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Abstract.
It is proposed and implemented a simple method of calculating of the output of the diffracted

real photons of bremsstrahlung and transition radiation from perfect crystals of arbitrary
thickness up to a primary extinction lengths. It is shown that for small thickness of crystals and
observation angles concerning the center of the diffraction of reflex, contribution of diffraction of
real photon is comparable with the output of parametric X-radiation. Influence of experimental
equipment characteristic on observed characteristics of radiation is discussed.

1. Introduction
Parametric X-ray radiation (PXR) generated by passing fast charged particles through crystals
had been actively studied till the end of the last century (see, for example, [1] and references
therein). The interest to this type of radiation was mainly due to looking for tunable compact
sources of intensive X-ray radiation for medical applications as an alternative to storage rings.
Nowadays it is considered to be established (see, for example, [2]), that the PXR intensity in
perfect crystals is not sufficient for medical applications. However, studies aimed at increasing
the radiation intensity through the use of multi-crystal target [3] and multiple passing of particles
through a thin target in circular accelerators [4] are being discussed till today. There have been
recent suggestions to use PXR in thin crystals for diagnosing of electron beams parameters [5],
and a new result for a thin crystal [6], which is not described by PXR theory [1].

In the first approximation PXR can be considered as coherent scattering of its own
electromagnetic field of a particle on the electron shells of periodically arranged atoms of a
target [1]. Diffracted in crystal X-ray and γ-rays, born directly inside the target or on its
surface can be spread in the same direction as PXR. In the first case we mean the diffracted
bremsstrahlung (DBS), and in the second one we mean the diffracted transition radiation (DTR).
Apparently, first contribution of diffraction of real photons in the radiation yield at the Bragg
angles of perfect crystals was confidently observed in experiments [8] for the (111) reflection
of a single crystal silicon and [9] for the (110) of a diamond crystal. In the last paper the
method of calculating the contribution of real photon diffraction in crystals with a thickness
much greater than the length of the primary extinction for the Laue geometry is proposed. This
limitation methods [9] and availability of experimental data about PXR which are not described
theoretically excluding diffraction of real photons, provide an opportunity to consider the study
of the influence of real photons diffraction on the observable characteristics up-to-date and of
importance.
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2. Theoretical consideration
In the general case in the experiment all the mechanisms of generation of radiation at the Bragg
angles are implemented at the same time, so we introduce the basic formulae and approaches
for each of them that we used during the calculation, following mainly the work of [9]. As it
was shown in several experimental studies (see, for example, [10] and references therein), the
kinematic PXR theory describes the results of measurements for energy electrons from a few
MeV to several GeV with an accuracy better than 10-15 %. Thats why in order to calculate the
PXR yield we used the formula obtained in the kinematic approximation by [11]:

d2N
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=
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Here and further we use the system of units ~ = me = c = 1. εo = 1 − ω2
p/ω

2, where ωp is
plasma frequency of the medium. β = βn0 is the electron velocity vector, n0, n is a unit vector
in the direction of the incident electron and the emitted photon (with energy ω and momentum
k), g is a vector of the reciprocal lattice, ekα are polarization vectors, ⊥ is an index denoting
the projections of a plane perpendicular to n0. The other symbols we use are common. By |χg|2
we denote the magnitude of:

|χg|2 = |S(g)|2 exp(−2W )

[
−

ω2
p

ω2

f(g)

z

]2
. (2)

In (2) |S(g)|2 is a structure factor, exp(−2W ) is Debye-Waller factor, f(g) is Fourier
component of the spatial distribution of the electrons in the atom of the crystal.

The divergence of the electron beam, the electrons multiple scattering in the crystal and
other experimental factors were taken into account according to the procedure described in [12].

For medium-energy electron the radiation in the X-ray range of photon energy (ω ≤ 100
keV) except PXR, is generated through the mechanisms of the transition radiation (TR) and
the bremsstrahlung (BS). The TR spectral and angular distribution at the vacuum-medium
interface can be represented in the form [13]:

d2ITR
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2e2θ3

π

∣∣∣∣ 1

θ2γ + γ−2
− 1

θ2γ + γ−2 + ω2
p/ω

2

∣∣∣∣2 (3)

where θγ is a photon emission angle according to the direction of the electron.
It is known (see, for instance [7]), that the bremsstrahlung in a dense medium in the energy

range ω ≤ γωp is suppressed due to the effect of medium polarization, and the degree of inhibition
depends on both the energies of the photon and electron, and the angle of a photon emission.
Therefore we used the expression for the spectral-angular distribution of the soft component of
the bremsstrahlung (ω ≪ Ee), obtained as a result in [14] and taken into account this effect.

d2IBS
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=
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p
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4
, (4)

where L is the radiation length.
The angle θγ in expressions (3), (4) is measured from the direction of the electron motion.

Whereas in the experiment it is measured the distribution of the resulting radiation yield Y (ω, θ)
depending on the observation angle θ with the aperture ϑc.

The spectral and angular distribution of bremsstrahlung at the depth t when multiple
scattering of electrons is taken into account d2I∗BS(ω, θ, φ, t)/dωdΩ is determined by convoluting
the expression (4) with the angular distribution of the electrons P (t, θe, φe) at this depth:
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d2I∗BS(ω, θ, φ, t)

dωdΩ
=

∫
P (t, θe, φe)dΩe

∫
d2IBS(ω, θγ , φγ)

dωdΩγ
f(n,ne,nγ)dΩγ . (5)

Here ne(θe, φe) and nγ(θγ , φγ) are vectors describing the direction of electrons and photons
in the laboratory frame of reference and in a system connected with the direction of motion of
the electron, respectively. n(θ, φ) = ne+nγ is a vector of the photon direction in the laboratory
frame, and f(n,ne,nγ) is a function describing the connection between these vectors, see [15]
for details.

In the experiments it is measured the dependence of a radiation yield into a fixed collimator
from the angle of the crystal orientation Θ or an angular distribution, that is the dependence of
the yield from the angles θ accordingly the center of reflex. This dependence can be written as:

YDTR(θ) =

∫
dω

∫
d2I∗TR

dωdΩ
R(ω,n,g,ΘD)S

∗(ω,n, T )dΩ. (6)

YDBS(θ) =

∫ T

0
dt

∫
dω

∫
d2I∗BS

dωdΩ
R(ω,n,g,ΘD)S(ω,n, t)dΩ, (7)

where d2I∗TR/dωdΩ is TR spectral-angular distribution, taking into account the divergence of
the primary electron beam, R(ω,n,g,ΘD) reflecting the ability for the direction vectors n and g,
determined by the crystal orientation angles Θ and the location of the detector ΘD, S

∗(ω,n, T )
and S(ω,n, t) are functions taking into account the photons absorption in the crystal and the
geometry of the experiment, T is thickness of the crystal. The integration into (6), (7) is taking
place over all angles and photon energies with the hit of the photons in the collimator.

3. Description of the computational model
To determine the output of the diffracted radiation we need information about R(ω,n,g,ΘD).
The work [9] is based on the fact that if the thickness of perfect crystals T , significantly exceeding
the primary extinction length lex, then in a narrow angular cone ∆Θ (in so-called Darwins table)
near the Bragg direction in absence of absorption reflectivity is equal to 100%, while outside of
this range it is negligible [16]. Therefore, as a result of photons multiple reflections in a crystal
of big thickness (T ≫ lex) at any point of it a half of the radiation that satisfies the Bragg
condition is spreading along the initial direction, and the other half in the Bragg direction.

According to this approach for a fixed photon direction n⃗ from the beam with the spectral-
angular distribution of d2I∗BS/dωdΩ or d2I∗TR/dωdΩ satisfying Bragg’s condition for photons
with energies of ω only photons in the energy range ∆ω = ω cos(ΘB)/ sin(ΘB)∆Θ will be
reflected. In accordance with [16] for unpolarized radiation and lack of absorption ∆Θ = 2·γ∆θ0,
where ∆θ0 = 2 · δ/ sin 2ΘB is an amendment to the Bragg angle ΘB because of the refraction
of waves in a crystal, δ = (ωp/ω)

2/2 is a difference between the refractive index from 1, and
γ = f(g)(1 + cos(2ΘB))/2f(0).

As an estimate of the characteristic parameter of the model that is the length of the primary
extinction we can use the expression [16]:

lex = d/(2ξ̄ sinΘB), (8)

where d is a distance between planes, and exp(−2ξ̄) is an impairment of the intensity of the
primary wave as it passes through a plane with the reciprocal lattice vector g⃗:

2ξ̄ =
πd2NS(g)f(g)

n

e2

mc2
, (9)

where N is a concentration of the scattering centers, n is the order of reflection.
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To calculate the reflectivity R(ω,n,g,ΘD) we use three of the coordinate system proposed
in [17], in which Z-axis of two of them is turned around a vertical axis concerning Z axis of the
laboratory system, right on the angle ΘD (system of a ”detector”) and −(π/2 + ΘB) (system
of ”a crystal”). The boundary directions of hit of radiation in the collimator θx, θy, θz are given
in the system of ”a detector”. By means of transition into a system of ”a crystal” we define
the direction of movement of the photons after reflection. As in the system of ”a crystal” the
reflection of photons is equivalent to changing the sign of θz, after such transformation we learn
the direction of motion of photons prior to diffraction.

The transition from the system of ”a detector” into the laboratory system gives us an
opportunity to determine the direction of the photons which can reach the detector after the
process of diffraction and find the diffracted emission yield. The photon energy and intensity of
the reflected radiation is determined in accordance with Bragg’s law and the expressions of (3)-
(7). The integration of equations (5)-(7) to obtain the final angular distribution or orientation
dependence of the radiation yield for each order of reflection is performed numerically.

As it is noted in [18], in crystals with weak absorption the establishment of a stationary
mode of transmission of photons through the crystal required for the legitimacy of the use of
techniques [9], occurs for a photon path in a crystal of about 10 lex. A typical value of the
primary extinction length is about 10 microns, while we have observed quite differences from
the predictions of the PXR theory with a crystal thickness of 50 µm [5] and 20 µm [6].

For the part of the crystal with a thickness much smaller than lex, the probability of reflection
of photons with an energy of ω and direction n, for which the Bragg condition is satisfied, is
proportional to the number of planes crossed by them [16]. Therefore, the dependence of the
number of photons, which have not undergone the reflection, on the way length in the crystal
t can be written as Nγ(t) = Nγ(0) exp(−t/lex) [16], where Nγ(0) is the number of photons at a
starting point. The possibility of such notation allows us to use a well-known in experimental
physics method of statistical simulation of photon transmission through a matter and for the
conditions of photon diffraction in perfect crystals, as it was done in [19] for mosaic ones.

Taking into account the multiple Bragg reflection, photon absorption and scattering on atoms
the dependence of the number of photons on passable way can be rewritten in the following way:

Nγ(ω,n, t) = Nγ(0) exp(−µtot(ω,g,n)t), (10)

where µtot(ω,g,n) = µ(ω) + µdif (ω,g,n) is a total coefficient of linear absorption of radiation
with energy ω, for the direction of the reflecting plane of the crystal g and the direction of the
photon velocity n. We consider µ(ω) as a linear absorption coefficient of photons due to the all
processes on separate atoms and µdif (ω,g,n) = 1/lex(ω,g,n) is due to diffraction.

The process of photons propagation through a crystal was being simulated in the following
way. There were defined the values µ(ω) and µdif (ω,g,n) for the photon with the energy of ω
and the direction of motion n satisfying the Bragg condition. Then it was played out the photon
path to the interaction point t = − ln ξ/µtot, where ξ is a random number between zero and one.
Then the coordinates of the interaction point were being determined. If the point didn’t belong
to the crystal, the process with the photon was over and the new process started again.

If the interaction occurred inside the crystal, then we found out what kind of process took
place. We were interested if it was diffraction or any other process on a separate atom. In the
last case, the process with the photon was over and the new process started again. In the case
of diffraction, the simulation was being repeated until the photon left the crystal or absorbed in
it. This method is not limited concerning thickness and geometry of a using crystal.

4. Comparison of the calculated results with the experimental data
As it is noted above, the main and true objective of the article is, firstly, the analysis of results of
new experimental works, in which the contribution of diffraction of real photons into an output
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of resulting radiation has become of great importance and secondly, the development of the
calculation procedure, giving us an opportunity to consider the contribution of diffraction of
real photons in crystals of any thickness. In order to define limits of applicability of a technique
[9] it was carried out a number of calculations of an output of the diffracted radiation from thin
crystals with the use of both the technique [9], and the one described above, which takes into
account more correctly repeated Bragg’s reflection of photons inside a perfect crystal.

Vertical angular distribution PXR of is represented in figure 1 (◦), distributions of the DTR
and DBS and their sum for experimental conditions [6] and the first order reflection calculated
by a technique [9], so these are the curves 1-3. The ratio of the DTR angular distributions,
calculated by both techniques, is also represented in the figure.

Figure 1. Vertical dis-
tribution of the X-ray
yield for [6] condition and
the first reflection order.
• - ratio calculated DTR
yields for both techniques

As can be seen from the figure, PXR has bigger intensity than DBS and DTR, and its angular
distribution is broader. In the center of PXR angular distribution there is a dip, whereas the
output of DTR and DBS is concentrated near the Bragg’s direction. As a result, the diffracted
photons yield gives the main contribution into the radiation yield in the reflex center.

The ratio of DTR yields, calculated by means of both techniques, is not different from 1, and
the straggling concerning it, is caused by statistics of simulation. According to (8) for ω=11.65
keV and reflection (220) the length of primary extinction in silicon is lex ∼ 5 µ. That is a simpler
technique [9] can be used up to thickness of crystals of T ∼ 4-5 lex. The distinction of angular
distributions, calculated by both techniques, begins with the a crystal thickness of T ∼ 2 lex.

In the paper mentioned above [5], [6] measurements of radiation angular distributions were
carried out by means of the ProxiVision HR25 X-Ray camera [5] and the position-sensitive
detector on a basis, of so-called, imaging plate (IP)[6]. In other words, as a matter of fact it
wasn’t measured an angular distribution of a photon beam, but a response of a detector on the
energy of radiation which arrived on it. The first device registers the light output in this or that
point of a thin scintillating plate at hit of a X-ray beam on it; as for the second one, it measures
the absorbed dose in this or that point of the IP.

The results of calculation of horizontal angular distributions of resultant radiation are
represented in figure 2, these are PXR+DTR+DBR for three orders of reflection and conditions
of experiments [5], [6], see figures 2a and 2b. So for the reasons stated above, we summed up
not the angular distributions of photons, but the angular distributions of intensity of radiation.

As can be seen from figures, the contribution of real photons diffraction significantly increased
the yield of radiation in a minimum of PXR angular distribution (see fig.1). Nevertheless the
output of radiation in a minimum of calculated dependence ∼ 40% from a maximum for figure
2a and ∼ 55% for figure 2b, is less than in the cited works, ∼ 50% and ∼ 75%, respectively.
We believe that more consistent accounting of the experimental equipment characteristics and
experiment layout will lead to an accord of experimental and calculated results.
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Figure 2. Horizontal angular distribution of X-ray intensity for three reflection orders and the
experimental condition [6] (fig. 2a) and [5] (fig. 2b).

5. Summary and Conclusions
The results of the present research could be briefly stated as follows:

1) It is proposed and implemented a simple method of calculating of output of diffracted real
photons in perfect crystals of arbitrary thickness up to the primary extinction lengths.

2) The method of computing of the contribution of diffraction of real photons, proposed in
the work [9] is efficient up to the thickness of the crystals of an order of several lengths of primary
extinction.

3) In order to explain the experimental results [5], [6] you should rationally take into account
the characteristics of the used registration equipment.

The authors are grateful to the co-authors of works [9], [19] for their participation in the
development and implementation of methods, used in the research. The present work was
partially supported by the program of internal grants of Belgorod National Research University.
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