# THE CAUCHY PROBLEM FOR THE DEGENERATE BEAM VIBRATION EQUATION

### Sergey Sitnik\*

Belgorod State National Research University 85, Pobedy St., Belgorod 308015, Russia sitnik@bsu.edu.ru

### Shakhobiddin Karimov

Fergana State University 19, Murabbiylar St., Fergana 150100, Uzbekistan shaxkarimov@gmail.com

## Yorkinoy Tulasheva

Namangan State University 159, Uychi St., Namangan 160100, Uzbekistan yorqinoytulasheva@gmail.com

We study the Cauchy problem for a degenerate differential equation of beam vibrations. Using the generalized Erdélyi–Kober operator, possessing the property of a transmutation operator, we reduce the original problem to a problem for a nondegenerate equation. An explicit formula for the solution is constructed. Bibliography: 18 titles.

> Dedicated to the outstanding mathematician Makhmud Salakhitdinovich Salakhitdinov on the occasion of his 90th anniversary

# 1 Introduction

In this paper, we consider the degenerate fourth order equation

$$u_{tt} + t^p u_{xxxx} + \lambda^2 t^p u = 0, \tag{1.1}$$

where  $\lambda, p \in R$ , and  $p \ge 0$ . In the case p = 0, Equation (1.1) occurs in problems about vibrations of rods and beams, as well as the stability theory for rotation of shafts and vibration of ships.

1072-3374/23/2773-0458 © 2023 Springer Nature Switzerland AG

<sup>\*</sup> To whom the correspondence should be addressed.

International Mathematical Schools. Vol. 6. Mathematical Schools in Uzbekistan

In the domain  $\Omega = \{(x,t) : x \in R, t \in R, t > 0\}$ , we consider the Cauchy problem: Find a solution  $u(x,t) \in M$  to Equation (1.1) satisfying the initial conditions

$$u(x,0) = \varphi(x), \quad u_t(x,0) = \psi(x), \quad x \in \mathbb{R},$$
(1.2)

where  $\varphi(x)$  and  $\psi(x)$  are given smooth functions, M is the class of functions that are continuously differentiable in t and twice continuously differentiable in x in the closure  $\overline{\Omega} = \{(x, t) : x \in R, t \in R, t \in R, t \geq 0\}$  of  $\Omega$  and also twice continuously differentiable in t and four times in x in  $\Omega$ .

In the problem (1.1), (1.2), we make the change of variables  $y = [2/(p+2)]t^{(p+2)/2}$ . Then Equation (1.1) with the initial conditions (1.2) take the form

$$A_{\lambda}^{\beta}(u) \equiv u_{yy} + \frac{2\beta}{y}u_{y} + \frac{\partial^{4}u}{\partial x^{4}} + \lambda^{2}u = 0, \qquad (1.3)$$

$$u(x,0) = \varphi(x), \quad \lim_{y \to +0} y^{2\beta} u_y(x,y) = \psi_0(x), \quad x \in \mathbb{R},$$
 (1.4)

where  $\psi_0(x) = (1 - 2\beta)^{2\beta} \psi(x)$ ,  $2\beta = p/(p+2)$ , and  $0 < 2\beta < 1$  at p > 0.

We first construct a solution to Equation (1.3) satisfying the semi-homogeneous initial conditions

$$u(x,0) = \varphi(x), \quad u_y(x,0) = 0, \quad x \in R.$$
 (1.5)

To construct a solution to the Cauchy problem (1.3), (1.5), we use the generalized Erdélyi–Kober operator of fractional order [1]. We recall some properties of this operator.

# 2 Generalized Erdélyi–Kober Operator

Various modifications and generalizations of the Erdélyi–Kober operators were considered, for example, in [1]–[3]. In particular, the following generalized Erdélyi–Kober operators with Bessel functions in kernels were introduced in [2]:

$$J_{\lambda}(\eta, \alpha)f(x) = 2^{\alpha}\lambda^{1-\alpha}x^{-2\alpha-2\eta} \int_{0}^{x} t^{2\eta+1}(x^{2}-t^{2})^{(\alpha-1)/2}J_{\alpha-1}(\lambda\sqrt{x^{2}-t^{2}})f(t)dt, \qquad (2.1)$$

where  $\alpha, \eta, \lambda \in \mathbb{R}$ ,  $\alpha > 0$ ,  $\eta \ge -(1/2)$ , and  $J_{\nu}(z)$  is the Bessel function of the first kind of order  $\nu$ . The operator (2.1) coincides with the usual Erdélyi–Kober operator [1] as  $\lambda \to 0$ 

$$I_{\eta,\alpha}f(x) = \frac{2x^{-2(\eta+\alpha)}}{\Gamma(\alpha)} \int_{0}^{x} (x^2 - t^2)^{\alpha-1} t^{2\eta+1} f(t) dt, \qquad (2.2)$$

where  $\Gamma(\alpha)$  is the Euler Gamma function [4].

The inverse of the operator (2.1) with  $0 < \alpha < 1$  has the form [1]

$$J_{\lambda}^{-1}(\eta,\alpha)f(x) = \frac{x^{-2\eta-1}}{\Gamma(1-\alpha)} \frac{d}{dx} \int_{0}^{x} \frac{\overline{I}_{-\alpha} \left(\lambda\sqrt{x^{2}-s^{2}}\right)}{(x^{2}-s^{2})^{\alpha}} s^{2(\eta+\alpha)+1} f(s)ds,$$
(2.3)

where  $\overline{I}_{\nu}(z) = \overline{J}_{\nu}(iz) = \Gamma(\nu+1)(z/2)^{-\nu}I_{\nu}(z)$ ,  $I_{\nu}(z)$  is the Bessel function of imaginary variable. Since  $\overline{I}_{\nu}(0) = 1$ , for  $\lambda = 0$  from (2.3) we obtain the inverse of the operator (2.2)

$$I_{\eta,\alpha}^{-1}g(x) = \frac{x^{-2\eta-1}}{\Gamma(1-\alpha)} \frac{d}{dx} \int_{0}^{x} (x^2 - s^2)^{-\alpha} s^{2(\eta+\alpha)+1} g(s) ds$$
(2.4)

In a more general situation, the notion of transmutation is introduced. For given two operators (A, B) we say that a nonzero operator T is a *transmutation operator* if it possesses the following *transmutational* (or intertwining) property

$$TA = BT. (2.5)$$

Usually, T is an integral operator.

Some properties of the operator (2.1) were generalized in [5, 6], where the following theorem was also proved.

Let  $l \in N \cup \{0\}$ ,  $[B^x_{\eta}]^0 = E$ , where E is the identity operator, and let  $[B^x_{\eta}]^l = [B^x_{\eta}]^{l-1}[B^x_{\eta}]$  be the *l*th power of the Bessel operator

$$B_{\eta}^{x} = x^{-2\eta - 1} \frac{d}{dx} x^{2\eta + 1} \frac{d}{dx} = \frac{d^{2}}{dx^{2}} + \frac{2\eta + 1}{x} \frac{d}{dx}$$

**Theorem 2.1.** Assume that  $\alpha > 0$ ,  $\eta \ge -(1/2)$ ,  $f(x) \in C^{2l}(0,b)$ , b > 0, the functions  $x^{2\eta+1}[B_{\eta}^{x}]^{k}f(x)$  are integrable at zero and

$$\lim_{x \to 0} x^{2\eta + 1} \frac{d}{dx} [B_{\eta}^{x}]^{k} f(x) = 0, \quad k = \overline{0, l - 1}.$$

Then

$$[B_{\eta+\alpha}^x + \lambda^2]^l J_\lambda(\eta, \alpha) f(x) = J_\lambda(\eta, \alpha) [B_{\eta}^x]^l f(x).$$

In particular, for  $\lambda = 0$ 

$$[B_{\eta+\alpha}^x]^l I_{\eta,\alpha} f(x) = I_{\eta,\alpha} [B_{\eta}^x]^l f(x).$$

Owing to Theorem 2.1, it is possible to treat the operator (2.1) as a transmutation operator; more exactly, a *shift parameter operator*. This fact is useful for solving the Cauchy problem (1.3), (1.5). We note that the Erdélyi–Kober operator was used [6]-[10] to solve the Cauchy problem for partial differential equations of hyperbolic and parabolic type.

## 3 Application of the Erdélyi–Kober Operator

We assume that a solution to the problem (1.3), (1.5) exists. We look for it in the form of the generalized Erdélyi–Kober operator (2.1):

$$u(x,y) = J_{\lambda}^{(y)}(-(1/2), \beta)V(x,y)$$
(3.1)

where V(x, y) is an unknown twice continuously differentiable function.

Substituting (3.1) into (1.3) and (1.5), using Theorem 2.1 with l = 1,  $\alpha = \beta$ ,  $\eta = -1/2$  and the inverse operator (2.3) with for  $\alpha = \beta$ ,  $\eta = -1/2$ , we obtain the following problem: Find a solution V(x, y) to the equation

$$\frac{\partial^2 V}{\partial y^2} + \frac{\partial^4 V}{\partial x^4} = 0 \tag{3.2}$$

satisfying the initial conditions

$$V(x,0) = k_0 \varphi(x), \quad V_y(x,0) = 0, \quad x \in R,$$
(3.3)

where  $k_0 = \Gamma(\beta + 1/2)/\sqrt{\pi}$ .

**Theorem 3.1** ([11]). A function  $V(x, y) \in M$  is a solution to the problem (3.2), (3.3) if and only if the function

$$U(x,y) = V(x,y) + i \int_{0}^{y} V_{xx}(x,\tau) d\tau$$
(3.4)

is a solution to the equation

$$U_y - iU_{xx} = 0, \quad (x, y) \in \Omega, \tag{3.5}$$

satisfying the initial condition

$$U(x,0) = k_0 \varphi(x), \quad x \in R, \tag{3.6}$$

where *i* is the imaginary unit.

**Corollary 3.1.** Let  $U(x, y) \in M$  be a solution to the problem (3.5), (3.6), where  $\varphi(x)$  is a real-valued function. Then  $V(x, y) = \operatorname{Re} U(x, y)$  is a solution to the problem (3.2), (3.3), where  $\operatorname{Re} U$  denotes the real part of U(x, y).

To solve the problem (3.2), (3.3), we apply Corollary 3.1. Then Equation (3.5) becomes the one-dimensional Schrödinger equation

$$\frac{\partial U}{\partial y} - i\frac{\partial^2 U}{\partial x^2} = 0.$$

The solution to the problem (3.5), (3.6) in this case takes the form [12]

$$U(x,y) = \int_{-\infty}^{+\infty} \varphi(\xi) G(x,\xi,y) d\xi,$$

where

$$G(x,\xi,y) = \frac{1}{2\sqrt{\pi y}} \exp\left[i\left(\frac{(x-\xi)^2}{4y} - \frac{\pi}{4}\right)\right].$$

By Corollary 3.1, the solution to the problem (3.2), (3.3) takes the form

$$V(x,y) = k_0 \int_{-\infty}^{+\infty} \varphi(\xi) G_1(x,y,\xi) d\xi, \qquad (3.7)$$

where

$$G_1(x, y, \xi) = \frac{1}{2\sqrt{\pi y}} \cos\left[\frac{(\xi - x)^2}{4y} - \frac{\pi}{4}\right].$$

Substituting (3.7) into (3.1) and changing the integration order, we get

$$u(x,y) = \frac{k_0 y^{1-2\beta}}{\sqrt{2\pi}\Gamma(\beta)} \int_{-\infty}^{+\infty} \varphi(\xi) G_2(x,y,\xi) d\xi, \qquad (3.8)$$

where

$$G_2(x, y, \xi) = \int_0^y (y^2 - \eta^2)^{\beta - 1} \overline{J} (\lambda \sqrt{y^2 - \eta^2}) G_1(x, \xi, \eta) d\eta.$$
(3.9)

Substituting  $G_1(x, \xi, \eta)$  into (3.9), replacing the integration variable, using the series expansion of the Bessel–Clifford (or normalized Bessel) function, and applying formula (2.5.8.3) in [13], we find

$$u(x,y) = \frac{k_0}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \varphi(x + 2\xi\sqrt{y}) G_3(y,\xi;\beta,\lambda) d\xi, \qquad (3.10)$$

where

$$G_{3}(y,\xi;\beta,\lambda) = \frac{\Gamma(1/4)}{\Gamma(\beta+(1/4))} K_{1} \Big(\beta + \frac{1}{4}; \frac{3}{4}, \frac{1}{2}; -\frac{\xi^{4}}{4}, -\frac{1}{4}\lambda^{2}y^{2}\Big) + \frac{\Gamma(-1/4)}{\Gamma(\beta-(1/4))} \xi^{2} K_{1} \Big(\beta - \frac{1}{4}; \frac{5}{4}, \frac{3}{2}; -\frac{\xi^{4}}{4}, -\frac{1}{4}\lambda^{2}y^{2}\Big),$$
(3.11)

where

$$K_1(a, b, c; x, y) = \sum_{m=0}^{\infty} \frac{y^m}{(a)_m m!} F_2(1 - a - m; b, c; x)$$

and  ${}_{1}F_{2}(a; b, c; z)$  is the generalized hypergeometric function [4].

We note that for  $\beta = 0$  and  $\lambda \neq 0$  Equation (1.3) takes the form

$$A^{0}_{\lambda}(u) \equiv \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{4} u}{\partial x^{4}} + \lambda^{2} u = 0$$
(3.12)

and the solution to the problem (1.3), (1.5) has the form (3.10) with  $k_0 = \Gamma(1/2)/\sqrt{\pi} = 1$ ,

$$G_3(y,\xi;0,\lambda) = K_1\left(\frac{1}{4}; \frac{3}{4}, \frac{1}{2}; -\frac{\xi^4}{4}, -\frac{1}{4}\lambda^2 y^2\right) + \xi^2 K_1\left(-\frac{1}{4}; \frac{5}{4}, \frac{3}{2}; -\frac{\xi^4}{4}, -\frac{1}{4}\lambda^2 y^2\right)$$

Assume that  $\beta \neq 0$  and  $\lambda = 0$ . Then Equation (1.3) takes the form

$$A_0^\beta(u) \equiv u_{yy} + \frac{2\beta}{y}u_y + \frac{\partial^4 u}{\partial x^4} = 0$$
(3.13)

and the solution to the problem (1.3), (1.5) has the form (3.10) with  $k_0 = \Gamma(\beta + 1/2)/\sqrt{\pi}$ ,

$$G_{3}(y,\xi;\beta,0) = \frac{\Gamma(1/4)}{\Gamma(\beta+(1/4))} {}_{1}F_{2}\left(\frac{3}{4}-\beta;\frac{3}{4},\frac{1}{2};-\frac{\xi^{4}}{4}\right) + \frac{\Gamma(-1/4)}{\Gamma(\beta-(1/4))} \xi^{2} {}_{1}F_{2}\left(\frac{5}{4}-\beta;\frac{5}{4},\frac{3}{2};-\frac{\xi^{4}}{4}\right).$$

Assume that  $\beta = 0$  and  $\lambda = 0$ , Then Equation (1.3) takes the form

$$A_0^0(u) \equiv \frac{\partial^2 u}{\partial y^2} + \frac{\partial^4 u}{\partial x^4} = 0 \tag{3.14}$$

and the solution to the problem (1.3), (1.5) has the form (3.10) with  $k_0 = \Gamma(1/2)/\sqrt{\pi} = 1$ ,

$$G_3(y,\xi;0,0) = {}_1F_2\left(\frac{3}{4}; \frac{3}{4}, \frac{1}{2}; -\frac{\xi^4}{4}\right) + \xi^2 {}_1F_2\left(\frac{5}{4}; \frac{5}{4}, \frac{3}{2}; -\frac{\xi^4}{4}\right).$$
(3.15)

By the formula

$${}_{0}F_{1}(b; -z) = \Gamma(b)z^{\frac{1-b}{2}}J_{b-1}(2\sqrt{z}),$$

where

$$J_{-1/2}(z) = \sqrt{\frac{2}{\pi z}} \cos z, \quad J_{1/2}(z) = \sqrt{\frac{2}{\pi z}} \sin z,$$

we have

$${}_{1}F_{2}\left(\frac{3}{4};\frac{3}{4},\frac{1}{2};-\frac{\xi^{4}}{4}\right) = {}_{0}F_{1}\left(\frac{1}{2};-\frac{\xi^{4}}{4}\right) = \Gamma\left(\frac{1}{2}\right)\frac{\xi}{\sqrt{2}}J_{-1/2}(\xi^{2}) = \cos(\xi^{2}),$$
$${}_{1}F_{2}\left(\frac{5}{4};\frac{5}{4},\frac{3}{2};-\frac{\xi^{4}}{4}\right) = {}_{0}F_{1}\left(\frac{3}{2};-\frac{\xi^{4}}{4}\right) = \Gamma\left(\frac{3}{2}\right)\frac{\sqrt{2}}{\xi}J_{1/2}(\xi^{2}) = \frac{\sin(\xi^{2})}{\xi^{2}}.$$

Substituting the last equalities into (3.15), we find

$$G_3(y,\xi;0,0) = \cos(\xi^2) + \sin(\xi^2) = \sqrt{2}\cos\left(\xi^2 - \frac{\pi}{4}\right).$$

The last expression coincides with the results of [14] obtained by other methods.

Now, we study the problem of finding a solution to Equation (1.3) satisfying the conditions

$$u(x,0) = 0, \quad \lim_{y \to +0} y^{2\beta} u_y(x,y) = \psi_0(x), \quad x \in \mathbb{R}.$$
 (3.16)

We apply the following property of this equation.

**Proposition 3.1.** If  $u(x, y; 1 - \beta)$  is a solution to the equation  $A_{\lambda}^{1-\beta}(u) = 0$  satisfying the conditions (1.5), then the function  $w(x, y; \beta) = y^{1-2\beta}u(x, y; 1 - \beta)$  is a solution to the equation  $A_{\lambda}^{\beta}(w) = 0$  satisfying the conditions

$$w(x,0) = 0, \quad \lim_{y \to +0} y^{2\beta} w_y(x,y) = (1-2\beta)\varphi(x), \quad x \in \mathbb{R}.$$

Proposition 3.1 is proved by a direct computation. Taking into account Proposition 3.1 and replacing  $(1-2\beta)\varphi(x)$  by  $\psi_0(x)$  on the basis of the solution to the equation  $A^{\beta}_{\lambda}(u) = 0$  satisfying (1.5), we can construct a solution to the equation  $A^{\beta}_{\lambda}(w) = 0$  satisfying the conditions (3.16)

$$w(x,y) = k_1 y^{1-2\beta} \int_{-\infty}^{+\infty} \psi_0(x+2\xi\sqrt{y}) G_3(y,\xi;1-\beta,\lambda) d\xi, \qquad (3.17)$$

where  $k_1 = \Gamma(1/2 - \beta)/(2\sqrt{\pi})$ ,

$$G_{3}(y,\xi;1-\beta,\lambda) = \frac{\Gamma(1/4)}{\Gamma((5/4-\beta))} K_{1}\left(\frac{5}{4}-\beta;\frac{3}{4},\frac{1}{2};-\frac{\xi^{4}}{4},-\frac{1}{4}\lambda^{2}y^{2}\right) +\frac{\Gamma(-1/4)}{\Gamma((3/4)-\beta)}\xi^{2}K_{1}\left(\frac{3}{4}-\beta;\frac{5}{4},\frac{3}{2};-\frac{\xi^{4}}{4},-\frac{1}{4}\lambda^{2}y^{2}\right).$$

Similarly, for  $\beta = 0$  and  $\lambda \neq 0$  Equation (1.3) takes the form (3.12) and the solution to the problem (1.3), (3.16) has the form

$$w(x,y) = \frac{y}{2} \int_{-\infty}^{+\infty} \psi_0(x+2\xi\sqrt{y})G_3(y,\xi;1,\lambda)d\xi,$$

where

$$G_{3}(y,\xi;1,\lambda) = 4K_{1}\left(\frac{5}{4};\frac{3}{4},\frac{1}{2};-\frac{\xi^{4}}{4},-\frac{1}{4}\lambda^{2}y^{2}\right)$$
$$-4\xi^{2}K_{1}\left(\frac{3}{4};\frac{5}{4},\frac{3}{2};-\frac{\xi^{4}}{4},-\frac{1}{4}\lambda^{2}y^{2}\right).$$

For  $\beta \neq 0$  and  $\lambda = 0$  Equation (1.3) takes the form (3.13) and the solution to the problem (1.3), (3.16) has the form (3.17) with  $k_1 = \Gamma(1/2 - \beta)/(2\sqrt{\pi})$ ,

$$G_3(y,\xi;1-\beta,0) = \frac{\Gamma(1/4)}{\Gamma((5/4)-\beta)} {}_1F_2\left(\beta - \frac{1}{4};\frac{3}{4},\frac{1}{2};-\frac{\xi^4}{4}\right) + \frac{\Gamma(-1/4)}{\Gamma((3/4)-\beta)}\xi^2 {}_1F_2\left(\frac{1}{4}+\beta;\frac{5}{4},\frac{3}{2};-\frac{\xi^4}{4}\right).$$

For  $\beta = 0$  and  $\lambda = 0$  Equation (1.3) takes the form (3.13) and the solution to the problem (1.3), (3.16) has the form (3.17) with  $k_1 = \Gamma(1/2)/2\sqrt{\pi} = 1/2$ ,

$$G_3(y,\xi;1,0) = 4_1 F_2 \left(-\frac{1}{4}; \frac{3}{4}, \frac{1}{2}; -\frac{\xi^4}{4}\right) - 4\xi^2 {}_1 F_2 \left(\frac{1}{4}; \frac{5}{4}, \frac{3}{2}; -\frac{\xi^4}{4}\right).$$
(3.18)

By the formulas

$${}_{1}F_{2}\left(-\frac{1}{4};\frac{3}{4},\frac{1}{2};-x^{2}\right) = \cos(2x) + 2\sqrt{\pi x}S(2x),$$
$${}_{1}F_{2}\left(\frac{1}{4};\frac{5}{4},\frac{3}{2};-x^{2}\right) = \sqrt{\frac{\pi}{x}}C(2x) - \frac{\sin(2x)}{2x},$$

we have

$${}_{1}F_{2}\left(-\frac{1}{4};\frac{3}{4},\frac{1}{2};-\frac{\xi^{4}}{4}\right) = \cos(\xi^{2}) + 2\xi\sqrt{\frac{\pi}{2}}S(\xi^{2}),$$
$${}_{1}F_{2}\left(\frac{1}{4};\frac{5}{4},\frac{3}{2};-\frac{\xi^{4}}{4}\right) = \sqrt{2\pi}\frac{1}{\xi}C(\xi^{2}) - \frac{\sin\left(\xi^{2}\right)}{\xi^{2}}$$

where

$$S(z) = \int_{0}^{z} \frac{\sin t}{\sqrt{t}} dt, \quad C(z) = \int_{0}^{z} \frac{\cos t}{\sqrt{t}} dt$$

are the Fresnel sine and cosine integrals.

Substituting the last equalities into (3.18), we find

$$G_3(y,\xi;1,0) = 4_1 F_2\left(-\frac{1}{4}; \frac{3}{4}, \frac{1}{2}; -\frac{\xi^4}{4}\right) - 4\xi^2 {}_1F_2\left(\frac{1}{4}; \frac{5}{4}, \frac{3}{2}; -\frac{\xi^4}{4}\right)$$

$$= 4 \left[ \cos(\xi^2) + 2\xi \sqrt{\frac{\pi}{2}} S(\xi^2) \right] - 4\xi^2 \left[ \sqrt{2\pi} \frac{1}{\xi} C(\xi^2) - \frac{\sin(\xi^2)}{\xi^2} \right]$$
$$= 4 \left[ \cos(\xi^2) + \sin(\xi^2) \right] + 4\sqrt{2\pi} \xi \left[ S(\xi^2) - C(\xi^2) \right].$$

The latter coincides with the results of [14] obtained by a different method.

# **Declarations**

**Data availability** This manuscript has no associated data. **Ethical Conduct** Not applicable.

Conflicts of interest The authors declare that there is no conflict of interest.

# References

- 1. S. G. Samko, A. A. Kilbas, and O. I. Marichev, *Fractional Integrals and Derivatives. Theory* and Applications, Gordon and Breach, New York, NY (1993).
- J. S. Lowndes, "A generalization of the Erdélyi–Kober operators," Proc. Edinb. Math. Soc., II. Ser. 17, No 2, 139–148 (1970).
- 3. V. Kiryakova, *Generalized Fractional Calculus and Applications*, John Wiley and Sons, New York etc. (1994).
- 4. A. Erdélyi (Ed.) et al., *Higher Transcendental Functions.* 1, McGraw-Hill, New York, NY (1953).
- 5. Sh. T. Karimov, "On some generalizations of properties of the Lowndes operator and their applications to partial differential equations of high order," *Filomat*, **32**, No. 3, 873–883 (2018).
- 6. Sh. T. Karimov, "Method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator," *Russ. Math.* **61**, No. 8, 22–35 (2017).
- A. K. Urinov and Sh. T. Karimov, "Solution of the Cauchy problem for generalized Euler– Poisson–Darboux equation by the method of fractional integrals," Springer Proc. Math. Stat. 44, 321–337 (2013).
- 8. Sh. T. Karimov, "Multidimensional generalized Erdélyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients," *Fract. Calc. Appl. Anal.* **18**, No. 4, 845–861 (2015).
- Sh. T. Karimov, "On one method for the solution of an analog of the Cauchy problem for a polycaloric equation with singular Bessel operator," Ukr. Math. J. 69, No. 10, 1593–1606 (2018).
- 10. Sh. T. Karimov and Sh. A. Oripov, "Solution of the Cauchy problem for a hyperbolic equation of the fourth order with the Bessel operator by the method of transmutation operators," *Bol. Soc. Mat. Mex.*, *III. Ser.* **29**, No. 2, Paper No. 28 (2023).
- 11. Sh. T. Karimov, "The Cauchy problem for the degenerated partial differential equation of the high even order," *Sib. Electron. Math. Izv.* **15**, 853–862 (2018).

- 12. A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman and Hall/CRC, Boca Raton, FL (2002).
- 13. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, *Integrals and Series. Elementary Functions* [in Russian], Nauka, Moscow (1981).
- 14. K. B. Sabitov, "Cauchy problem for the beam vibration equation." *Differ. Equ.* **53**, No. 5, 658–664 (2017).

Submitted on November 1, 2023

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.