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Abstract—In this paper we consider small oscillations of the ideal gas near its equilibrium state
inside an unbounded cylindrical tube. We investigate radial oscillations of the gas within a fixed
cross-section. The gas is radially inhomogeneous. There is a power dependence of the gas density
on the radial coordinate. And also the Boyle–Mariotte law is fulfilled at a constant temperature.
We study the pressure in a gas, the values of which are known at the initial and final times of the
experiment, and the average value of the pressure at any other time is constant. This physical
problem is modeled by a non-local boundary value problem with an integral condition for a hyperbolic
equation with a singular coefficient in a rectangular domain. Uniqueness and existence theorems
for a solution to the problem are proved. The solution of the problem is constructed in an explicit
analytical form.
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1. INTRODUCTION

Equations describing small gas oscillations are derived from the following general equations of
hydrodynamics [1, pp. 349, 356]: the continuity equation

∂ρ

∂t
+ div (ρv) = 0 (1)

and the motion equation in the Euler form

dv
dt

= F − 1

ρ
grad p, (2)

where v is the velocity, p is the pressure, and ρ is the density of the gas; dv/dt is the material derivative
(see [1, p. 356]), i.e., the particle velocity at the specified point; and F are the acting external forces.

The following Poisson adiabatic relation is satisfied for the pressure p and density ρ

p = p0(ρ/ρ0)
γ , (3)

where γ > 0 is a constant.
Assume that the velocity v is a small value and the deviations of the pressure p and density ρ from

their initial values p0 and ρ0, which might depend on spatial coordinates in the general case, are slight.
By virtue of the smallness of acoustic oscillations, values of the second-order smallness in the equations
can be disregarded; thus, the equations become linear. To linearize the equations, introduce the following
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new values: σ = (ρ− ρ0)/ρ0 is the relative variation of the density (the gas condensation) and q = p/p0
is the relative pressure. Then, Eq. (3) takes the form

q = (1 + σ)γ ≈ 1 + γσ.

Substituting ρ = ρ0(1 + σ) in Eq. (1), we obtain

ρ0
∂σ

∂t
+ div (ρ0(1 + σ)v) = 0.

Since σv is a small value, it follows that

ρ0
∂σ

∂t
+ ρ0 div v + (grad ρ0, v) = 0.

In the last relation, pass from σ to q and take into account the relation σ = (q − 1)/γ. We obtain the
relation

1

γ

∂q

∂t
+ div v +

1

ρ0
(grad ρ0, v) = 0. (4)

Further, change dv/dt for ∂v/∂t in Eq. (2), disregarding small values, and assume that there are no
external forces. Finally, substitute p0q instead of p in Eq. (2). We obtain

∂v

∂t
= − 1

ρ0
grad (p0 q). (5)

In the cylindrical coordinate system (r, α, z), Eqs. (4) and (5) take the forms

1

γ

∂q

∂t
+

1

r

∂

∂r
(r vr) +

1

r

∂vα
∂α

+
∂vz
∂z

+
1

ρ0

∂ρ0
∂r

vr +
1

ρ0 r

∂ρ0
∂α

vα +
1

ρ0

∂ρ0
∂z

vz = 0

and
∂vr
∂t

= − 1

ρ0

∂

∂r
(p0 q),

∂vα
∂t

= − 1

ρ0

1

r

∂

∂α
(p0 q),

∂vz
∂t

= − 1

ρ0

∂

∂z
(p0 q).

Assume that the gas is radially heterogeneous, i.e., ρ0 = ρ0(r). Let the density have a power law
dependence on the radial coordinate: ρ0(r) = rβ , where β > 0 is a constant. By virtue of the Boyle–
Mariotte law, the relation p0(r) = χρ0(r) holds provided that the temperature is constant, where χ > 0
is a constant. Let the desired functions do not depend on the coordinates z and α, i.e., we investigate
radial oscillations of the gas within a fixed cross-section. Thus, the following equations are left

1

γ

∂q

∂t
+

1

r

∂

∂r
(r vr) +

1

ρ0

∂ρ0
∂r

vr = 0 and
∂vr
∂t

= − 1

ρ0

∂

∂r
(p0 q).

Excluding the function vr from them, we obtain

1

γχ

∂2q

∂t2
=

∂2q

∂r2
+

2β + 1

r

∂q

∂r
+

β2

r2
q.

In the last relation, pass from the relative pressure q to the pressure p as follows: q = p/p0 =

(r−βp)/χ. This yields the hyperbolic equation

1

γχ

∂2p

∂t2
=

∂2p

∂r2
+

1

r

∂p

∂r
,

or the equation

∂2p

∂t2
= a2

(
∂2p

∂r2
+

1

r

∂p

∂r

)
, (6)

where a2 := γχ > 0 is a constant.
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Let us formulate the mathematical problem to investigate the gas pressure inside a cylindrical tube
of radius l, restricting the consideration by radial oscillations of particles. Instead of Eq. (6), take more
general equation with the Bessel differential operator

∂2p

∂r2
+

k

r

∂p

∂r
= r−k ∂

∂r

(
rk

∂p

∂r

)
,

where k ∈ (−1, 1) and k �= 0 is a given real number.
Let a2 = 1 in Eq. (6), which does not limit the generality. Fix the beginning t = 0 of the experiment

and its end t = T , assuming that the exact measuring of the investigated value is possible in no particular
point of the selected radius-segment. Thus, let D = {(r, t) : 0 < r < l, 0 < t < T} be a rectangular
domain of the coordinate plane Ort, where l > 0 and T > 0 are given real numbers.

Formulation of the problem. It is required to find a function p(r, t) satisfying the conditions

p(r, t) ∈ C(D) ∩ C2(D), (7)

∂2p

∂t2
=

∂2p

∂r2
+

k

r

∂p

∂r
, (x, t) ∈ D, (8)

p(r, 0) = ϕ(r), p(r, T ) = ψ(r), 0 ≤ r ≤ l, (9)

lim
r→+0

rkpr(r, t) = 0, 0 ≤ r ≤ T, (10)

and
l∫

0

p(r, t) rk dr = A, 0 ≤ t ≤ T, (11)

where k ∈ (−1, 1) and k �= 0 is a given real number; A is a given real number; while ϕ(r) and ψ(r) are
given sufficiently smooth functions satisfying the coordination conditions

l∫
0

ϕ(r) rk dr =

l∫
0

ψ(r) rk dr = A. (12)

The theory of problems for equations containing the Bessel differential operator is one of the most
important sections of the modern theory of partial differential equations. The importance of this class
of equations is due to their use in applications to various problems of gas dynamics and acoustics, jet
theory in hydrodynamics, linearized Maxwell–Einstein equations, and elasticity-plasticity theory.

A great contribution to the development of the theory of boundary value problems for equations
with the Bessel operator belongs to Kipriyanov [2]. An extensive study of boundary-value problems
for equations of three main classes with Bessel operator was presented in [3–8].

At the moment, problems with integral conditions are comprehensively and profoundly studied for
equations of various classes. Problems with integral conditions of are studied for hyperbolic and mixed-
type equations with Bessel operator (see [9–12]).

2. CONSTRUCTION OF SOLUTIONS. SOLUTION UNIQUENESS

Multiply (6) by rk and, under a fixed t ∈ (0, T ), integrate the obtained product with respect to the
variable r from ε to l − ε, where ε > 0 is sufficiently small. We obtain the relation

l−ε∫
ε

pttr
k dr −

l−ε∫
ε

∂

∂r

(
rk

∂p

∂r

)
dr = 0.

Passing to the limit as ε → 0 and taking into account conditions (10) and (11),

pr(l, t) = 0, 0 ≤ t ≤ T. (13)
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In the sequel, instead of problem (7)–(12), we consider problem (7)–(10), and (13).
Particular solutions of Eq. (6) that are different from zero in the domain D and satisfy conditions

(10) and (13) are sought in the form p(r, t) = R(r)T (t). Substituting this function in Eq. (6) and in
conditions (10) and (13) and separating the variables, we obtain the following spectral problem with
respect to the function R(r):

R′′(r) +
k

r
R′(r) + λ2R(r) = 0, 0 < r < l, (14)

lim
r→+0

rkR′(r) = 0, R′(l) = 0, (15)

here λ2 is the separation constant.
For k ∈ (−1, 1) and k �= 0, the general solution of Eq. (14) is determined as follows

R̃(r) = C̃1r
1−k
2 Jk−1

2
(λr) + C̃2r

1−k
2 J 1−k

2
(λr),

where Jν(ξ) and J−ν(ξ) are the Bessel functions of the first kind of orders (respectively) ν = (k − 1)/2

and −ν = (1− k)/2, while C̃1 and C̃2 are arbitrary constants.

To ensure that the found function satisfies the first condition from (15), assign C̃2 = 0. Set C̃1 = 1
because eigenfunctions are defined up to a constant factor. Then, the solution takes the form

R̃(r) = r
1−k
2 Jk−1

2
(λr). (16)

Now, substituting function (16) in the second condition from (15), we find that λ0 = 0 and R̃′(l) =

−l
1−k
2 Jk+1

2
(λl), which implies that

Jk+1
2
(μ) = 0, μ = λl. (17)

From [13, p. 530], it is known that if ν > −1, then the function Jν(ξ) has a denumerable set of real
roots. Then, for a given k, denoting the nth root of Eq. (17) by μn, find eigenvalues λn = μn/l of problem
(14), (15). Thus, the system of eigenfunctions of problem (14), (15) has the form

R̃0(r) = 1, λ0 = 0,

R̃n(r) = r
1−k
2 Jk−1

2

(μnr

l

)
= r

1−k
2 Jk−1

2
(λnr), n ∈ N,

where the eigenvalues λn are defined as roots of Eq. (17).

Note that the system of eigenfunctions R̃0(r) and R̃n(r) (n ∈ N) is orthogonal and complete in the
space L2[0, l] with weight rk (see [14, p. 343]).

For further computations, we use the orthonormal system of functions

Rn(r) =
R̃n(r)

||R̃n(r)||
, n ∈ N ∪ {0}, (18)

with norm

||R̃n(r)||2 =
l∫

0

rk R̃2
n(r) dr. (19)

Introduce the functions

pn(t) =

l∫
0

p(r, t)rkRn(r) dx, n ∈ N ∪ {0}, (20)
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where Rn(r) are defined by means of relations (18). Basing on (20), consider auxiliary functions

pn,ε(t) =

l−ε∫
ε

p(r, t)rkRn(r) dr, n ∈ N, (21)

where ε > 0 is a sufficiently small number.

Twice differentiate relation (21) with respect to t for 0 < t < T and take into account Eq. (6). We
obtain

p′′n,ε(t) =

l−ε∫
ε

ptt(r, t)r
kRn(r) dr =

l−ε∫
ε

∂

∂r
(rkpr)Rn(r) dr. (22)

By virtue of Eq. (14), derive the following relation from (21)

pn,ε(t) = − 1

λ2
n

l−ε∫
ε

p(r, t)
d

dr

(
rkR′

n(r)
)
dr.

Substituting this expression in (22). In the last relation, pass to the limit as ε → 0. Then, taking into
account (7) and the boundary-value conditions given by (13) and (15), we obtain the following ordinary
differential equation for determining the functions pn(t)

p′′n(t) + λ2
npn(t) = 0, t ∈ (0, T ).

Its general solution has the form

pn(t) = an cos λnt+ bn sinλnt, (23)

where an and bn are arbitrary constants. To determine an and bn, substitute functions (20) in the initial-
value conditions given by (9):

pn(0) =

l∫
0

ϕ(r)rkRn(r) dr = ϕn,

pn(T ) = an cos λnT + bn sinλnT = ψn. (24)

From (23) and (24), we conclude that

an = ϕn, bn =
ψn − ϕn cos λnT

sinλnT
.

Substituting the found values of aan and bn in (23), we obtain the final form of the functions

pn(t) = ϕn cos λnt−
ψn − ϕn cos λnT

sinλnT
sinλnt (25)

defined for

sinλnT = sinμnα �= 0 and α = T/l, n ∈ N, (26)

where μn are roots of Eq. (17). Then, condition (26) is satisfied for all k ∈ (−1, 1) and k �= 0 provided
that α = T/l is an irrational number (see [10]).

In the same way, we find

p0(t) = ϕ0 + ψ0t, (27)

p0(0) = l−
k+1
2

√
k + 1

l∫
0

ϕ(r)rkdr = ϕ0,
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p0(T ) = l−
k+1
2

√
k + 1

l∫
0

ψ(r)rkdr = ψ0. (28)

Let ϕ(r) = ψ(r) ≡ 0 and condition (26) be satisfied. Then, (24) and (28) imply that ϕn = ψn ≡ 0 and
(25) and (27) imply that pn(t) = 0 for all n ∈ N ∪ {0}. Then, (20) implies that

∫ l
0 p(r, t)r

kRn(r) dr = 0

for each t ∈ [0, T ]. By virtue of the completeness of system (18) in the space L2[0, l] with weight rk, this
implies that p(r, t) = 0, a.e., on the segment r ∈ [0, l] provided that t ∈ [0, T ]. Since p(r, t) ∈ C(D)

due to (7), it follows that p(r, t) ≡ 0 in D. In the same way (see [10]), it is easy to show that,
ϕ(r) = ψ(r) ≡ 0 and condition (26) is broken, i.e., α = T/l is a rational number, then the homogeneous
problem (ϕ(r) = ψ(r) ≡ 0) has nontrivial solutions. Thus, the following assertion is proved.

Theorem 1. Let there exist a solution of problem (7)–(10) and (13) and the fraction T/l = α
of the sides of the rectangular domain D be an irrational number. Then, this solution is unique.

Let condition (26) be satisfied for all n ∈ N. Basing on the found particular solutions, represent a
solution of problem (7)–(10) and (13) by the Fourier–Bessel series

p(r, t) = p0(t)R0(r) +

∞∑
n=1

pn(t)Rn(r), (29)

where the functions Rn(r), n ∈ N ∪ {0}, are defined by relation (18), the functions pn(t) are defined by
relation (25), and the function p0(t) is defined by relation (27).

3. SOLUTION EXISTENCE

Apart from series (29), consider the series

pt(r, t) = ψ0R0(r) +

∞∑
n=1

p′n(t)Rn(r), pr(r, t) =

∞∑
n=1

pn(t)R
′
n(r), (30)

ptt(r, t) =

∞∑
n=1

p′′n(t)Rn(r), prr(r, t) =

∞∑
n=1

pn(t)R
′′
n(r). (31)

It is known from [10] that, if α = T/l > 0 is an irrational number of power m ≥ 2, then there exists
C0 > 0 such that the estimates

| sinμnα| ≥
C0

n
(m = 2), | sinμnα| ≥

C0

n1+ε
(m > 2, ε > 0) (32)

are satisfied.
Lemma 1. If α = T/l > 0 is an irrational number of power m ≥ 2, then the estimates

|pn(t)| ≤ C1n (|ϕn|+ |ψn|) ,
|p′n(t)| ≤ C2n

2 (|ϕn|+ |ψn|) , m = 2,

|p′′n(t)| ≤ C3n
3 (|ϕn|+ |ψn|) ,

|pn(t)| ≤ C1n
1+ε (|ϕn|+ |ψn|) ,

|p′n(t)| ≤ C2n
2+ε (|ϕn|+ |ψn|) , m > 2,

|p′′n(t)| ≤ C3n
3+ε (|ϕn|+ |ψn|) ,

where Ci are positive constants (here and after), are satisfied for sufficiently large n and each
t ∈ [0, T ].

The proof follows from relation (25), estimate (32), and the asymptotic relation

μn = λnl = πn+
π

4
k +O

(
n−1

)
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for roots of Eq. (17) and large values n (see [15, p. 17]).
Lemma 2. If n is sufficiently large and r ∈ [0, l], then

|Rn(r)| ≤ C4, |R′
n(r)| ≤ C5n, |R′′

n(r)| ≤ C6n
2. (33)

Proof. It is known that, for large ξ,

Jν(ξ) = O
(
ξ−1/2

)
. (34)

From (19) we obtain

||R̃n|| =
l√
2
|Jk+1

2
(μn)|. (35)

Then, it follows from Eqs. (34) and (35) that

||R̃n|| = O
(
n−1/2

)
as n → +∞. (36)

With regard to Eq. (35), formula (18) becomes

Rn(r) =

√
2 r

1−k
2 Jk−1

2
(λnr)

l |Jk+1
2
(μn)|

. (37)

Then, the first estimate in Eq. (33) follows from relations (34), (36), and (37).
Now we calculate

R̃′
n(r) = −λnr

1−k
2 Jk+1

2
(λnr) . (38)

Then, the second estimate in Eq. (33) follows from Eqs. (34), (36), and (38).
Equation (14) implies the relation

R̃′′
n(r) = −k

r
R̃′

n(r)− λ2
nR̃n(r).

By virtue of the first two estimates, this implies the third estimate in Eq. (33). �

Due to Lemmas 1 and 2, for each (r, t) ∈ D, series (29) is estimated by the series

C7

+∞∑
n=1

n1+ε (|ϕn|+ |ψn|) (39)

and series (30) and (31) are estimated by the series

C8

+∞∑
n=1

n2+ε (|ϕn|+ |ψn|) , C9

+∞∑
n=1

n3+ε (|ϕn|+ |ψn|) , (40)

respectively.
Investigate the convergence of series (39) and (40).
Lemma 3. If ϕ(r), ψ(r) ∈ C2+δ[0, l], ε < δ < 1, there exist derivatives ϕ′′′(r) and ψ′′′(r) such

that their variations on [0, l] are finite and

ϕ′(0) = ϕ′′(0) = ψ′(0) = ψ′′(0) = ϕ′(l) = ψ′(l) = 0,

then the estimates

|ϕn| ≤
C10

n4+δ
, |ψn| ≤

C11

n4+δ

are satisfied.
The proof is similar to the proof of the corresponding lemma in [9].
Due to Lemma 3, series (39) and (40) are majorized by the converging number series

C12
∑∞

n=1 n
−1−(δ−ε). Due to the Weierstrass criterion, series (29)–(31) uniformly converge in the
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domain D. Thus, the function u(x, t) defined by series (29) satisfies all conditions of problem (7)–(10)
and (13) and belongs to the class C2(D). Thus, the following assertion is proved.

Theorem 2. If α = T/l is a positive irrational algebraic number of power m ≥ 2 and functions
ϕ(r) and ψ(r) satisfy assumptions of Lemma 3, then there exists a unique solution p(r, t) of
problem (7)–(10) and (13), defined by series (29). This solution belongs to C2(D).

Now, let us prove that the function p(r, t) defined by series (29) is a solution of problem (7)–(12).
Theorem 3. If α = T/l is a positive irrational algebraic number of power m ≥ 2 and functions

ϕ(r) and ψ(r) satisfy assumptions of Lemma 3 and conditions (12), then there exists a unique
solution of problem (7)–(12), defined by series (29).

Proof. Let p(r, t) be a solution of problem (7)–(10) and (13) and functions ϕ(r) and ψ(r) satisfy the
assumptions of the theorem. Then, Eq. (8) is satisfied everywhere in the domain D. Multiply Eq. (8) by
rk and, for a fixed t ∈ (0, T ), integrate the obtained product with respect to the variable r from ε to l− ε,
where ε > 0 is a sufficiently small number. We obtain

l−ε∫
ε

ptt(r, t)r
k dr −

(
rk

∂p

∂r

)∣∣∣∣
l−ε

ε

= 0.

In the last relation, pass to the limit as ε → 0. Taking into account conditions (10) and (13), we conclude
that

∫ l
0 ptt(r, t)r

k dr = 0. Now, integrating this relation with respect to the variable t twice, we arrive at
the relation

l∫
0

p(r, t)rk dr = K1t+K2, A, B = const. (41)

Assigning t = 0 in (41) and taking into account conditions (9) and (12), we find that
∫ l
0 ϕ(r)r

k dr =
K2 = A. In (41), assign t = T and take into account conditions (9) and (12) and the obtained value
K2 = A. We obtain

∫ l
0 p(r, T )r

k dr =
∫ l
0 ψ(r)r

k dr = K1T +A = A and, therefore, K1 = 0.
Substituting the found values of the constants K1 = 0 and K2 = A in relation (41), we arrive at the

integral condition given by (11). The inverse reasoning is provided in Section 1. Thus, it is proved that
conditions (11) and (13) are equivalent to each other provided that the coordination conditions given by
(12) are satisfied. Hence, problem (7)–(12) and problem (7)–(10) and (13) are equivalent to each other
as well, which completes the proof of the theorem. �
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