)
.

Since the term

2M(T )

(
1 +

2Γ(ν + 3/2)√
πΓ(ν + 1)

)(
1−

(
1− δ2

T 2

)ν
)

tends to zero as ν → +0, while the term

2ε

(
1 +

2Γ(ν + 3/2)√
π Γ(ν + 1)

)
can be made smaller than an arbitrary number ε1 > 0, this implies the validity of the limit rela-
tion (24). In particular, if the operator A is bounded, then, taking into account Example 2, it takes
the form

lim
ν→+0

uµ,ν(t) = lim
ν→+0

(
1F2

(
1;µ+ 1, ν + 1;

t2A

4

)
u0 + t 1F2

(
1;µ+

3

2
, ν +

3

2
;
t2A

4

)
u1

)

= 1F2

(
1;µ+ 1, 1;

t2A

4

)
u0 + t 1F2

(
1;µ+

3

2
,
3

2
;
t2A

4

)
u1

= Γ(µ+ 1)
(
t
√
A/2

)−µ

Iµ

(
t
√
A
)
u0 +

2µ
√
πΓ(µ+ 3/2)

Aµ/2+1/2tµ
Lµ

(
t
√
A
)

= Y2µ+1(t)u0 + L2µ+1(t)u1 = uµ,0(t).

The proof of the theorem is complete.

Consider the case of ν < 0, which is not covered by Theorem 3. If µ ≥ ν − 1/2, then a straight-
forward verification shows that the function

uµ,ν(t) = t−2νY2µ−2ν+1(t)u0 +
1

2
t−2νL2µ−2ν+1(t)u1 +

1

2
t1−2νu1 (25)

satisfies Eq. (8) and the conditions
lim
t→0

t2νu(t) = u0,

lim
t→0

(
t2νu(t)

)′
= u1.

(26)
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Indeed, having calculated the derivatives of the function uµ,ν(t) defined by relation (25), we
obtain

u′
µ,ν(t) = −2νt−2ν−1Y2µ−2ν+1(t)u0 + t−2νY ′

2µ−2ν+1(t)u0 −

− νt−2ν−1L2µ−2ν+1(t)u1 +
1

2
t−2νL′

2µ−2ν+1(t)u1 +
1

2
(1− 2ν)t−2ν ,

u′′
µ,ν(t) = −2ν(−2ν − 1)t−2ν−2Y2µ−2ν+1(t)u0 − 4νt−2ν−1Y ′

2µ−2ν+1(t)u1

+ t−2νY ′′
2µ−2ν+1(t)u0 − ν(−2ν − 1)t−2ν−2L2µ−2ν+1(t)u1

− 2νt−2ν−1L′
2µ−2ν+1(t)u1 +

1

2
t−2νL′′

2µ−2ν+1(t)u1 − ν(1− 2ν)t−2ν−1,

u′′
µ,ν(t) +

2(µ+ ν) + 1

t
u′
µ,ν(t) +

4µν

t2
uµ,ν(t)

= t−2ν

(
Y ′′
2µ−2ν+1(t)u0 +

2(µ− ν) + 1

t
Y ′
2µ−2ν+1(t)u0

)
+

1

2
t−2ν

(
L′′

2µ−2ν+1(t)u1 +
2(µ− ν) + 1

t
L′

2µ−2ν+1(t)u1

)
= t−2νAY2µ−2ν+1(t)u0 +

1

2
t−2ν

(
AL2µ−2ν+1(t)u1 +

2(µ− ν) + 1

t
u1

)
− 2(µ− ν) + 1

2t2ν+1
u1 = Auµ,ν(t), A ∈ G2µ−2ν+1.

Here it was taken into account that the function v(t) = t1−2ν satisfies the inhomogeneous differential
equation

v′′(t) +
2(µ+ ν) + 1

t
v′(t) +

4µν

t2
v(t) = (2µ− 2ν + 1)t−2ν−1u1.

Note also that the representation of the solution in the form (25) was found by substituting the
operator function U(t) = t−2µY1−2µ(t), µ < 0, into relation (11).

The validity of the initial conditions (26) obviously follows from the properties of the operator
functions Y2µ−2ν+1(t) and L2µ−2ν+1(t); thereby, this completes the verification of the assertion.

Thus, the following two theorems are valid, in which the statement about the uniqueness of the
solution is established by contradiction, just as in Theorem 3.

Theorem 6. Let ν < 0, µ ≥ ν − 1/2 and u0, u1 ∈ D(A), and let A ∈ G2µ−2ν+1. Then the
function uµ,ν(t) defined by relation (25) is the unique solution of the differential equation

u′′(t) +
2(µ+ ν) + 1

t
u′(t) +

4µν

t2
u(t) = Au(t), t > 0, (27)

with conditions (26).

Theorem 7. Let µ < 0, ν ≥ µ− 1/2, u0, u1 ∈ D(A), and A ∈ G2ν−2µ+1. Then the function

uµ,ν(t) = t−2µY2ν−2µ+1(t)u0 +
1

2
t−2µL2ν−2µ+1(t)u1 +

1

2
t1−2µu1

is the unique solution of the differential equation (27) with the conditions

lim
t→0

t2µu(t) = u0,

lim
t→0

(
t2µu(t)

)′
= u1.
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Corollary 3. If, in addition, ν ≤ −1/2 in the assumptions of Theorem 6 and µ ≤ −1/2 in the
assumptions of Theorem 7, then the functions uµ,ν(t) have the property uµ,ν(0) = u′

µ,ν(0) = 0 and
satisfy not only the differential equation (27) but also the functional-differential equation (8).

Note that in Theorems 6 and 7, the classical (“nonweighted”) formulation of the initial conditions
is not suitable for identifying a unique solution, since, for example, the function

u(t) = t2c, c ∈ E,

satisfies the homogeneous problem

u′′(t) +
1

t
u′(t)− 4

t2
u(t) = 0, u(0) = u′(0) = 0,

for µ = −1 and ν = 1; thus, the unique solvability of the problems under consideration is violated.

Example 4. Let µ = −1 and ν = −1/2 in Eq. (27), and let the operator A be the generator of
a cosine operator function C(t). Then, according to formula (25) in Theorem 6, the unique solution
of problem (26), (27) is the function

u−1,−1/2(t) = tC(t)u0 +
1

2
tS(t)u1 +

1

2
t2u1.

Remark 1. The resolving operators of the Cauchy problem (8), (9) defined in Theorems 3 and 4
represent the cosine operator functions C(t) integrated in a special way.

Note that if the operator A is the generator of an integrated cosine operator function Cµ+ν+1/2(t),
µ > −1/2, and µ+ ν + 1/2 > 0, then the function

u(t) =
Γ(µ+ ν + 3/2)

tµ+ν+1/2
Cµ+ν+1/2(t)u0

is a solution of the equation

u′′(t) +
2(µ+ ν) + 1

t

(
u′(t)− u′(0)

)
+

4(µ+ ν)2 − 1

4t2
(
u(t)− u(0)− tu′(0)

)
= Au(t), (28)

with the conditions
u(0) = u0, u′(0) = 0; (29)

this is easily shown by a straightforward verification using relation (5).
For ν = µ+1/2, Eqs. (28) and (8) coincide and owing to the statement about the uniqueness in

Theorem 3, the solution of problem(28), (29) has the representation

u(t) = (2µ+ 1)

1∫
0

s(1− s2)µ−1/2Y2µ+1(ts)u0 ds =
Γ(2µ+ 2)

t2µ+1
C2µ+1(t)u0.

Remark 2. The resolving operators of the Cauchy problem (8), (9) for µ > 0 and ν = µ+ 1/2

defined in Theorems 3 and 4 are connected by the relation

2µ

t∫
0

τ 2µ+1

1∫
0

s(1− s2)µ−1 Y2µ+2(τs) ds dτ = 2µ

t∫
0

ξY2µ+2(ξ)

t∫
ξ

τ(τ 2 − ξ2)µ−1 dτ dξ

= t2µ+2

1∫
0

s(1− s2)µY2µ+2(ts) ds.

(30)
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If the operator A is bounded, then, taking into account Example 2 and the integral (2.22.2.1)
in [24], we write relation (30) as

t∫
0

τ 2µ+1
1F2

(
1;µ+ 1, µ+

3

2
;
τ 2A

4

)
dτ =

t2µ+2

2µ+ 2
1F2

(
1;µ+

3

2
, ν +

3

2
;
t2A

4

)
, µ > −1. (31)

In particular, for µ = −1/2 relation (31) takes the form of the well-known formula for the connection
between the cosine operator function C(t) and the Struve operator function S(t),

t∫
0

C(τ) dτ =

t∫
0

cosh
(
τ
√
A
)
dτ =

sinh
(
t
√
A
)

√
A

= S(t).

2. DIRICHLET PROBLEM
Generally speaking, boundary value problems for Eq. (8) are ill posed in the hyperbolic case, but

at present the need to solve ill-posed problems is generally recognized (see the introduction in [31],
as well as [32, 33] and an extensive bibliography therein). The monograph [31, Ch. 2] studies the
well-posedness of general boundary value problems for a first-order differential operator equation
and for an abstract wave equation (the case of k = 0 in Eq. (1)).

Many ill-posed problems for differential operator equations can be reduced to operator equations
of the first kind Bx = y, x, y ∈ E, and the main difficulty lies in establishing their solvability.
Below, for A ∈ G2µ+1 in the hyperbolic case, we will solve an operator equation of the first kind
and establish the conditions for the well-posedness of the Dirichlet boundary value problem for the
functional-differential equation (8).

For ν > 0 and µ ≥ −1/2, we will seek a solution u(t) ∈ C2([0, 1], E) ∩ C((0, 1], D(A)) of Eq. (8)
on an interval of finite length t ∈ (0, 1) with the boundary conditions

u(0) = u0, u(1) = v1. (32)

As was already noted, problem (8), (32) is ill posed. Let us establish conditions on the opera-
tor A ∈ G2µ+1 and the elements u0, v1 ∈ E ensuring the unique solvability of this problem. The
case with the parameter ν = 0 in Eq. (8) was considered in [34].

It follows from Theorem 3 that the correct setting of the initial conditions for the functional
differential equation (8) consists in specifying the initial values (9) at the point t = 0, with the only
solution of problem (8), (9) having the form (15) or (21).

Returning to the Dirichlet problem (8), (32) in question, note that, given the representation (21),
we should determine an element u1 ∈ D(A) from the equation

(2ν + 1)

1∫
0

s(1− s2)ν−1/2Y2µ+2(s)u1 ds = v2, (33)

where

v2 = v1 − 2ν

1∫
0

s(1− s2)ν−1Y2µ+1(s)u0 ds. (34)

We transform Eq. (33) using the following formula (see [1]) expressing the Bessel operator func-
tion Y2µ+2(t) via the resolvent R(λ) = (λI −A)−1 of the operator A:

Y2µ+2(t)u0 =
2µ+1/2Γ(µ+ 3/2)

iπtµ+1/2

σ+i∞∫
σ−i∞

λ1/2−µIµ+1/2(tλ)R(λ
2)u0 dλ, σ > ω, u0 ∈ D(A), (35)

where λ2 for Reλ > ω ≥ 0 belongs to the resolvent set ρ(A) of the operator A.
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Substituting the expression (35) into the left-hand side of (33), after elementary transformations
we obtain

(2ν + 1)

1∫
0

s(1− s2)ν−1/2Y2µ+2(s)u1 ds

= (2ν + 1)

1∫
0

s(1− s2)ν−1/2 2
µ+1/2Γ(µ+ 3/2)

iπ sµ+1/2

σ+i∞∫
σ−i∞

ξ1/2−µIµ+1/2(sξ)R(ξ
2)u1 dξ ds

=
2µ+1/2(2ν + 1)Γ(µ+ 3/2)

iπ

σ+i∞∫
σ−i∞

ξ1/2−µR(ξ2)u1

1∫
0

s1/2−µ(1− s2)ν−1/2Iµ+1/2(sξ) ds dξ

=
1

iπ

σ+i∞∫
σ−i∞

ξ 1F2

(
1;µ+ 3/2, ν + 3/2; ξ2/4

)
R(ξ2)u1 dξ,

(36)

where we have used the integral (2.15.2.5) in [28].
In what follows, an important role will be played by the entire function

cosh iµ,ν(λ) = 1F2

(
1;µ+ 3/2, ν + 3/2;λ/4

)
; (37)

applying this function and taking into account the representation (36), we write the operator equa-
tion of the first kind (33) in the form

Bu1 ≡
1

πi

σ+i∞∫
σ−i∞

ξ cosh iµ,ν(ξ
2) R(ξ2)u1 dξ = v2. (38)

To establish the solvability of Eq. (38), we impose an additional condition on the resolvent of
the operator A.

Condition 1. Each zero λj, j ∈ N, defined by relation (37), of the entire function cosh iµ,ν(λ)

belongs to the resolvent set ρ(A), and there exists a number d > 0 such that

sup
j∈N

∥R(λj)∥ ≤ d.

We will assume that Condition 1 is satisfied. Since each zero λj, j ∈ N, of the function cosh iµ,ν(λ)

lies in ρ(A), it belongs to ρ(A) together with a circular neighborhood Ωj of radius 1/d, whose
clockwise boundary we denote by γj. Let Υ0 be a contour on the complex plane consisting of
the straight line Re z = σ0 > ω, let Υ2

0 (a parabola) be the image of Υ0 under the mapping
w = z2 (z ∈ Υ0, w ∈ Υ2

0), and let Ξ = Υ2
0

⋃
j∈N γj.

Let us take λ0 ∈ ρ(A), Reλ0 > σ > σ0, and choose n ∈ N so that

n > (2µ+ ν + 3)/2. (39)

Consider the bounded operator

Hq =
1

2πi

∫
Ξ

R(z)q dz

cosh iµ,ν(z)(z − λ0)n
, H: E → E. (40)
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Let us show that the integral in (40) is absolutely convergent under certain conditions. Indeed,
owing to the choice of the contour Υ2

0, the inequality (see [2])∥∥λ1/2−µR(λ2)
∥∥ ≤ M

(Reλ− ω)µ+3/2
, Reλ > ω,

and the asymptotic behavior of the hypergeometric function 1F2(a; b1, b2; z) as |z| → ∞, | arg z| < π,

1F2(a; b1, b2; z) =
Γ(b1)Γ(b2)

2
√
πΓ(a)

z(a−b1−b2+1/2)/2e2
√
z

(
1 +O

(
1√
z

))
,

the integral ∫
Υ2

0

R(z) dz

cosh iµ,ν(z)(z − λ0)n
= 2

∫
Υ0

λµ+1/2λ1/2−µR(λ2) dλ

1F2(1;µ+ 3/2, ν + 3/2;λ2/4)(λ2 − λ0)n

converges absolutely, since, as follows from the constraint (39), one has the inequality 2n − 2µ −
ν − 2 > 1, which ensures its absolute convergence.

Now consider the integral
1

2πi

∫
⋃
j∈N

γj

R(z) dz

cosh iµ,ν(z)(z − λ0)n
(41)

over the remaining part of the contour Ξ.
In the general case, we do not know the asymptotics of the zeros λj of the function cosh iµ,ν(λ);

therefore, along with Condition 1, we provide the absolute convergence of the integral in (41) by
the following assumption.

Condition 2. For some number n satisfying inequality (39), the series

∞∑
j=1

∫
γj

R(z) dz

cosh iµ,ν(z)(z − λ0)n

converges absolutely.

Example 5. If µ = 0 and ν = 1 in Eq. (8), then

cosh i0,1(λ) =
2
(
cosh

√
λ− 1

)
λ

, λj = −4π2j2, j ∈ N.

The series considered in Condition 2 converges absolutely if for some n so does the series
∞∑
j=1

∫
γj

R(z) dz

cosh i0,1(z)(z − λ0)n
=

∞∑
j=1

∫
γ

(ξ + 2πji)3R
(
(ξ + 2πji)2

)
dξ

(cosh ξ − 1)
(
(ξ + 2πji)2 − λ0

)n ,
where γ is the circle of radius 1/d centered at the point z = 0. Owing to Condition 1, the resol-
vent R(·) is bounded in a circular neighborhood with contour γ; therefore, the order of the integral
over j → ∞ is equal to j3−2n; consequently, the series considered in Condition 2 converges absolutely
for n > 2.

Theorem 8. Let ν > 0, µ ≥ −1/2, and A ∈ G2µ+1 , and let a number n ∈ N be chosen
so that inequality (39) holds and Conditions 1 and 2 are satisfied. If u0, u2 ∈ D(An+1), then
problem (8), (32) has a unique solution.
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Proof. As we have already found out, the proof of the existence of a unique solution of prob-
lem (8), (32) boils down to the proof of the existence of the inverse of the bounded operator B
defined by relation (38). Let us show that the operator B has an inverse B−1: D(An) → E.

Let q ∈ D(A) and σ0 < σ < Reλ. Then, applying the operator H defined by relation (40) to Bq
and taking into account Hilbert’s identity

R(z)R(ξ2) =
R(z)−R(ξ2)

ξ2 − z
,

we obtain the relation

HBq =
1

2πi

∫
Ξ

R(z) dz

cosh iµ,ν(z)(z − λ0)n
1

πi

σ+i∞∫
σ−i∞

ξ cosh iµ,ν(ξ
2)R(ξ2)q dξ

=
2

(2πi)2

∫
Ξ

σ+i∞∫
σ−i∞

(
ξ cosh iµ,ν(ξ

2)R(z)q

cosh iµ,ν(z)(z − λ0)n(ξ2 − z)
− ξ cosh iµ,ν(ξ

2)R(ξ2)q

cosh iµ,ν(z)(z − λ0)n(ξ2 − z)

)
dξ dz.

(42)

The integral in (42) is absolutely convergent. Changing the order of integration, we have

HBq =
2

(2πi)2

∫
Ξ

σ+i∞∫
σ−i∞

ξ cosh iµ,ν(ξ
2)R(z)q dξ dz

cosh iµ,ν(z)(z − λ0)n(ξ2 − z)

− 2

(2πi)2

σ+i∞∫
σ−i∞

ξ cosh iµ,ν(ξ
2)R(ξ2)q

∫
Ξ

dz

cosh iµ,ν(z)(z − λ0)n(ξ2 − z)
dξ.

(43)

If we close the integration contour Υ2
0 to the left without intersecting

⋃
j∈N γj, then the inner

integral in the second term in (43) vanishes due to the choice of the contour Ξ and the Cauchy
theorem for a multiply connected domain. To calculate the integrals in the first term in (43), we
use the Cauchy integral formula. Thus, we have the relation

HBq =
2

(2πi)2

∫
Ξ

∫
Υ

ξ cosh iµ,ν(ξ
2)R(z)q dξ dz

cosh iµ,ν(z)(z − λ0)n(ξ2 − z)
=

2

(2πi)2

∫
Ξ

∫
Υ2

cosh iµ,ν(λ)R(z)q dλ dz

cosh iµ,ν(z)(z − λ0)n(λ− z)

=
1

2πi

∫
Ξ

R(z)q dz

(z − λ0)n
=

1

2πi

∫
Υ2

0

R(z)q dz

(z − λ0)n
=

−1

(n− 1)!
R(n−1)(λ0)q = (−1)nRn(λ0)q.

The commuting operators H, B, Rn(λ0) are bounded, and the domain D(A) is dense in E, so
the equality HBq = (−1)nRn(λ0)q is also true for q ∈ E and HB: E → D(An). It follows that the
operator B−1q = (−1)n(λ0I −A)nHq for q ∈ D(An) is the inverse of B, B−1: D(An) → E. Indeed,

BB−1q = (−1)nB(λ0I −A)nHq = (−1)nBH(λ0I −A)nq = Rn(λ0)(λ0I −A)nq = q, q ∈ D(An),

B−1Bq = (−1)n(λ0I −A)nHBq = (λ0I −A)nRn(λ0)q = q, q ∈ E.

Returning to problem (8), (32), we define the initial element u1 = (−1)n(λ0I−A)nHv2 belonging
to the domain D(A), where v2 is defined by relation (34), v2 ∈ D(An+1), the operator H is defined
by (40), λ0 ∈ ρ(A), and Reλ0 > σ0 > ω. Then, by virtue of the representation (21), the unique
solution u(t) of problem (8), (32) has the form

uµ,ν(t) = 2ν

1∫
0

s(1− s2)ν−1Y2µ+1(ts)u0 ds+ (2ν + 1)t

1∫
0

s(1− s2)ν−1/2Y2µ+2(ts)u1 ds.

The proof of the theorem is complete.
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3. NEUMANN PROBLEM

Consider another case of regular boundary conditions for the hyperbolic equation (8) (Neumann
problem),

u′(0) = u1, u′(1) = w1. (44)

In this case, just as in [34, 35], for the well-posed solvability of the Neumann problem it is necessary
that there exists a bounded operator A−1; this will be assumed when studying this problem.

Given the representation (15) and the conditions in (44), we determine the unknown ele-
ment u0 ∈ D(A) from the equation

2ν

1∫
0

s2(1− s2)ν−1Y ′
2µ+1(s)u0 ds+

4Γ(ν + 3/2)√
πΓ(ν)

1∫
0

s2(1− s2)ν−1L′
2µ+1(s)u1 ds = w1. (45)

Using the formula for differentiation (see [1])

Y ′
k(t)u0 =

t

k + 1
Yk+2(t)Au0,

we rewrite Eq. (45) as

ν

µ+ 1

1∫
0

s3(1− s2)ν−1Y2µ+3(s)Au0 ds = u2, (46)

where

u2 = w1 −
4Γ(ν + 3/2)√

πΓ(ν)

1∫
0

s2(1− s2)ν−1L′
2µ+1(s)u1 ds. (47)

Taking into account the representation (35), after elementary transformations the left-hand side
of Eq. (46) takes the form

ν

µ+ 1

1∫
0

s3(1− s2)ν−1Y2µ+3(s)Au0 ds

=
ν

µ+ 1

1∫
0

s2−µ(1− s2)ν−1 2
µ+1Γ(µ+ 2)

iπsµ+1

σ+i∞∫
σ−i∞

ξ−µIµ+1(sξ)R(ξ
2)Au0 dξ ds

=
2µ+1νΓ(µ+ 1)

iπ

σ+i∞∫
σ−i∞

ξ−µR(ξ2)Au0

1∫
0

s2−µ(1− s2)ν−1Iµ+1(sξ) ds dξ

=
1

2(µ+ 1)πi

σ+i∞∫
σ−i∞

ξ 1F2

(
1;µ+ 2, ν + 1;

ξ2

4

)
R(ξ2)Au0 dξ,

(48)

where we have used the integral (2.15.2.5) in [28].
Let us introduce the entire function

ψµ,ν(λ) =
1

2(µ+ 1)
1F2

(
1;µ+ 2, ν + 1;

λ

4

)
(49)
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and use it, taking into account the representation (48), to rewrite the operator equation of the first
kind (46) in the form

B1Au0 ≡
1

πi

σ+i∞∫
σ−i∞

ξψµ,ν(ξ
2)R(ξ2)Au0 dξ = u3. (50)

The proof of the solvability of Eq. (50) for Au0 is similar to the proof of Theorem 8. Let us state
conditions sufficient for this, requiring the existence of the inverse operator A−1.

Condition 3. The number θ0 = 0, as well as each zero θj, j ∈ N, of the function ψµ,ν(λ) defined
by relation (49) belongs to the resolvent set ρ(A) of the operator A, and there exists a number d > 0

such that
sup
j∈N

∥∥R(θj)∥∥ ≤ d.

In what follows, we use the previously introduced contours Ξ and γj, but, in contrast to Theo-
rem 8, we use the functions ψµ,ν(λ) constructed from the zeros θj of the function ψµ,ν(λ).

Condition 4. For some m satisfying the inequality m > (2µ+ ν + 3)/2, the series

∞∑
j=1

∫
γj

R(z) dz

ψµ,ν(z)(z − λ0)m

is absolutely convergent.

Under Conditions 3 and 4, we introduce the bounded operator

H1q =
1

2πi

∫
Ξ

R(z)q dz

ψµ,ν(z)(z − λ0)m
, H1: E → E. (51)

The following statement about the solvability of the Neumann problem is true.

Theorem 9. Let ν > 0, µ ≥ −1/2, A ∈ G2µ+1 , and u1, w1 ∈ D(An+2), and let Conditions 3
and 4 be satisfied. Then problem (8), (44) is uniquely solvable, and its solution has the form

u(t) = 2ν

1∫
0

s(1− s2)ν−1Y2µ+1(ts)u0 ds+
4Γ(ν + 3/2)√

πΓ(ν)

1∫
0

s(1− s2)ν−1L2µ+1(ts)u1 ds,

where u0 = (−1)mA−1(λ0I −A)mH1u2 and the element u2 and the operator H1 are defined, respec-
tively, by relations (47) and (51).

Example 6. If A is the operator of multiplication by a number A ̸= 0, then, according to
formula (16), the solution of the Cauchy problem has the form

uµ,ν(t) = 1F2

(
1;µ+ 1, ν + 1; t2A/4

)
u0 + t 1F2

(
1;µ+ 3/2, ν + 3/2; t2A/4

)
u1;

therefore, the Dirichlet problem with the conditions u(0) = u0, u(1) = v1 is solvable if

1F2

(
1;µ+ 3/2, ν + 3/2;A/4

)
̸= 0.

Let µ = −1/2, ν = 1, and u0 = 0 in Eq. (8). In this particular case, the solution u(t) of Eq. (8)
with the conditions u(0) = 0 and u(1) = v1 has the form

u(t) =

(√
At cosh

(
t
√
A
)
− sinh

(
t
√
A
))

t2
u1,
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u1 =
v1√

A cosh
√
A− sinh

√
A
.

Likewise, the solution of the Neumann problem with the conditions u′(0) = 0 and u′(1) = w1

has the form

u(t) =
1− cosh

(
t
√
A
)
+
√
At sinh

(
t
√
A
)

t2
u0,

u0 =
w1

(2 +A) cosh
√
A− 2

√
A sinh

√
A− 2

.
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