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Abstract This research focuses on the SIR mathematical model, analyzing disease dynamics in populations. 

The SIR model classifies individuals into Susceptible, Infectives, and Removed categories, guided by 

differential equations and key assumptions. Addressing questions on disease spread, maximum infectives, 

total impact, epidemic cessation, and vaccination effects, the study emphasizes the contact ratio's role. 

A high contact ratio leads to widespread disease, influencing infective numbers and population impact. 

Epidemic cessation depends on reducing the contact ratio, enhancing recovery rates, and vaccination. The 

study underscores vaccination coverage's importance, considering effectiveness and population 

immunization for effective pandemic control, particularly relevant in the context of COVID-19. 
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Аннотация: В данном исследовании рассматривается математическая модель SIR, анализирующая 

динамику распространения болезней в населении. Модель SIR классифицирует людей на 

подверженных инфекции, инфицированных и излеченных, руководствуясь дифференциальными 

уравнениями и основными предположениями. Исследуя вопросы распространения болезни, 

максимального числа инфицированных, общего воздействия, прекращения эпидемии и эффектов 

вакцинации, исследование подчеркивает роль коэффициента контакта. Высокий коэффициент 

контакта приводит к широкому распространению болезни, влияя на число инфицированных и 

воздействие на население. Прекращение эпидемии зависит от снижения коэффициента контакта, 

увеличения скорости выздоровления и вакцинации. Исследование подчеркивает важность охвата 

вакцинацией, учитывая эффективность и иммунизацию населения для эффективного контроля 

пандемий, особенно актуально в контексте COVID-19. 
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Introduction 

The power of mathematical models is that they not only tell you things that may seem 

obvious, but they also tell you how to alter things and control things to get them back under control. 

The mathematical modeling of infectious diseases, exemplified by the SIR model, offers crucial 

insights into epidemic dynamics and vaccination strategies. This research navigates through the 

intricacies of the SIR model, delineating the dynamics of Susceptible, Infective, and Removed 

populations. As the COVID-19 context underscores, vaccination coverage becomes paramount, 

demanding an exploration of effectiveness and population immunization to effectively curb 

pandemics. 

 

Literature Review 

The SIR model, which divides the population into susceptible, infected, and recovered 

compartments, was introduced by Kermack and McKendrick in the 1920s. This model has been 

refined and expanded upon by various researchers over the years. Flynn-Primrose et al. provide 

explicit mathematical definitions for model products used in constructing stratified compartmental 

models [Faris 2021]. The SIR model is a standard model for understanding epidemics, but it 

assumes that infected patients are identical to symptomatic and infectious patients. However, for 

COVID-19, it is now known that pre-symptomatic and asymptomatic patients can also be 

infectious. To address this, a modified version of the SIR model has been proposed, where the 

population is separated into five compartments: susceptible individuals, pre-symptomatic patients, 

asymptomatic patients, quarantined patients, and recovered and/or dead patients [Sikder, Hossain, 

and Islam 2023]. Mathematical models have been widely used to study the spread of infectious 

diseases. These models provide insights into the dynamics of disease transmission and can help in 

predicting, assessing, and controlling potential outbreaks [Al-Jebouri 2023]. Contact ratio, which 

refers to the number of contacts an individual has, plays a significant role in disease transmission. 

Studies have analyzed the impact of contact ratios on the spread of various infectious diseases. For 

example, [Sharma et al. n.d., 2021] found that the structure of contact networks, influenced by 

population-level risk-tolerance regimes and interaction type, affects the spread of the epidemic. 

Vaccination strategies play a crucial role in controlling and preventing epidemics. Various 

approaches have been explored in the literature to maximize the effectiveness of vaccination 

campaigns and their impact on disease dynamics. These strategies include considering network 

structure centrality measures, disease-spreading parameters, and a combination of both [Chatterjee 

and Zehmakan 2023].  

The basic reproductive number (R0) is a crucial concept in determining epidemic outcomes 

and influencing disease control measures. It represents the average number of secondary infections 

caused by a single infected individual in a susceptible population. Studies have explored the 

importance of R0 in various diseases, including Legionnaires' disease [Ahmad et al. 2023]. The 

SIR model can be used to understand the dynamics of the COVID-19 pandemic by providing 

insights into the spread of the virus through populations. The model considers the specific 

distribution of initially infected individuals and the stochasticity of the transmission process, 

allowing for more realistic predictions and scenarios [Yao, Jia, and Dai 2023]. Model validation 

using real-world epidemiological data is crucial for assessing the accuracy and reliability of 

mathematical models like the SIR model. However, there are challenges and methodologies 

involved in this process. One challenge is the limited availability of data in the early stages of an 

epidemic, which can hinder the performance of the model [Nath et al. 2023]. Optimal resource 

allocation strategies during an epidemic have been discussed in several studies. These studies 

utilize mathematical models to aid decision-making in resource allocation. [Gupta and Amin 2023] 

propose a data-driven approach to incorporate parameter uncertainty into resource allocation 

decisions, improving the efficacy of time-critical allocation decisions by 4-8 %. Vaccination 

programs have been highly effective in preventing and eradicating infectious diseases, such as 
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smallpox, polio, measles, and tetanus. These programs have been cost-effective and have had a 

quick impact on population health by saving lives [Wang, Fekadu, and You 2023]. Numerous 

lectures, hosted by the Oxford University Department for Continuing Education, have explored 

the dynamics of the SIR model, which researchers have utilized in this paper [T. Crawford, 2021]. 

 

Model Development 

In this model, the total population is divided into three categories or components: S for 

susceptible, who are individuals who could potentially catch the disease; I for infectives, 

representing those currently having the disease and capable of infecting others; and lastly, R for 

removed, encompassing individuals who have already contracted the disease and have now either 

recovered or died. With all mathematical models, various assumptions are incorporated to simplify 

real-world phenomena because explaining everything in a set of simple differential equations can 

be overly complex. The first assumption we make is that the epidemic is sufficiently short, 

implying that it doesn't last for an extended period, allowing us to assume that the total population 

remains constant. The second assumption in our model pertains to how the disease is transmitted. 

We assume that the rate of increase in infectives is proportional to the contact between susceptible 

and infectives, occurring at a constant rate. Our third assumption pertains to the removal rate, 

where we also assume a constant rate, encompassing factors such as death or recovery rates, and 

we maintain that this rate remains constant. 

After making our assumptions, we need to formulate the equations governing our model. 

Concerning the susceptible, the rate of change in the number of susceptible, based on our 

assumption, indicates an expected decrease as individuals transition to infectives. Consequently, 

the rate of change in the number of susceptible 
dS

dt
= -rSI

 
                                                               (1) 

The minus sign indicates that the original initial number is decreasing as time progresses, 

where 'r' is the rate of contact. The rate of susceptibles 'S' is proportional to the number of contacts 

between infectives and susceptibles. Therefore, 'S' multiplied by 'I' symbolizes the contact between 

the number of infectives and susceptibles. 

For the infectives, we have a similar equation. We aim to understand the rate of change of 'I' 

over time, and this equation would grow as people move from susceptibles into infectives 
𝑑𝐼

𝑑𝑡
= 𝑟𝑆𝐼 − 𝑎𝐼                                                            (2) 

The first term 𝑟𝑆𝐼 in equation 2 is the same as in equation 1 but with the opposite sign 

because susceptibles are moving to become infected. Additionally, based on our assumption that 

infectives recover or die at a constant rate, if somebody is infective, he would move to the third 

category, R, or the removal category. The third equation, representing the rate of change of the 

removed population, must be equal to the gain from equation 2. 
𝑑𝑅

𝑑𝑡
= 𝑎𝐼                                                                   (3) 

Equations 1, 2, and 3 represent the dynamics of three categories of people within the 

population. In Equation 1, the number of susceptibles would decrease according to the number of 

contacts between infectives and susceptibles. In Equation 2, the number of susceptibles would 

increase due to contact between people and decrease when individuals are dying as a result of the 

disease or recovering. Finally, in Equation 3, the removed category includes people who no longer 

catch the disease, either because they have recovered or have died. 

Before solving this system of differential equations, we require initial data. Therefore, we 

need to define the initial number of susceptible people in the population. We can state that the 

initial number of infectives is denoted as 𝑆𝑜, the initial value of infectives is denoted as 𝐼𝑜, and the 

initial value of the removed category (𝑅𝑜) is set to zero, as no one has yet recovered or died as a 

result of the disease. 

𝑆 = 𝑆𝑜 , 𝐼 = 𝐼𝑜, 𝑅 = 𝑅𝑜 = 0   𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 
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We assumed that the population must be constant due to the epidemic. What this means is 

that the rate of change of susceptibles plus the rate of change of infectives plus the rate of change 

of removed must always be zero because the total population is given by 𝑆 + 𝐼 + 𝑅 = 𝐼𝑜 + 𝑅𝑜. 
𝑑

𝑑𝑡
(𝑆 + 𝐼 + 𝑅) = 0                                                           (4) 

We can solve 1,2 and 3 equations because we know the initial condition of the population, 

so the total population doesn’t change over time. So, we can take the initial value, which is the 

starting point representing the population value, as time cannot change it; it always has a constant 

value. 

Results and Discussion 

According to our built system, we should answer these questions  

Q1 Will the disease spread?  

We have an initial number of infected people given by 𝐼𝑜 at the beginning of the epidemic, 

and what we want to know is whether that would grow. If the infected start to grow, then the 

disease would spread through the population, so what we are interested in is the rate of change of 

the number of infectives in equation 2. But before we do that, we want to start with equation 1, as 

it would always be a negative number since all of its parameters are positive numbers and it 

contains a minus sign. So, the change of 𝑆 would always be negative; this tells us that S at any 

given time must be smaller than or equal to the initial value 𝑆𝑜. 

𝑆 ≤ 𝑆𝑜                                                                  (5) 

Now we can take this value 𝑆𝑜 and plug it into equation 2  
𝑑𝐼

𝑑𝑡
< 𝐼(𝑟𝑆𝑜 − 𝑎)                                                          (6) 

So, the epidemic would occur if the size of I increases from its initial value Io, so the answer 

to our first question would be related to the sign of this term (𝑟𝑆𝑜 − 𝑎)  equation 6. If this term is 

positive, so there will be a spread of the disease. This means if 𝑆𝑜 > 𝑎/𝑟 the disease indeed will 

spread.  

The value of 𝑟/𝑎 is called 𝑞 which is called the contact ratio, which is a fraction of the 

population that comes into contact with an infected individual during the period when they are 

infectious. We can also re-arrange 𝑆𝑜 > 𝑎/𝑟 to be 𝑆𝑜𝑞 > 1 or 𝑅𝑜 > 1. Condition 𝑅𝑜 > 1 

determines whether or not the epidemic will occur. Where 𝑅𝑜 is the reproductive number which 

represents the number of secondary infections in the population caused by initial primary infection. 

𝑅𝑜 value will tell how many infections in the average one infected person will give the disease to 

within susceptibles. The value of 𝑅𝑜 in COVID-19 is estimated to be 3 to 4, which is why it is 

spread so rapidly all around the world. 

Real data was collected and organized by the World Health Organization (WHO). Some data 

points were missing, and therefore, we employed interpolation techniques to fill in these gaps. 

Figure 1 displays the basic reproduction number calculated by the WHO, with the interpolated 

graph overlaid. The dataset spans from May 2020 to January 2023. 

As mentioned earlier, when the condition 𝑅𝑜 > 1 satisfies ? the answer determines whether 

the number of infected people will increase or decrease. Therefore, it is essential to identify when 

the value of 𝑅𝑜 is below or above 1. Figure 2 illustrates the distinct values of 𝑅𝑜, indicating whether 

it is above or below 1. 

In Figure 3, When plotting the daily count of infected individuals alongside the 

corresponding values of the basic reproduction number 𝑅𝑜, we observed a clear pattern: as 𝑅𝑜 

exceeds 1, the number of cases, scaled up to a maximum of 2.5, increases, while it decreases as 

𝑅𝑜 falls below 1. The intersection of the Ro curve with the vertical line at 1 manifest as a turning 

point in the graph representing new cases. 
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Fig.1. Real data of 𝑅𝑜 for Russia over time (Our Data explorer website) 

Рис.1. Реальные данные 𝑅𝑜 по России с течением времени 

 

 

 

 
Fig.2. Discriminating 𝑅𝑜 values  

Рис.2. Различающиеся значения 𝑅𝑜 
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Fig.3. Relation between 𝑅𝑜 and new cases 

Рис.3. Связь между 𝑅𝑜 и новыми случаями 

 

Q2 What would be the maximum number of infectives? 

The number of maximum infections is very helpful when we trying to distribute health resources. 

So, we want to create an equation for 𝐼 that’s in terms of various parameters we know within our 

system of equations. we would divide equation 2 by equation 1 to end up with equation 
𝑑𝐼

𝑑𝑆
 

𝑑𝐼

𝑑𝑆
=

𝑟𝐼𝑆−𝑎𝐼

−𝑟𝐼𝑆
= −1 +

𝑎

𝑟𝑆
= −1 +

1

𝑞𝑆
                                            (7) 

We can solve this equation directly by integrating both sides of the differential equation and 

as we would have initial conditions, 

𝐼 + 𝑆 +
1

𝑞
𝑙𝑛𝑆 = 𝐼𝑜𝑆𝑜 +

1

𝑞
𝑙𝑛𝑆𝑜                                             (8) 

Equation 8 for 𝐼 in terms of 𝑆 and other parameters of our model, we haven’t yet found 𝐼𝑚𝑎𝑥 

which is the maximum number of infectives at any given time, which is what we want to answer our 

second question. To obtain the maximum I in equation 8 we need to differentiate it and equal it to zero. 

As we saw the derivative of equation 8 is equation 7. So, we conclude that the maximum value of 𝐼 in 

equation 8 occurs when substituting 𝑆 = 1/𝑞 in equation 8 and re-arranging for I. We get  

 

𝐼𝑚𝑎𝑥 = 𝐼𝑜+𝑆𝑜 −
1

𝑞
(1 + ln(𝑞𝑆𝑜))                                         (9) 

Equation 9 says that the maximum number of infectives equal to the total population 𝐼𝑜 + 𝑆𝑜 

minus a function of 𝑞 .We denoted looks(1 + ln(𝑞𝑆𝑜) as 𝑓(𝑞) , we are interested how it is looks like. 
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Fig.4. Plot of function 

1

𝑞
(1 + ln(𝑞𝑆𝑜)) 

Рис.4. График функции 
1

𝑞
(1 + ln(𝑞𝑆𝑜)) 

 

The key parameter is the value of 𝑞 which is the contact ratio which is the fraction of the 

population that comes into contact with an infected individual. In the recent COVID-19, the value 

of 𝑞 is high because the disease is very easy to transmit, with lots of people getting it, and lots of 

people getting into contact with those that have it, especially during long incubation periods where 

the symptoms do not show. Ultimately for our model, q is very big for the COVID-19 outbreak. 

Looking at Figure 4 , if 𝑞 is big, so 𝑓(𝑞) would be small, and then I max would be big. What this 

means for the maximum number of infectives is that the maximum number of people that can have 

the disease at any given time is equal to the total population minus the function in Figure 1 (𝑓(𝑞) 

where in this case quite small (when 𝑞 is big) which is very bad news in the outbreak when have 

large q value.  

 

 

 
Predicted q value: 1.054 

Predicted Imax value: 0.009 = 0.9 % of the population 

Fig.5. Maximum infected cases as a function of q 

Рис.5. Максимальное количество инфицированных случаев в зависимости от q 
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With considering that 𝐼𝑚𝑎𝑥 = 𝐼𝑜+𝑆𝑜 −
1

𝑞
(1 + ln(𝑞𝑆𝑜)) from equation 9 , and 𝐼𝑜+𝑆𝑜 is 1 for 

the whole population , and 𝑞𝑆𝑜 is 𝑅𝑜 , we can calculate 𝑅𝑜 by taking average of all the recorded 

values in the dataset, in Figure 5 we drew the value of Imax as a function of q , then by using our 

recoded data in (Our Data explorer website) , we calculated the mean value of q for the whole 

period of study . 

The red point in indicate the real q from the dataset after taking the average of all 𝑅𝑜 within 

the dataset (Our Data explorer website). the substitute 𝑅𝑜 and the Imax taken from given dataset 

to find the average real q for the last pandemic.  

Q3 How many people will catch the disease? 

In our assumption, we assumed that the total population was constant. We first need to think 

about what it means for diseases to “end”, because if we want to know the total number of people 

that caught the diseases, we need the actual spread of the disease to end, this means that the number 

of infectives must go down to zero. So, we can call it the end of the outbreak. We have to look at 

our assumption that the total population doesn’t change  

𝑅 + 𝐼 + 𝑆 = 𝐼𝑜 + 𝑆𝑜                                                     (10) 

We have to find the size of R in equation 10 when the number of I goes to zero, so we have 

to re-write equation 10 at the end of the epidemic  

𝑅𝑒𝑛𝑑 = 𝐼𝑜 + 𝑆𝑜 − 𝑆𝑒𝑛𝑑                                                   (11) 

In equation 11 we noticed that the sum of people infected and recovered or died is the total 

population 𝐼𝑜 + 𝑆𝑜 minus the susceptibles left after the end of the pandemic. The  only unknown 

value in equation 11 is 𝑆𝑒𝑛𝑑 . We can find 𝑆𝑒𝑛𝑑 by substituting 𝐼 = 0 in equation 8. 

𝑆𝑒𝑛𝑑 +
1

𝑞
𝑙𝑛𝑆𝑒𝑛𝑑 = 𝐼𝑜 + 𝑆𝑜 +

1

𝑞
𝑙𝑛𝑆𝑜                                        (12) 

 

Fig.6. The plot of the equation 12 

Рис.6. График функции 12 

 

We have to solve equation 12 to find the number of susceptibles left after the end of the 

disease, then we have to substitute the value of 𝑆𝑒𝑛𝑑 from equation 12 into equation 11 to find the 

value of 𝑅𝑒𝑛𝑑 which is the answer to question 3. so, we would plot 𝑆𝑒𝑛𝑑 versus q.  
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As we noticed from Figure 6 the large value of q the 𝑆𝑒𝑛𝑑 is small and therefore according 

to equation 11, the value of 𝑅𝑒𝑛𝑑 is large which is of course bad news. In summary, quite a lot if 

not the vast majority of the population will catch the disease if the value of q is sufficiently large.  

Q4 What is the condition for an epidemic to stop, and how it would be affected by a vaccine? 

In Equation 2 (
𝑑𝐼

𝑑𝑡
= 𝐼(𝑟𝑆 − 𝑎) ) we saw that the term (𝑟𝑆 − 𝑎) has to be negative for the 

pandemic to stop. So, the number of people with the disease must be decreasing, so they would 

get down to zero and stop. 

If the term (𝑟𝑆 − 𝑎) would be negative then 

𝑅 ≔
𝑟𝑆

𝑎
< 1    for disease to stop                                          (13) 

From inequality 13 we see that there are three parameters to make this inequality right, which 

are reducing 𝑟, 𝑆 or increasing a which means how long people are sick, the longer the one is sick, 

the larger opportunity to infect other people. We will control that with better medication to get 

people healthier sooner. Where 𝑟 is the rate that infected people pass the disease on to susceptibles 

people, we can keep this parameter down by lockdown and social distancing or keep them 

quarantined. As vaccines became available, we need to pay attention to how the availability of 

vaccines effect the conclusion we draw from our model. 

With vaccine we try to get the S which is the number of susceptibles people down, Vaccines 

can effectively reduce S such that R stays below one even if we go back to normal life. 

Q5 How many people do we need to vaccinate to stop the pandemic? 

At the start of pandemic, 𝑅𝑜 equal 𝑅𝑜=𝑟𝑆𝑜𝑎 because it is a new disease, nobody had it before 

and nobody has immunity, so 𝑆𝑜=1 which means everybody is susceptible everybody could get 

the disease, so  𝑅𝑜=𝑟𝑎. 
After vaccination, the people stay susceptibles, and if we denote the proportion of 

susceptibles people vaccinated by 𝑣 then  

𝑆∗ + 𝑣 = 1 →    𝑣 = 1 − 𝑆∗                                           (15) 

For pandemic to stop, this inequality has to be true  

               
𝑟𝑆∗

𝑎
< 1 →   𝑆∗ <

𝑎

𝑟
→  𝑆∗ <

1

𝑅𝑜
                                         (16) 

According to equation 15, If 
𝑎

𝑟
=

1

𝑅𝑜
 of the people or less still susptables because they are not 

vaccinated, then the disease will stop, which means if 𝑅𝑜 = 3 , then 2/3 of people need to be 

vaccinated before the disease stops. 

According to the equation 15, for the pandemic to stop, portion of people vaccinated should be  

 

𝑣 > 1 −
1

𝑅𝑜
                                                            (17) 

In Figure 7, the percentage of fully vaccinated individuals in Russia over time is depicted on 

the horizontal axis. After calculating the mean of the reproduction factor from the onset of the 

disease until the first person was fully vaccinated, the resulting value was 1.14. Therefore, the 

value of v needed to satisfy the inequality 17 is 0.122 of the population, indicating that at least 

12.2 % of the Russian population needs to be vaccinated for the disease to stop. Allowing people 

to return to normal life implies that 𝑅𝑜would increase since the contact rate will rise. So, we 

assumed various values of Ro and determined the corresponding minimum v needed to halt the 

disease. The minimum threshold of v is depicted with different colors. 
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For Ro_mean = 1.14, v > 0.122 

For Ro_mean = 1.5, v > 0.333 

For Ro_mean = 2, v > 0.5 

For Ro_mean = 3, v > 0.666 

For Ro_mean = 4, v > 0.75 
Fig.7. Fully vaccinated percentage overtime in Russia 

Рис.7. Процент полностью вакцинированных пациентов в России в различные периоды времени 

 

 

Q6 What happen if the vaccine isn’t 100 % effective? 

If the vaccine is not 100 % effective, this changes the inequality in 17, where not all 

vaccinated persons have an immunity against the disease, lets denote the effectiveness of the 

vaccine by 𝑒 and the part of vaccinated population that has a full immunity against the disease by 

𝑣𝑒𝑓𝑓 ,were  

𝑣𝑒𝑓𝑓 = 𝑒. 𝑣                                                             (18) 

So, if we have 100 people vaccinated and a 95 % effective vaccine, so 95 of those people 

would be immune against the disease. considering equation 18 and plugging it in inequality 17, 

we conclude that for the disease to stop the number of vaccinated should be  

𝑣 >
1

𝑒
(1 −

1

𝑅𝑜
)                                                          (19) 

In Figure 8, we present the same graph as in Figure 7, depicting the scenario for the fully 

vaccinated population. However, we now incorporate the effect of vaccination according to 

Equation 19. As the efficacy of the vaccine diminishes, there is a corresponding increase in the 

percentage of the population that needs to be vaccinated. 
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For e = 1, v = 0.122      For e = 0.9, v = 0.136 

For e = 0.75, v = 0.163     For e = 0.5, v = 0.245 

Fig.8. Fully Vaccinated Population vs. Time with Vaccine Efficacy 

Рис.8. Полностью вакцинированное население в сравнении с временем действия вакцины 

 

Conclusion 

For COVID-19, contact ratio 𝑞 is the main key to determining the behavior of the disease. 

We can see that if q is large, the disease will spread and epidemic will occur. In the answer of 

question two we had known that the maximum number of infectives is equal to everybody minus 

some function of q (Figure 1), which is high for small values of 𝑞, which means as 𝑞 goes high 

this function in Figure 1 would be low and therefore the 𝐼𝑚𝑎𝑥 would be low. In question 3 the total 

people who catch the disease is which tell us that basically again that most majority of population 

will catch the disease if the value of q is large. 

Equation 16 indicated, the value of susptables people (non-vaccinee) should be lower than 

1/Ro for the pandemic to stop. in equation 17 we saw that the proportion of people need to be 

vaccinated should be at least 1-1/Ro for the pandemic to stop. If the vaccine is not 100 % effective, 

as mentioned in inequality 19, at least 1/e(1-1/Ro) need to be vaccinated for the pandemic to stop. 
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