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Overcoming the strength-ductility trade-off in refractory medium-entropy alloys
via controlled B2 ordering

N. Yurchenko , E. Panina , A. Tojibaev, S. Zherebtsov and N. Stepanov

Laboratory of Bulk Nanostructured Materials, Belgorod National Research University, Belgorod, Russia

ABSTRACT
Herein, we showed that controlled additions of Al, which provided a certain degree of B2 ordering,
resulted in a ∼ 37%-enhancementof both yield strengthanduniformelongation inAlx(NbTiZr)100−x
(x = 0; 2.5; 5; 7.5 at.%) refractory medium-entropy alloys. The improvement of properties stemmed
from the solid solution and short-range order strengthening, as well as from the alteration in a char-
acter of dislocation glide. The B2 ordering caused the formation of multiple dislocation bands and
the activation of cross-slip, which improved the macroscopic stability of plastic flow and extended
the strengthening stage, thereby postponing necking.

IMPACT STATEMENT
Controlled Al-induced B2 ordering helps overcome the strength-ductility dilemma in refractory
medium-entropy alloys due to solid solution and short-range strengthening coupled with the
dislocation motion changing.
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Introduction

Chemical ordering in body-centred cubic (bcc) refrac-
tory high/medium-entropy alloys (RH/MEAs), designed
for high-temperature service [1–4], has been gained
particular attention among the researchers in recent
years [4–40]. Great interest in such a phenomenon is
because of its crucial effect on the mechanical properties.
Specifically, many Al-containing RH/MEAs, in which
Al induced the formation of a B2 (ordered bcc) struc-
ture, possessed higher strength at 22-1350°C compared
to Al-free counterparts [2,11,30,33,36,38]. Some of these
alloys showed yield strength anomaly [24,37], i.e. became
strongerwith the temperature rise.Meantime, a large part
of B2-ordered RH/MEAs had limited plasticity at ambi-
ent or intermediate temperatures [7,9,11,19,30,33,37].
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To date, several efforts have been made to balance
the mechanical performance of B2-ordered RH/MEAs
[7,10,19]. However, even a slight increase in the plas-
ticity of B2-ordered RH/MEAs, provided by either
chemical (elimination/decrease in the degree of B2 order-
ing [7,19]) or microstructure (the B2 matrix-to-B2 par-
ticles transition [10]) engineering, has resulted in a
notable strength degradation. More importantly, the
room-temperature tensile ductility, required for potential
applications of these alloys as structural materials [41],
remained unreported or unachievable.

In the current study, we, for the first time, showed that
the enlargement of the degree of B2 ordering in a con-
trollable fashion could overcome the strength-ductility
trade-off inRH/MEAs. This counterintuitive strategywas
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tested on a model bcc NbTiZr RMEA having decent ten-
sile ductility and medium strength [42,43], which was
alloyed with various amounts of Al to invoke the B2
ordering. Our results demonstrated that the B2 ordering
was a more effective way to improve the overall mechan-
ical performance of the NbTiZr alloy compared to the
already reported approaches [44,45].

Materials andmethods

The alloys with nominal compositions of NbTiZr,
Al2.5(NbTiZr)97.5, Al5(NbTiZr)95, and Al7.5(NbTiZr)92.5
(at.%) were produced by the vacuum arc melting of
pure metals. The as-cast ingots were cold rolled to a
thickness strain of 80%, sealed in vacuumed (10−2 torr)
quartz tubes, annealed at 900°C for 0.5 h, and water
quenched. Tensile specimens with the gauge dimen-
sions of 6× 3× 1mm3 were cut from the annealed
sheets. Tensile tests were performed at room temper-
ature in a laboratory air at a constant strain rate of
10−3 s−1 (Instron 5882). The digital image correlation
(DIC) technique was employed to visualise the distribu-
tion of local strains produced during the tensile tests.
The in-plane Lagrangian strains were measured using
a commercial Vic-3DTM system (Correlated Solutions,
Inc).

Microstructural investigations were performed using
X-ray diffraction (XRD; RIGAKU diffractometer and Cu
Kα radiation), electron backscatter diffraction (EBSD;
FEI Quanta 600 FEG), and transmission electron
microscopy (TEM; JEM JEOL-2100). Selected area
diffraction patterns (SADPs) were collected in a <001 >

bcc zone axis at an exposure time of 16 s. Intensity line
profiles along the g200 vector and the threshold seg-
mentation were constructed using an ImageJ software.
Dark-field images taken from the aperture positions
corresponded to a half-length of the g200 vector were
acquired at an exposure time of 32 s.

Results and discussion

Figure 1 collects the data on microstructure and phase
composition of the Alx(NbTiZr)100−x alloys. The actual
chemical compositions of the alloys are given in Table S1
(Supplementary material). EBSD analysis revealed a fully
recrystallised microstructure in all the alloys (Figures
1(a-d)). Average grain sizes were close to ∼ 20 μm;
however, small deviations from this mean value should
be noted (Figure S1, Supplementary material). An initial
evaluation by XRD showed that the alloys had a single-
phase bcc structure (Figure S2, Supplementary material).
TEM investigation, based on the assessment of SADPs
taken in <001 > bcc zone axes and the intensity line

profiles along the g200 vector (which showed no local
maxima at their half-lengths), confirmed the bcc struc-
ture in the NbTiZr and Al2.5(NbTiZr)97.5 alloys (Figures
1(e, f, i, j)). Meanwhile, we detected diffuse and faint 100
B2 superlattice spots in the Al5(NbTiZr)95 alloy (denoted
with pink arrows in Figure 1(g)). These B2 superlattice
spots were sharper and brighter in the Al7.5(NbTiZr)92.5
alloy (Figure 1(h)). The intensity line profiles along the
g200 vector disclosed approximately four times higher
local maxima corresponding to their half-lengths, i.e. the
100 positions, in the Al7.5(NbTiZr)92.5 alloy compared to
those in the Al5(NbTiZr)95 alloy (Figures 1(k, l)).

Data obtained in the current study confirmed lim-
ited applicability of XRD analysis for revealing of the B2
ordering in (R)H/MEAswith lowAl contents [17,46–48].
Only by TEM analysis, we discovered the smallest (>
2.6 at.%) threshold Al concentration for the bcc-to-B2
transition, recorded to date for RH/MEAs [19,22,30],
lightweight H/MEAs (LWH/MEAs) [49,50], and beta-
Ti alloys [51]. Besides, an examination of SADPs via
the intensity profile lines could give us a semi-quantitive
appraisal of a degree of ordering in the Alx(NbTiZr)100−x
alloys. Through comparison of the relative intensities of
superlattice and fundamental spots [52–57], albeit with-
out counting the scattering factors, we established that
the Al additions from 5.3–7.7 at.% increased the degree
of B2 ordering by about four times.

Here, the term ‘degree of B2 ordering’ must be clar-
ified. In previous works [7,8,14,19], a multi-component
B2matrix phase inAl-containingRH/MEAswas assumed
as a continuous entity with an imperfect lattice con-
taining atoms of constitutive elements, arranged both in
random (bcc) and preferential (B2) positions. The occu-
pancy of the B2 sites by a certain sort of atoms, mostly by
Al ones, characterised the degree of B2 ordering, which
could vary from 0 (disordered) to 1 (ordered), similarly
to binary alloys [58]. Meantime, Qiao et al. [30] recently
revealed a diffusionless transfer from short- to long-range
B2 ordered domains with an increase in the Al content.
In that case, the degree of B2 ordering was considered
as a dimensional parameter instead of the site occupancy
factor.

To gain insight into the B2 ordering phenomenon
in the Alx(NbTiZr)100−x alloys, we performed a more
detailed TEM study (Figure 2). Dark-field imaging of
the NbTiZr and Al7.5(NbTiZr)92.5 alloys under pro-
longed exposure at the aperture position corresponded
to the half-length of the g200 vector (which, in the case
of the Al7.5(NbTiZr)92.5 alloy, was conformed to the
(100) superlattice spot) revealed a clear difference in
their fine microstructures (Figure 2). No contrast was
observed in the NbTiZr alloy (Figure 2(a)), while, in
the Al7.5(NbTiZr)92.5 alloy, profuse bright B2 domains
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Figure 1. Characterisation of microstructure and phase composition of the Alx(NbTiZr)100−x alloys: (a-d) – inverse pole figures (IPF),
showing the fully recrystallisedmicrostructure of theNbTiZr (a), Al2.5(NbTiZr)97.5 (b), Al5(NbTiZr)95 (c), andAl7.5(NbTiZr)92.5 (d) alloys; (e-h)
– SADPs, acquired in [001]bcc zone axes of the NbTiZr (e), Al2.5(NbTiZr)97.5 (f ), Al5(NbTiZr)95 (g), and Al7.5(NbTiZr)92.5 (h) alloys. Pink arrows
in Figures 1(g, h) highlighted the100B2 superlattice spots in theAl5(NbTiZr)95 (g) andAl7.5(NbTiZr)92.5 (h) alloys; (i-l) – intensity lineprofiles
along the g200 vectors (the directions are denotedwith dashed blue arrows in SADPs Figures 1(e-h)) for the NbTiZr (i), Al2.5(NbTiZr)97.5 (j),
Al5(NbTiZr)95 (g), and Al7.5(NbTiZr)92.5 (h) alloys. Pink arrows in Figures 1(k, l) denoted the peaks, corresponded to the 100 local maxima
in the Al5(NbTiZr)95 (k) and Al7.5(NbTiZr)92.5 (l) alloys.

could be distinguished (Figure 2(b)). The threshold
segmentation (Figures 2(c, d)) suggested the average
size, d̄, standard deviation, σ , and fraction, f, of these
B2 domains as 0.82, 0.33 nm, and ∼ 20%, respectively
(Figure 2(e)). The dimensions of < 1 nm allowed iden-
tifying these B2 domains as short-range ordered (SRO)
entities [54,59,60].

Based on the domain ordering mechanism proposed
by Qiao et al. [30], the following scheme of the B2 order-
ing in the Alx(NbTiZr)100−x alloys could be suggested.

The Al additions first provoked the bcc-to-B2 transi-
tion (between the Al2.5(NbTiZr)97.5 and Al5(NbTiZr)95
alloys), i.e. resulted in the formation of the B2 SRO
domains with a very small size, and then increased the
degree of B2 ordering (between the Al5(NbTiZr)95 and
Al7.5(NbTiZr)92.5 alloys) due to growing of these B2 SRO
domains. However, further in-depth investigations are
needed to elucidate peculiarities of the B2 ordering more
thoroughly, which are beyond the limit of the current
paper.
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Figure 2. Detailed characterisation of the fine structure of the NbTiZr and Al7.5(NbTiZr)92.5 alloys: (a, b) – typical dark-field TEM images
taken from the aperture position marked with yellow circles (corresponded to the half-length of the g200 vector in SADP of each alloy),
showing the absence of any contrast in the NbTiZr (a) alloy and profuse B2 domains in the Al7.5(NbTiZr)92.5 (b) alloy; (c, d) – typical mag-
nified dark-field images before (b) and after (c) the threshold segmentation procedure; (e) – histogram, illustrating the size distribution
of the B2 SRO domains with the estimated values of average size, d̄, standard deviation, σ , and fraction, f.
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Figure 3. Characterisation of room-temperature tensile mechanical properties of the Alx(NbTiZr)100−x alloys: (a) – engineering stress-
strain curves; (b) – true stress-strain curves; (c) – DIC images of tensile specimens, taken at the necking formation and demonstrating the
strain distribution along the cross-section; (d) – evolution of strain hardening rate, θ , with the strain.

Table 1. Yield strength, YS, ultimate tensile strength, UTS, uni-
form elongation, UE, elongation to fracture, EF, and apparent
activation volume, V∗, obtained during room-temperature tensile
and stress relaxation tests of the Alx(NbTiZr)100−x alloys.

Alloy YS, MPa UTS, MPa UE, % EF, % V∗, b3
NbTiZr 680± 5 715± 10 18.8± 0.6 34.1± 0.8 ∼ 70–60
Al2.5(NbTiZr)97.5 785± 5 810± 5 22.0± 0.8 39.6± 0.7 ∼ 67–59
Al5(NbTiZr)95 845± 40 860± 30 24.5± 0.4 42.2± 0.5 ∼ 49–61
Al7.5(NbTiZr)92.5 930± 20 935± 20 25.7± 2.3 38.7± 2.0 ∼ 50–68

Note: For V∗, a range of values, evolving with the strain, are given.

Figure 3 and Table 1 represent the tensile mechanical
properties of the Alx(NbTiZr)100−x alloys.

The Al additions increased yield strength, YS, from
680MPa in the NbTiZr alloy to 930MPa in the

Al7.5(NbTiZr)92.5 alloy (Figure 3(a); Table 1). Accord-
ing to the engineering stress–strain curves, after yielding,
the Al-containing alloys experienced a short strength-
ening stage followed first by a stress reduction, then
continuous yielding, which extended with an increase
in the Al content, and finally by a slight strengthening
(the Al2.5(NbTiZr)97.5 and Al5(NbTiZr)95 alloys) or a
continuous softening (the Al7.5(NbTiZr)92.5 alloy) stage
(Figure 3(a)). Similar engineering stress–strain curves
with plateau were previously reported in alloys with
the bcc (or weakly B2 ordered) structure [46,47,61–63]
or in nanolaminates [64]. Although this behaviour
should indicate plastic instability and early necking,
Wei et al. [63] claimed rather a high value of homo-
geneous deformation, which they confirmed by DIC
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analysis. Indeed, our DIC analysis, coupled with the true
stress–strain curves, showed that the macroscopic plas-
tic deformation delocalised with the Al additions in the
Alx(NbTiZr)100−x alloys (Figures 3(b, c) and Figure S3,
Supplementary material). As a result, the uniform elon-
gation enlarged from ∼19% in the NbTiZr alloy
to ∼26% in the Al7.5(NbTiZr)92.5 alloy (Figure 3(b);
Table 1).

An analysis of strain hardening rate, θ , revealed a
gradual decrease in θ with the strain increment in the
NbTiZr alloy (Figure 3(d)). The Al alloying caused the
appearance of a ‘hump’, i.e. a sharp drop in θ at the
onset of plastic deformation and a recovery stage with the
evolving strain, terminated at peak values of θ ≈ 1000-
1100MPa. The magnitude of the drop and the extension
of the recovery stage increased with the Al additions
(Figure 3(d)). Lastly, we found that the Al doping did
not change the apparent activation volumes, V∗, signif-
icantly (Table 1); details on the determination ofV∗were
described in Supplementary material and Refs [42,65].
The values of V∗ obtained fell in the range of 10–100
b3, which meant the thermally activated dislocation
glide by overcoming the Peierls-Nabarro barriers was the
rate-controlling mechanism of room-temperature plastic
deformation in the Alx(NbTiZr)100−x alloys [42].

Further, we tried to analyse the reasons of a positive
impact of the Al additions on the mechanical perfor-
mance of the Alx(NbTiZr)100−x alloys. In terms of the
strength, the observed increment in YS,�YS, induced by
the Al alloying was in an agreement with the ones pre-
viously reported for Al-containing RHEAs [11,30,66,67]
(Figure 4(a)). The strengthening by Al in the stud-
ied Alx(NbTiZr)100−x alloys appeared to be linear with
a strengthening rate of ∼ 33MPa per 1 at.%, which
was close to bcc Alx(HfNbTiZr)100−x (∼ 34MPa/at.%;
[67]) and bcc/B2 Alx(Ti40Zr20Hf10V20Nb10)100−x (∼
32MPa/at.%; [30]) RHEAs, but slightly higher than that
of bcc Alx(HfNbTaTiZr)100−x (∼ 25MPa/at.%; [66])
alloys (Figure 4(a)).

In some alloys, theAl-induced strength incrementwas
ascribed to solid solution strengthening (SSS) [11,66,67].
Given the linear dependence of the �YS on the Al con-
tent, only the Suzuki model could describe the SSS in
Al-containing RH/MEAs [67]. Since Al did not alter the
rate-controlling mechanism of plastic deformation in the
Alx(NbTiZr)100−x alloys (Table 1), we suggested that it
increased the athermal component of the YS. Thus, the
simplified equation, connected the �YS and the Al con-
tent, could be applied [67]:

�YS = αMGδ2cAl (1)

where α is a material-sensitive parameter; M is the Tay-
lor factor;G is the shearmodulus of theNbTiZr alloy; δ is

the interaction parameter, included the lattice and shear
modulus distortions appeared due to the Al additions; cAl
is the Al concentration (Table S1, Supplementary mate-
rial). Details of calculation and constants used are given
in Supplementary material.

The �YS values obtained by Equation (1) for the
Al2.5(NbTiZr)97.5 and Al5(NbTiZr)95 alloys were consis-
tent with the experimental ones (Figure 4(b)); however,
a small (∼10MPa) deviation should be noted in the
Al5(NbTiZr)95 alloy. Meanwhile, Equation (1) underes-
timated the �YS in the Al7.5(NbTiZr)92.5 alloy signif-
icantly. Over 50% (∼130MPa) of the experimentally
observed�YS remained unaccounted (Figure 4(b)). This
discrepancy could be ascribed to the activation of other
strengthening mechanisms. Wang et al. [11] and later
Qiao et al. [30] mentioned that the B2 ordering could
be responsible for the extra strength increment. Due
to similarity of the average grain sizes (Figure 1 and
Figure S1, Supplementary material), impurities content
(Table S1, Supplementary material), and the absence of
secondary phase particles in all the studied alloys, we
also assumed that the additional increase in the �YS of
the Al7.5(NbTiZr)92.5 alloy stemmed from the B2 SRO
strengthening. Recently, SRO was stated as the main
contributor to the strength of (R)H/MEAs [68–71] and
LWH/MEAs [50,72]. SRO domains usually act as shear-
able obstacles, increasing the resistance for a dislocation
slip due to the creation of diffuse anti-phase boundaries
(DAPBs) when being cut [73]. Certainly, the direct eval-
uation of the SRO strengthening in the Al7.5(NbTiZr)92.5
alloy will be feasible only when the energy of DAPB
is available from experimental or, at least, calculated
data [54], which are absent to date. Also, in the light
of microstructural observations shown next, we can not
exclude the possibility of the SRO strengthening in the
Al2.5(NbTiZr)97.5 and Al5(NbTiZr)95 alloys.

Figure 5 displays fine microstructures formed in the
Alx(NbTiZr)100−x alloys during the tensile tests.

In all the alloys, plastic deformation was dominated by
a/2 < 111 > screw dislocations (Figure S5, Supplemen-
tary material) but with a significant difference in their
spatial distribution (Figure 5). In the NbTiZr alloy, dis-
locations were distributed homogeneously (Figure 5(a)).
Starting from the Al2.5(NbTiZr)97.5 alloy, dislocation
motion tended to localise in dislocation bands (DBs;
denoted with white dashed lines in Figure 5(b)). Fur-
ther Al additions intensified this process; however, DBs
were mutually intersected, suggesting a developed cross-
slip (Figures 5(c, d)). In-between these intersected DBs,
we found relatively large cells with a reduced dislocation
density.

The localisation of plastic deformation in DBs was
previously observed in face-centred cubic (fcc) alloys
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Figure 4. Effect of Al on the strength: (a) a plot, showing the Al-induced increment of YS,�YS, in the studied Alx(NbTiZr)100−x alloys and
some other Al-containing RHEAs [11,30,66,67]; (b) a plot, illustrating a comparison between the experimentally observed values of�YS
in the Alx(NbTiZr)100−x alloys and the ones calculated by simplified Suzuki model for SSS. A good correlation for the Al2.5(NbTiZr)97.5 and
Al5(NbTiZr)95 alloys should be noted. The appeared difference between the experimental and calculated �YS for the Al7.5(NbTiZr)92.5
was assumed due to the SRO strengthening (see the text).

[74,75], beta-Ti alloys, Ti-Al-Nb, Ti-rich HEAs, and
RHEAs [40,46,47,76–78]. Recent study by Li et al. [75]
showed that, in an fcc FeCoCrNiMn alloy, this pro-
cess could be attributed to heterogeneous lattice strains.
Meanwhile, Gerold and Karnthaler [74] demonstrated
that localised planar slip in fcc alloys originated from
SRO. Zhang et al. [54] further experimentally confirmed
a decisive role of SRO domains on the localisation of
plastic deformation in the Ti-6Al alloy. Li et al. [76]
also connected the formation of DBs in beta-Ti alloys
with the presence of SRO domains. Loretto et al. [48]
claimed that the emergence of DBs in these alloys was
a more solid confirmation of the B2 ordering in alloys
with low Al contents compared to SADPs (Figures 1(i-
l)). This couldmean that even the Al2.5(NbTiZr)97.5 alloy
had the B2 structure, but the degree of B2 ordering, i.e.
the size of B2 SRO domains, was negligible compared to
the Al5(NbTiZr)95 and Al7.5(NbTiZr)92.5 (Figures 2(b-
e)) counterparts.

In terms of the ductility, the localisation of plastic
deformation in DBs is considered to be harmful for bcc
alloys due to the accumulation of high pile-up stresses,
leading to premature fracture [51,69]. Contrastingly, our
findings showed that the DBs-proned Al7.5(NbTiZr)92.5
alloy achieved a ∼ 37% higher uniform elongation than
the NbTiZr alloy with the homogeneous distribution of
dislocations (Figure 3; Table 1). It could be connected
with changing of strain hardening behaviour. At the onset

of plastic deformation, dislocations in the Al-containing
alloys experience higher stresses to motion than in the
NbTiZr counterpart due to the presence of the B2 SRO
domains. To proceed plastic deformation, dislocations
should shear these SRO domains. When it happens, the
first dislocations decrease the slip resistance for the fol-
lowing dislocations, resulting in the DBs formation. The
latter process is accompanied by the stress reduction and
the steep drop of strain hardening rate (Figures 3(a, d);
so-called ‘glide plane softening’ phenomena [74,77]). In
turn, plastic deformation within DBs does not eliminate
the B2 ordering and only reduces its degree (Figures 5(e-
h)), that is, a certain, albeit much reduced, amount of
SRO domains persists, similar to results by Zhang et al.
[54]. These survived B2 SRO domains seem to create
additional (back) stresses, along with the arising con-
tribution of forest hardening [63], for the glide of new
dislocations within DBs, thereby leading to the recovery
of strain hardening rate (Figure 3(d)).Meantime, the acti-
vation of cross-slip results in the formation of new DBs,
which help relieve extra pile-up stresses and extend the
strengthening stage, thus, delaying necking.

In general, the relative improvement of themechanical
performance of the NbTiZr alloy due to the Al-induced
B2 ordering appeared to be more uniform (+ 37% in
strength and+ 37% in ductility (Table 1)) and, thus,
more effective than those of boron (+ 19% in strength
and 49% in ductility; [44]) or Mo and Ta (+ 35% in
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Figure 5. Characterisation of fine microstructure of the Alx(NbTiZr)100−x alloys after the tensile tests: (a-d) – TEM bright-field images of
the dislocation structures, observed in the near-fractured zones of tensile specimens of the NbTiZr (a), Al2.5(NbTiZr)97.5 (b), Al5(NbTiZr)95
(c), and Al7.5(NbTiZr)92.5 (d) alloys. White dashed lines in Figure 5(d) highlighted the signs of the DBs formation in the Al2.5(NbTiZr)97.5
alloy; (e, f ) – SADPs taken from cells (denoted as ‘1’ in Figure 5(e)) and DBs (denoted as ‘2’ in Figure 5(f )) in [001]bcc zone axes. Pink
and yellow arrows in Figures 5(e, f ) denoted the peaks, corresponded to the 100B2 superlattice spots in cells and DBs, respectively; (g,
h) – intensity line profiles along the g200 vectors (the directions are denoted with dashed blue arrows in SADPs Figures 5(e, f )) for the
Al7.5(NbTiZr)92.5 alloy. Pink and yellow arrows in Figures 5(g, h) denoted the peaks, corresponded to the 100 local maxima in cells and
DBs, respectively.

strength and+ 16% in ductility; [45]) additions. Natu-
rally, there must be a limit for the Al content, when the
B2 ordering deteriorates the mechanical properties of
the NbTiZr alloy. We produced an Al15(NbTiZr)85 alloy,
which was brittle; multiple cracks appeared at early stages
of cold rolling (Figure S6, Supplementary material).
However, the interval between the Al7.5(NbTiZr)92.5 and
Al15(NbTiZr)85 alloys should be further examined. Also,
high-temperature properties and peculiarities of plastic
deformation are needed to be investigated. These are
goals for future studies.

Conclusions

In summary, we proposed a new strategy to solve the
strength-ductility dilemma in RH/MEAs. By invoking

of the B2 ordering and a further controlled increment
of its degree during Al alloying, one could enhance the
yield strength and uniform elongation from 680MPa and
∼ 19% in the NbTiZr alloy to 930MPa and ∼26% in
the Al7.5(NbTiZr)92.5 alloy. The resulted properties orig-
inated from the solid solution and SRO strengthening,
as well as from changes in the dislocation glide char-
acter. The B2 ordering led to the formation of multiple
dislocation bands and the activation of cross-slip, which
prolonged the strengthening stage and prevented early
necking.
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