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ABSTRACT Gordonia polyisoprenivorans 135 is a promising degrader of aromatic hydro-
carbons. It can utilize phenanthrene, anthracene, benzoate, chlorobenzoates, and phenol.
The genome of strain 135 was completely sequenced; it consists of a single 5,988,360-bp
circular chromosome (GC content of 67.01%).

Polycyclic aromatic hydrocarbons (PAHs) are chemically stable carcinogenic and mu-
tagenic compounds of crude oil (1). The ability to utilize PAHs is characteristic for

many Actinobacteria members, but not many strains of the genus Gordonia are cur-
rently known to possess this property. A description of the genetic organization of the
PAH catabolism pathway is presented in the work of Lin et al. (2).

Gordonia polyisoprenivorans strain 135 (previously Rhodococcus rhodnii 135) was iso-
lated in 1998 from soil contaminated with oil, diesel fuel, and chlorophenols (latitude,
53°1093999N; longitude, 50°0494499E; Samara, Russia) using the enrichment culture
method (3, 4) on Evans medium (5) with p-hydroxybenzoate as the sole source of car-
bon and energy. The strain is capable of utilizing phenanthrene, anthracene (6), benzo-
ate (7), chlorobenzoates (8), and phenol (4). For long-term storage, the strain was kept
in glycerol (40%) stocks at 270°C. For short-term maintenance, the strain was cultured
on a Lysogeny broth agar plate at 27°C.

Genomic DNA was isolated from a fresh culture biomass (a colony) of Gordonia polyiso-
prenivorans 135 grown on LB agar using a DNeasy blood and tissue kit (Qiagen; 69506).
Sequencing was performed using a MinION sequencer with flow cell FLO-MIN106 (Oxford
Nanopore Technologies [ONT]). A library was prepared with a ligation kit (SQK-LSK109).
Guppy 3.2.4 was used for base calling, which yielded a total of 1,335.8 Mb distributed in
332,510 reads with a Q of.10 (N50 is 14,599 bp).

Additionally, the same DNA sample was sequenced with an MGI platform (DNBSEQ-
G400) using the DNBSEQ-G400RS high-throughput sequencing set (FCL PE150) (2 � 150 bp).
A paired-end library was prepared with the MGIEasy universal DNA library prep set. We
obtained 8,939,552 paired-end reads of ,150 bp. The MGI and Nanopore reads were
used for hybrid assembly with SPAdes 3.15.4 (9). The Nanopore reads with a length of
.2,000 bp were assembled using Flye 2.9.1 (10), and a single circular contig was
obtained. Next, SPAdes contigs were combined into replicons in SnapGene 6.1 (from
Dotmatics; available at http://snapgene.com) using Flye data as the reference. The MGI
reads were used to correct Nanopore or assembly errors using Bowtie 2 2.3.5.1 (11) and
Pilon 1.24 (12) software. Default parameters were used for all software.

The Gordonia polyisoprenivorans 135 genome consists of a single 5,988,360-bp cir-
cular chromosome (GC content of 67.01%). Chromosome circularization was specified
by ends overlapping. The average nucleotide identity (ANI) value was calculated using
the EzBioCloud ANI calculator (13). DNA-DNA hybridization (DDH) was calculated using
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the Genome-to-Genome Distance Calculator 3.0 (GGDC) (14). The ANI value with the
type strain Gordonia polyisoprenivorans NBRC16320 (BAEI00000000.1) was 98.68%, and
the DDH value was 88.40%.

The G. polyisoprenivorans 135 genome was annotated with the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) 4.6 (15). The chromosome contained 5,168 coding
sequences, 3 rRNA clusters (5S, 16S, and 23S), 49 tRNAs, and 3 noncoding RNAs (ncRNAs).
The genes of the PAH catabolic pathway were found in the genome of the strain 135, but
their order was different from that of the strain Gordonia sp. CC-NAPH129-6 (2). The ge-
nome sequence data of Gordonia polyisoprenivorans 135 will enhance our understanding
of the metabolism of PAH-degrading Gordonia strains.

The antiSMASH 6.0 (16) search for secondary metabolite clusters found 15 clusters
on the chromosome, including clusters of « -poly-L-lysine, ectoine, and aminopolycar-
boxylic-acid production.

Data availability. This genome project has been deposited at GenBank under the
accession number CP116236. BioSample number SAMN32738803, and BioProject num-
ber PRJNA923796. SRA accession numbers were SRX19143368 for Oxford Nanopore
data and SRX19144143 for DNBSEQ data.
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