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Abstract: The considered the problem of data transmitting and receiving control in the presence of a large
mumber of electromagnetic radiation sources interfering during unpredictable time and in unpredictable
frequency intervals. One of the most natural and effective methods of difficulty overcoming for the provision
of electromagnetic compatibility 1s the use of adaptive determination procedures for frequency mtervals that
are available for information transfer. Tt is important to create such signal-code constructions that ensure
mimmal leakage of a channel signal energy beyond this interval which 1s equivalent to the mimimization of this
mter-channel interference measure. In this study, based on the formulation and the solution of the
corresponding variational problem they showed that the best basis for the signal-code construction
development with a minimum level of energy infiltration beyond the specified frequency interval are the
eigenfunctions of the integral ratio core which (the core) is called subband one. The conditions are established
that allow to achieve zero mfiltration of energy, the procedures for the synthesis of signal-code structures and
their decoding re developed in the presence of interference.
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INTRODUCTION

The current electromagnetic environment in which
radio communication is carried out is characterized by the
presence of frequency subbands suitable for information
transfer during unpredictable time intervals. Therefore,
now a days one of the main trends in the development of
radio commumication systems 1s the application of flexible
reorganization principles concerming the procedures of
radio signal transmitting and receiving, the parameters of
which are used for the transmitted information encoding
(Chen and Prasad, 2009, Doyle, 2009, Akyildiz et al., 2006,
Yucek and Arslan, 2009, Zhilyakov, 2012; Shakhnovich,
2006; Andrews, 2005). The need for such a restructuring
is determined by the desire to improve the efficiency of
data transmission and reception in the presence of a large
number of electromagnetic radiation sources that operate
at unpredictable time intervals and a broad band of
frequencies. Tn order to increase the efficiency of
time-frequency resources of radio commumnication system
use 1t 15 advisable to use signal-code constructions that
allow to generate channel signals which have the
maximum energy concentration i a given frequency
subband at a given duration.

Thus, the problem consists mn chamel signal
generation with a predetermined duration, the energy of
which is concentrated in the selected subband. This

problem 1s considered mn the framework of this study and
a new basis of orthonormal functions is proposed for its
solution.

MAIN PART
(THEORETICAL BASIS OF SIGNAL SUBBAND
ANALYSIS AND SYNTHESIS)

Letx (t), t= (0, T) 18 a certain continuous signal (time
function) of finite duration and energy whose fourier
transformant (spectrum) has the following Eq. 1:

T
X(e) = [x(t) exp (foot) dt ey
o
Where:
w = 27v, v-frequency
i =

In accordance with (Zhilyakov, 2012), let:

P(x)= j [X(w)* doo/2m (2)
wekd,

where, the subband of the following type 1s meant:
Q =[Q,.-QHUQ,Q,)a =0 (3

2r?
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Tt seems natural to call the characteristic Eq. 2 as
apart of the energy falling in a frequency sub-band of the
Eq. 3 symmetrically located relative to the coordinate
origin. Substituting the representation Eq. 1 mto the
right-hand side of Eq. 2, we obtain an important
representation for  further simple
transformations:

research after

P(x)= }TAr (t-T) x(t) x(T) dtdt (4)

Determining the part of the energy directly in the
region of the originals (time). Here, A(t-T) is subband
core:

A(t1) = f exp(-jo (t-T)dev 2 (5)
ek,

which in accordance with the definition Eq. 3 is easy to
represent in a more convenlent form for the calculations
1n the original region:

A(t) = 2sin(A t/2)cos(o ty/mt (6)
Where:

Ar = QZr_ r; mr = (Q2r+er)/2 (7)

It 1s clear that the subband core (Eq. 5) 1s symmetric
and 1t follows directly from the defimtion (Eq. 2) and the
representation Eq. 4 that it is positive definite. Therefore,
it can be represented in the Eq. 8 (Smimov, 1974):

Attt = Y he, e, (0) (8)

where, the summands in the sum are determined by the
eigenvalues and the functions of the subband core which
satisfy the equations of the following Eq. 9:

hig(t) = j'Ar (t-T)g, (T)dt ©)

and are orthonormal, that is the following equalities are
fulfilled:

@pga=fggo&amr=ai¢k (10)

Hngz = (g g)=1 (11)

Therefore, the representation (Eq. 4) may have the
following form after the substitution of Eq. &

Pio= Y hal (12)
k=1

Where:
o = (% g,) (13)

Own functions and numbers of a subband core have
a number of properties useful for signal analysis and
synthesis. In particular, due to the nonnegative
defimteness of the core its eigenvalues are also
nonnegative and further without the loss of generality we
assume that they are ordered by decrease:

k=1 1M

Using the representation Eq. 8 and the property
Eq. 11, we have:
T oo
A0)[dt =32,
0

k=1

Together with the definition Eq. 5, it gives the
following equality for the sum of eigenvalues:

3, =TA,/n (15)
k=1
Let:

Q@) = [q, (1) exp(eotydt (16)

Then, after the substitution of the subband core
Eq. 5 into the Eq. 9 it is not difficult to obtain the
following relation:

i ®= | Qo) expljort)den/2m (17)
wekd,

Which shows that the eigenfunction corresponding
nonzero eigennumber is completely determined by the
fourier transformant segment from the given subband. On
the basis of the relaltion (Eq. 17), we have the following
equation:

kk].gk(t) exp(-jzt)dt = I Q. ((n)].exp(jt (o-z))dtdm/2n
0 weL, 0

which 1s converted into the following equation:

Q@ = [ DzmQ,(@)do (18)
e,
Where:
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T
D(z-m) = jexp(-jt(z-m)dtfzn =
o
exp(- T(z-m)2)sin( T (z-my 2 Y z-w)
(19)
Thus, the fourier transformants of the eigenfunctions
are also, the eigenfunctions of the core m the
following (Eq. 19) at the same eigenvalues. Let’s, also
note that at nonzero eigenvalues to the relation (Eq. 18)
determimes the extension of the fourier transformants
concerming the eigenfunctions to the entire frequency
axis. On the other hand, the relation (Eq. 17) allows us to
obtain the following equality:

M JeiB g, (Ddt = [ Q) Q,(wido2e
0 weLy

Hence, in accordance with Eq. 10 and 11 we have the
following:
j Q, (@) Q, (-m)de/2m = 0, k #m (20)

1=y

= [ Q@) devan< @1

weRY

Thus, the Fourier transformants of the eigenfunctions
are orthogonal not only on the entire frequency axis (like
fourier transformants of orthonormal functions) but also
i the selected subband (dual orthogonality property).
The inequality in the right-hand side of relation (Eq. 21) is
obtained from those considerations that in accordance
with the Parseval equation (Khurgin, 1971) for all
eigenfunctions in Eq. 11 the integral value is achieved
when along the whole frequency axis while during the
integration over the subband such an effect can be
observed only for some of them.

From the fimteness of the right-hand side of Eq.15, it
follows that with the increase of the index value the
corresponding eigenvalues must decrease so that this
series of positive numbers converges. The extensive
computational experiments showed that starting from the
index:

T="2[TA,]+4 (22)
The following equations are performed quite accurately:

Ky = 0, ¥k=1 (23)

The square bracket in Eq. 22 means the taking an
entire piece of content. Another very important property
of eigenvalues is that some of them, viz:

=78 (24)
can be practically equal to one, thus we can assume that:
M=Lk=1,..1 (25)

Let’s note that for the fulfillment of these equalities
it is necessary to obtain the positivity of the right-hand
side in Eq. 24 by choosing the product m the square
brackets from relation Eq. 22. Otherwise, there will not be
a single eigenvalue close to one. Bearing in mind the
equality Eq. 21 1t is easy to understand that the fulfillment
of equalities m the form of Eg 25 means almost
complete concentration of the energy concerming the
corresponding eigenfunctions of the subband core in a
given subband. Tt is also clear that any linear combination
of these eigenfunctions will have the complete energy
concentration in the subband:

f(t) = 2 c, g, (26)
k=1

where, ¢, k =1, ..., J, are real numbers. Tt is easy to
understand that tluis property of the subband core
eigenfunctions makes it possible to synthesize signals
with a mimmal infiltration of energy beyond an allocated
subband. Another widely used techmque of the subband
analysis 1s to 1solate the compoenents from a certain signal
x(t), 0zt<T of the duration the

transformant of which must satisfy the following

same fourier

requirements in an ideal case:
Y{m) = X{m), Voo Q (27)
Y(w) =0, o O (28)

In particular, the property Eq. 27 and 28 1s reasonable
to provide at a channel signal allocation so that it 1s
determined only by the energy of all signals mixture
simultaneously used during the transmission of
information.

At the same time it is known (Khurgin, 1971 ) that it is
impossible to fulfill both the requirements, Eq. 27 and 28
simultaneously due to the uncertainty relation. But we can
use some measure of deviations from an ideal, the
minimization of which will make it possible to obtain an
optimal component in the sense of this criterion. The
following functional 1s proposed to use as such measure
(criterion):
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Fy.B) =B | [X(e)-Yieyf dov2m+
ost (29)
(B [ [Yw)daan

mefd

where the parameter determines the weight of the
components concerning the errors of execution for the
requirement Eq. 27 (the first integral) or Eq. 28 (the second
mntegral) and 1s chosen from the condition:

0<p<l (30)

Bearmg m mind the defimtion (Eq. 1) the
representation Eq. 4 and the Parseval equality (Khurgin,
1971), the functional Eq. 29 can be presented in the
following Eq. 31:

F(y. B) = BP, (126 [x(Dy (DA, (rdtdt +(1-B) vl +

(2B-1) P.(y)
(3D
Which allows to solve the variational problem of
finding its minimum in an analytical form for a fixed value
of the weight parameter in the time domain directly:

Fiy, B = min (32)

where, the search for a minimum takes place in the space
of continuous functions with a bounded euclidean norm
(energy) and the domain of definitio te[0, T]. The
mimmization of the functional Eq. 31 gives the following
integral equation for the desired function (signal):

(1-B) Yty D[ A, (D yeude = Bl A, it-0) xTide

(33)

Using the completeness of the orthonormal basis of

eigenfunctions of the subband core (Smirnov, 1974) it is

advisable to represent the desired function in the form of
their linear combination:

v =Y dye, (0 (34)
=1

The substitution of which into Eq. 33 taking into
account the representations Eq. 8 and 13 provides the
following:

Y. BB 10, Bh,0) g0 =0, te[0,1] 35)

Because of the orthonormality of the subband core
eigenfunctions, the fourier series on the left-hand side of
Eq. 35 will converge to the zero function if and only if all
the coefficients of the series are zero so that the following
equalities are fulfilled:

dy, = B, on YA-BH2B-10, ), V21 (36)

Thus, the representation Eq. 34 for a desired optimal
component can have the following Eq. 37:

v =BY Moe, (0/1-BH2B-IA) 3D
k=1

If the last relation 1s assumed as follows:

B=0,5 (38)

E)

Then it gives:
¥t =Y hong, (O (39)
£=1

Thus, taking into account the definition Eq. 13 and
the representations Eq. 8 we obtain the following:

vty = [A, D) x(v) dr (40)

If we substitute the representation for a subband core
of the Eq. 5, we obtain the following:

(1) = j X(edw/2n (41)

et

Thus, the use of the representation Eq. 39 allows us
to obtain a signal component that depends only on a
segment of the fourier transformant from a given subband.
Let’s note that due to the property Eq. 23 the series Eq. 37
and 39 will have a finite number of terms.

The synthesis of channel signals for subband
information transfer: Let it is necessary to transfer the
information vector:

Le,) (42)

g=(e, ...

where, the stroke denoctes transposition and the
components are real numbers. A channel signal is
synthesized for this as the function of time with a finite
determination domain whose parameters depend on a
transmitted information vector:

6617



J. Eng. Applied Sci., 12 {Special Issue 3): 6614-6619, 2017

x(t) = fit, &), te [0, T] (43)

The main requirement for a channel signal is an
unambiguous interpretation of the transmitted numbers
on the basis of a certain operator:

e, = H(D (44)

Without violating the generality of the conclusions,
we assume that the energy expended for the transmission
is determined by the following relation:

I = 1gIF = Z e, (45)

and the frequency subband of the Eq. 3 is allocated for
transmission. From the point of view of mter-channel
interference minimization, the natural requirement for the
synthesized channel signal is the following variational
condition:

[£]2-P,¢F) = min (46)

where, the minimum is at a fixed information vector, taling
mto account the additional condition (Eq. 45). The
following assertion 1s valid. The solution of the variational
problem Eq. 46 and 45 has the following form:

fit, &) = i e () (47)

In this study, the decryption operator Eq 44 is
determined by the scalar products of the following
form:

e, =(fg.) (48)

In order to prove this statement we use the fact that,
in view of the eigenfunctions of the subband core basis
completeness, the channel signal can be represented in
the form of the following fourier series:

f(t,é) :ki;lck(é)gk(t) (49)

Therefore, the variational problem Eq. 46 and 45 can
be reformulated with respect to the coefficients of this
series. The substitution of the representation Eq. 49 mto
Eq. 45 and 46 gives a new representation of the variational
conditions:

3 (14, )64(8) = min (50)
=1

3 @ =6 (51)

Let’s note that in this case the information vector is
also, fixed and the conditional minimum is determined on
the set of all real expansion coefficients for the unknown
function with respect to the eigenfumctions of the
subband core. Then, we will use mduction. Let it is known
that when the number of components of the information
vector equal to M = K-1 the solution of the variational
problem has the form Eq. 47. We will show that this form
must also be preserved at M = K. Indeed, under the
conditions indicated above, the requirements Eq. 50 and
the equality Eq. 49 are transformed to the following
equation:

3 (144, )6 (8) = min
k=X (52)

Y i@ = e

k=K

Bearing mn mind the ordering of the eigenvalues in
descending order Eq. 14 and the inequality Eq. 21, we
obtain the following inequality for the left-hand side of
Eq. 52

) @202 Y G @ =hel (53)
k=K k=K

Obviowsly, the equality here corresponds to the
minimum of the left side and it is achieved when the
following conditions are met: ¢ (€)= e () =0, ¥iz1l Now
let’s M = 1. Then, taking into account the condition
Eq. 14, we obtain the following solution of problem Eq. 50
and 51:

fit, ) = e,g, (t) (54)

For the remaining values of the information vector
dimension, we obtain the representation Eq. 47 by
induction which proves the assertion. Thus, the
representation Eq. 47 determines the channel signal
optimal in the sense of the criterion Eq. 45 and 46 for the
transmission of the mformation vector Eq. 42. In this
study, decoding is performed on the basis of scalar
products in the following Eq. 48.

Summary: It was shown that the notion of the signal
energy fraction in a given frequency subband is the
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natural basis to control the processes of adaptive shaping
and the processing of channel signals in cognitive radio
systems. Theoretical bases of subband analysis and
synthesis for finite duration signals were developed
which made it possible to formulate and solve the
variational problem of optimal signal-code structure
synthesizing with mimimal mnfiltration of energy beyond
the specified frequency interval (the mimimum level of
interchannel interference). The procedures for signal-code
structures decoding were developed on the basis of
subband core eigenfunctions.

CONCLUSION

The best basis for the development of cognitive radio
signals, the use of which makes 1t possible to mimimize the
fraction of energy infiltration beyond a given frequency
interval is the set of eigenfunctions for subband cores
that determine integral representations for signal energy
fractions.
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