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+ by its Fourier–Bessel transform known approximately on a
convex set with the estimate of the difference between Fourier–Bessel transform of the function and
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1. Introduction

The problem of recovering fractional powers of operators was developed in the
works [1–3] by G.G. Magaril-Ilyaev, K.Y. Osipenko and E.O. Sivkova. In these papers a
Laplace operator was considered and the main instrument was a classical Fourier transform.
We further developed these results for a more general Laplace—Bessel singular differential
operator based on Fourier–Bessel transform. According to these authors, the formulation of
the question of finding the error of optimal recovery and the optimal method on a class of
elements ideologically goes back to Kolmogorov’s work on the cross-sections of functional
classes [4]. The formulation of the optimal recovery problem (but in a much simpler case
than the one given here) belongs to Smolyak [5].

There are well-known situations when special attributes of the Laplace operator and
Fourier transform can be carried onto elliptic singular differential operators comprising
the Bessel operator. In such cases, the Fourier–Bessel transform is used for research. The
theory of singular differential operators accommodating the Bessel operator, as well as
functional spaces generated with such operators and the Fourier–Bessel transformation,
has taken complete shape in the works of I.A. Kipriyanov and their disciples (see [6–12]).
In this paper, we transfer the technique and results of [3] to the case of the Fourier–Bessel
transform and the singular B-elliptic operator. We base our results on L∞–estimates for
a difference between Fourier–Bessel transform and its approximation on a convex subset
with an error. The method, based on Lγ

2 –estimates, was constructed in [13].
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2. Necessary Definitions

We consider a part of the Euclidean space RN

RN
+ = {χ = (χ′, χ′′),

χ′=(χ1, . . . , χn), χ′′=(χn+1, . . . , χN), χ1>0, . . . , χn>0},

where 1 6 n 6 N.
Let Ξ+ ⊂ RN

+ be a domain abutting to the hyperplanes x1 = 0, . . . , xn = 0. Let
the boundary of Ξ+ be a union of two parts: Γ+ in RN

+ and Γ0 in the hyperplanes
x1 = 0, . . . , xn = 0. We assume that Γ0 ⊂ Ξ+; however, we treat Ξ+ as a domain.

Let Ξ+
δ be a subset of Ξ+. Let us assume that all points of Ξ+

δ are located at a distance
not more than δ from Γ+. In this case we call Ξ+

δ a symmetrically interior (s-interior) sub-
domain of the set Ξ+.

Let Ξ− be a set constructed from Ξ+ with symmetry in relation to x′ = 0,
Ξ = Ξ+ ∪ Ξ− ⊂ RN .

Let us denote by C`
ev(Ξ+) the set of all functions obeying the below listed properties.

They are necessary for correct definitions of the Laplace–Bessel differential operator and
Fourier–Bessel transform on proper functions.

1. Any function ψ ∈ C`
ev(Ξ+), and all of its partial derivatives of every order not more

than `, are continuous in Ξ+.
2. Even continuations of any function ψ ∈ C`

ev(Ξ+) in relation to x′ = 0 still belongs to
the class C`(Ξ).

In addition, C∞
ev(Ξ+) =

∞⋂
l=0

C`
ev(Ξ+).

We say that functions admitting symmetrical even continuation in relation to the
corresponding variables while keeping smoothness are even with respect to these variables
(see [6]).

Let us denote by C`
ev,0(Ξ

+) the set of all functions ψ ∈ C`
ev(Ξ+) that equal zero

beyond some s-interior sub-domain of Ξ+. Let γ = (γ1, . . . , γn), (χ′)γ =
n
∏
j=1

χ
γj
j , where

γj > 0, j = 1, . . . , n. We will write sometimes χγ instead of (χ′)γ, if this does not cause
misunderstandings.

Let us denote by Lγ
p(Ξ+) a closure of Cev(Ξ+) by the norm

‖g(•)‖Lγ
p (Ξ+) =

 ∫
Ξ+

|g(χ)|p (χ′)γ dχ

1/p

.

If Ξ+ = RN
+ , we can write Lγ

p without the symbol RN
+ . Let Lγ

∞(Ξ+) be a closure of
Cev(Ξ+) by the norm

‖g‖Lγ
∞(Ξ+) = ‖g(x) (x′)γ ‖L∞(Ξ+) = esssup|g(x) xγ|.

Let Lγ
p,loc(Ξ

+) be the set of all such functions f , that

∫
Ξ+

δ

| f (χ)|p (χ′)γ dχ < +∞

for all s-interior sub-domains Ξ+
δ of the domain Ξ+.

Let us introduce the spaces below.
Let Dev(Ξ+) (Eev(Ξ+)) be the set of all constrictions of even functions with respect to

x′ = 0 in the space D(Ξ) (E(Ξ)) to the set Ξ+ (test functions) with this topology, induced
by the topology in D(Ξ) (E(Ξ)), Dev = Dev(RN

+).



Mathematics 2023, 11, 1103 3 of 16

Let Sev be the linear space of all functions (also test functions) ψ(x) ∈ C∞
ev(RN

+) that
tend to zero, as well as all their derivatives of all order, faster than any power of |x|−1

as |x| → ∞. The topology in Sev is introduced as being the same as in the space S
(see [14–19]).

We define the space of distributions D′ev(Ξ+) (E ′ev(Ξ+),S ′ev) as the dual space of
Dev(Ξ+) (Eev(Ξ+),Sev) with the weak topology. The designation

〈g(x), ψ(x)〉γ = 〈g(x), ψ(x)〉 (1)

means the action of a distribution g on a test function ψ.
We do not make any difference between a function g(x) ∈ Lγ

1,loc(Ξ
+) and the func-

tional g ∈ D′ev(Ξ+) called regular, acting by the formula

〈g(x), ψ(x)〉 =
∫

Ξ+

g(χ)ψ(χ) (χ′)γ dχ. (2)

If a functional in D′ev(Ξ+) is not regular, we call it singular.
Let us introduce the direct and inverse mixed Fourier–Bessel transforms in Sev by

the formulas
Fγψ = Fγ[ψ(χ

′, χ′′)](ξ) =

=
∫

RN
+

ψ(χ)
n

∏
κ=1

jνκ (ξκχκ)e−iχ′′•ξ ′′(χ′)γ dχ =

= (2π)N−n22|ν|
n

∏
κ=1

Γ2(νκ + 1)F−1
γ [ψ(χ′,−χ′′)](ξ),

F−1
γ [ψ](χ) =

1

(2π)N−n22|ν|
n
∏

κ=1
Γ2(νκ + 1)

×

×
∫

RN
+

ψ(ξ)
n

∏
κ=1

jνκ (ξκχκ)eiχ′′•ξ ′′(ξ ′)γ dξ =

=
1

(2π)N−n22|ν|
n
∏

κ=1
Γ2(νκ + 1)

Fγ[ψ(ξ
′,−ξ ′′)](χ),

where
χ′ • ξ ′ = χ1ξ1 + . . . + χnξn, χ′′ • ξ ′′ = χn+1ξn+1 + . . . + χNξN ,

|ν| = ν1 + . . . + νn,

jνκ (zκ) =
2νκ Γ(νκ + 1)

zνκ
κ

Jνκ (zκ) =

= Γ(νκ + 1)
∞

∑
m=1

(−1)mz2m
κ

22mm!Γ(m + νκ + 1)
,

Γ(•) is the Euler gamma function, Jνk (•) is the Bessel function of the first kind,
νk = (γk − 1)/2, k = 1, . . . , n.

Theorem 1 (The Parseval–Plancherel theorem for the Fourier–Bessel transform [7]). The
formula

‖ψ‖Lγ
2
= (2π)N−n22|ν|

n

∏
κ=1

Γ2(νκ + 1)‖ψ̂‖Lγ
2

, ψ̂ = Fγ[ψ]

(the Parseval–Plancherel formula) holds.
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We define the Fourier–Bessel transform of a distribution g by the formula

〈Fγ[g], ψ〉γ = 〈g, Fγ[ψ]〉γ,

where ψ ∈ S.
The B-elliptic Laplace–Bessel operator ∆B is defined by the formula (see [6])

∆Bu =
n

∑
k=1

(
∂2u
∂x2

k
+

γk
xk

∂u
∂xk

)
+

N

∑
k=n+1

∂2u
∂x2

k
.

We will use the denotations below:

Π = (2π)N−n22|ν|
n

∏
κ=1

Γ2(νκ + 1) = 2N+|γ|πN−n
n

∏
κ=1

Γ2((γκ + 1)/2), (3)

B(ζ, ρ) = {χ ∈ RN : |χ− ζ| 6 ρ}, (4)

B+(ζ, ρ) = {χ ∈ RN
+ : |χ− ζ| 6 ρ}, (5)

rΞ = sup{ρ > 0 : B(0, ρ) ⊂ Ξ}, (6)

r̂ = r̂(α, ε, δ) =

=

 (|γ|+ N + 2α)Γ((|γ|+ N)/2)
n
∏

κ=1
Γ((γκ + 1)/2)

2−|γ|−N+n+1π(n−N)/2δ2


1

|γ|+N+2α

, (7)

r0 = min{r̂, rΞ}. (8)

3. Problem Statement

We define the fractional degree of the operator ∆B using the equality (see [20])

(−∆B)
α/2 f (x) = F−1

γ (|ξ|αFγ f (ξ))(x),

where α > 0. Let us introduce the functional spaces

Wγ,α
∞,2(R

N
+) =

= { f (•) ∈ S ′ev : (−∆B)
α/2 f (•) ∈ Lγ

2 (R
N
+), Fγ[ f (•)] ∈ L∞(RN

+)},

Wγ,α
∞,2(R

N
+) = { f (•) ∈ Wγ,α

∞,2(R
N
+) : ‖(−∆B)

α/2 f (•)‖L2(RN
+) 6 1}.

Let us consider a measurable non-empty bounded subset G in RN
+ . Let 0 < ε < α, δ >

0. Suppose that a function Fγ f ∈ Wγ,α
∞,2(RN

+) is known approximately, namely, we know
only such a function g(•) ∈ L∞(G) that

‖ Fγ f (•)− g(•) ‖L∞(G)≤ δ.

Based on this information, we aim to recover the functions f and (−∆B)
ε/2 f in the

best possible way. We consider the function g(•) ∈ L∞(G) as an approximation of the

constriction Fγ f (•)
∣∣∣∣
G

with the error δ in the L∞(G)–metric.
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As in the papers [2,3], we call any measurable mapping

µ : L∞(G) −→ Lγ
2 (R

N
+)

recovering method. Its error we define as

e
(
(−∆B)

ε/2, Wγ,α
∞,2(R

N
+), G, δ, µ

)
=

= sup
U(α,G,δ)

‖ (−∆B)
ε/2 f (•)− µ(g(•))(•) ‖Lγ

2 (R
N
+),

where
U(α, G, δ) =

=
{(

f (•) ∈Wγ,α
∞,2(R

N
+), g(•) ∈ Lγ

∞(G)
)

:‖ Fγ f (•)− g(•) ‖L∞(G)≤ δ
}

.

The value

E
(
(−∆B)

ε/2, Wγ,α
∞,2(RN

+), G, δ
)
= inf

µ
e
(
(−∆B)

ε/2, Wγ,α
∞,2(R

N
+), G, δ, µ

)
= inf

µ
sup

U(α,G,δ)
‖ (−∆B)

ε/2 f (•)− µ(g(•))(•) ‖Lγ
2 (R

N
+)

is called the optimal recovery error (supremum is over all methods
µ : L∞(G) −→ Lγ

2 (RN
+)).

The mappings µ, on which the lower bound is reached, we call the optimal recov-
ery methods.

4. Lower Estimate of the Optimal Recovery Error Value

The proofs of both lemmas in this section are carried out according to the scheme
suggested in the papers [13,21], with the difference that the initial error estimate is given
here in the L∞–metric and in those papers it is given in the Lγ

2 –metric.
Let us explore an auxiliary task.
Extremal task I∞.

‖ (−∆B)
ε/2 f ‖Lγ

2 (RN
+)−→ max, ‖ Fγ f ‖L∞(G)≤ δ,

‖ (−∆B)
α/2 f ‖Lγ

2 (RN
+)≤ 1, f ∈ Wγ,α

∞,2(RN
+).

(9)

Lemma 1. The optimal recovery error E
(
(−∆)ε/2, Wγ,α

∞,2(RN
+), G, δ

)
is not lower than the value

of Extremal task I∞.

Proof. Let u0(•) be an acceptable function of extremal task I∞; in other words, u0(•)
satisfies the constraints of this problem. Then the function −u0(•) is also acceptable. Let
µ : L∞(G) −→ Lγ

2 (RN
+) be any fixed method and µ(0) be an image of the zero element of

the space L∞(G) with the mapping µ. Then

2 ‖ (−∆B)
ε/2u0(•) ‖Lγ

2 (R
N
+)=‖ 2 (−∆B)

ε/2u0(•) ‖Lγ
2 (R

N
+)=

=‖ (−∆B)
ε/2u0(•) + (−∆B)

ε/2u0(•) ‖Lγ
2 (R

N
+)=

=‖ (−∆B)
ε/2u0(•)− (−∆B)

ε/2(−u0(•)) ‖Lγ
2 (R

N
+)=

=‖ (−∆B)
ε/2u0(•)− µ(0)(•) + µ(0)(•)− (−∆B)

ε/2(−u0(•)) ‖Lγ
2 (R

N
+)6

6‖ (−∆B)
ε/2u0(•)− µ(0)(•) ‖Lγ

2 (R
N
+) +
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+ ‖ (−∆B)
ε/2(−u0)(•)− µ(0)(•) ‖Lγ

2 (R
N
+)6

6 2 sup
‖ Fγ f (•) ‖L∞(G)6 δ,

‖ (−∆B)
α/2 f (•) ‖L2,γ(RN

+)
6 1

‖ (−∆B)
ε/2u0(•)− µ(0)(•) ‖Lγ

2 (R
N
+)6

6 2 sup
‖ Fγ f (•)− g(•) ‖L∞(G)≤ δ,
‖ (−∆B)

α/2 f (•) ‖Lγ
2 (RN

+)
6 1

‖ (−∆B)
ε/2u0(•)− µ(g)(•) ‖Lγ

2 (R
N
+) .

Now we can pass to a supremum over all acceptable functions of extremal task I∞ on
the left side of this inequality and for all mappings (methods) µ on the right side. Thus, we
complete the proof.

Let us explore another extremal task.
Extremal task I2

∞.

Π−1
∫
RN
+

ξγ |ξ|2ε |Fγ f (ξ)|2 dξ −→ max, ‖Fγ f ‖L∞(G) 6 δ,

Π−1
∫
RN
+

ξγ |ξ|2α |Fγ f (ξ)|2 dξ ≤ 1, f (•) ∈ Wγ,α
∞,2(RN

+).

Lemma 2. The squared value of extremal task I∞ is equal to the value of extremal task I2
∞.

Proof. The affirmation of the lemma follows from the Parseval–Plancherel theorem for the
Fourier–Bessel transform.

Furthermore, we assume that Ξ = Ξ+ ∪ Ξ− is convex.

Theorem 2. If 0 /∈ Ξ+, then

E
(
(−∆B)

ε/2, Wγ,α
∞,2(R

N
+), Ξ+, δ

)
= +∞.

Proof. Assume that 0 /∈ Ξ+. In this case we can apply the finite dimensional separa-
bility theorem (for instance [22]) and separate the origin from a convex set Ξ and, as a
consequence, from Ξ+. It means that there exists such a vector η = (η1, . . . , ηN) ∈ RN

+ ,

|η| =
√

η2
1 + · · ·+ η2

N = 1, that
sup
ξ∈Ξ+

(η, ξ) ≤ 0.

For arbitrarily small ε > 0, we introduce a ball Bε = B(εη, ε/2). If ξ ∈ Bε, then

(ξ − εη, ξ − εη) = |ξ|2 + ε2|η|2 − 2ε(ξ, η) ≤ ε2/4

and, taking into account that |η| = 1, we get

(ξ, η) ≥ |ξ|
2

2ε
+

3ε

8
> 0.

Thus, Bε ∩ Ξ+ = �.
Let us introduce a function fε(•) such that

Fγ fε(ξ) =

 Π1/2

(∫
Bε

ξγ |ξ|2α dξ

)−1/2

, if ξ ∈ Bε ,

0, if ξ /∈ Bε .
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Obviously, the function Fγ fε has a bounded support and, therefore, Fγ fε ∈ Lγ
2 (RN

+)
and Fγ fε ∈ L∞(RN

+). Thus, fε ∈ Lγ
2 (RN

+). Moreover, the function ξ → −|ξ|αFγ fε(ξ) belongs
to Lγ

2 (RN
+). Therefore, fε ∈ Wγ,α

∞,2(RN
+), because (−∆)α/2 fε(•) ∈ Lγ

2 (RN
+). It is also easy

to show that the function fε(•) satisfies other conditions of Problem I2. Let ξ ∈ Bε. Then
|ξ| = |ξ − εη + εη| ≤ |ξ − εη|+ |εη| ≤ 3ε/2. Taking this fact into account, we get

1

(2π)N−n22|ν|
n
∏

k=1
Γ2(νk + 1)

∫
RN
+

ξγ |ξ|2ε |Fγ f (ξ)|2 dξ =

=

∫
Bε

ξγ |ξ|2ε dξ∫
Bε

ξγ |ξ|2α dξ
=

∫
Bε

ξγ |ξ|2ε+2α−2α dξ∫
Bε

ξγ |ξ|2α dξ
>

>
(

3
2

ε

)−2(α−ε)

∫
Bε

ξγ |ξ|2α dξ∫
Bε

ξγ |ξ|2α dξ
=

(
3
2

ε

)−2(α−ε)

.

Since ε is arbitrary small, we get that the value of the objective functional in extremal
task I2 and, therefore, in the original recovery problem, can be made arbitrarily large. The
proof is completed.

Lemma 3. Let rΞ < r̂. The lower estimate

E
(
(−∆B)

ε/2, Wγ,α
∞,2(RN

+), Ξ+, δ
)
>

>

 22−N−2|ν|π(n−N)/2δ2(α− ε)r|γ|+N+2ε
Ξ

(|γ|+ N + 2ε)(|γ|+ N + 2α)Γ((|γ|+ N)/2)
n
∏
j=1

Γ
(
(γj + 1)/2

) +

+
1

r2(α−ε)
Ξ

)1/2

(10)

holds.

Proof. The intersection of the boundary of semi-ball B+(0, rΞ) ⊂ Ξ+ and the boundary of
Ξ+ is non-empty. Assume that ξ0 belongs to this intersection. Then ξ0 /∈ int Ξ+. Hence,
there is the ability to separate the point ξ0 from the convex set int Ξ+, i.e., there is a
vector η ∈ RN

+ , such that |η| = 1 and sup
ξ∈Ξ+

(η, ξ) ≤ (η, ξ0). Explore a sequence of points

ξκ = ξ0 + (1/κ)η κ = 1, 2, 3. . . . , and a sequence of balls B(ξκ , 1/(2κ)). Every one of these
balls does not intersect with Ξ+. Indeed, if ξ ∈ B(ξκ , 1/(2κ), then (η, ξ) > (η, ξ0), that is
ξ /∈ Ξ+. Let

Vκ =
∫

B(ξκ ,1/(2κ))

ξγ dξ.

Let us explore a sequence of functions fκ(•) ∈ Wγ,α
∞,2(RN

+) having the Fourier–Bessel
transform of the form

Fγ fκ(ξ) =

 σ1/2Π1/2V−1/2
κ

(
rΞ + 3

2κ

)−α
, if ξ ∈ B(ξκ , 1/(2κ)),

δ, if ξ ∈ B(0, rΞ),
0, else.
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where
σ = 1−Π−1δ

∫
B+(0,rΞ)

ξγ|ξ|2α dξ.

From the last two conditions we get ‖Fγ fκ‖L∞(Ξ) 6 δ. Let us note that, if
ξ ∈ B(ξκ , 1/(2κ)), then

|ξ| = |ξ − ξ0 −
1
κ

η + ξ0 +
1
κ
≤ 1

2κ
+ |ξ0|+

1
κ
= rΞ +

3
2κ

.

Hence,
Π−1

∫
RN
+

ξγ |ξ|2α |Fγ fκ(ξ)|2 dξ =

= Π−1
∫

B+(0,rΞ)

ξγ |ξ|2α |Fγ fκ(ξ)|2 dξ+

+Π−1
∫

B(ξκ ,1/(2κ))

ξγ |ξ|2α|Fγ fκ(ξ)|2 dξ =

= δ2Π−1
∫

B+(0,rΞ)

ξγ |ξ|2α dξ+

+σΠ−1 Π V−1
κ

(
rΞ +

3
2κ

)−2α ∫
B(ξκ ,1/(2κ))

ξγ |ξ|2α dξ ≤

6 δΠ−1
∫

B+(0,rΞ)

ξγ |ξ|2α dξ+

+σV−1
κ

(
rΞ +

3
2κ

)−2α (
rΞ +

3
2κ

)2α ∫
B(ξκ ,1/(2κ))

ξγ dξ = 1.

It means that functions fκ are acceptable in problem I2
∞.

Let us match “the Lagrange function” L( f (•)) to the problem I2
∞

L( f ) = Π−1
∫

RN
+

ξγ(−|ξ|2ε + p(ξ) + λ|ξ|2α)|Fγ f (ξ)|2 dξ, (11)

where λ = r−2(α−ε)
Ξ ,

0 6 p(ξ) =
{
|ξ|2ε − λ|ξ|2α, if ξ ∈ B+(0, rΞ),
0, if ξ ∈ RN

+ \ B+(0, rΞ).

For every I2
∞-acceptable function, we have

Π−1
∫

RN
+

ξγ|ξ|2ε|Fγ f (ξ)|2 dξ = Π−1
∫

RN
+

ξγ|ξ|2ε|Fγ f (ξ)|2 dξ−

−Π−1
∫

Ξ+

ξγ p(ξ)
(
|Fγ f (ξ)|2 − δ2

)
dξ−

−λ

Π−1
∫

RN
+

ξγ|ξ|2α|Fγ f (ξ)|2 dξ − 1

 =
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= −L( f ) + δ2Π−1
∫

RN
+

ξγ p(ξ) dξ + λ 6 δ2Π−1
∫

RN
+

ξγ p(ξ) dξ + λ.

In particular, the value of extremal task I2
∞ is not more than

δ2Π−1
∫

RN
+

ξγ p(ξ) dξ + λ.

For every κ, we have

L( fκ) = Π−1
∫

RN
+

ξγ(−|ξ|2ε + p(ξ) + λ|ξ|2α)|Fγ fκ(ξ)|2 dξ =

= σV−1
κ

(
rΞ +

3
2κ

)−2α ∫
B(ξκ ,1/(2κ))

ξγ(−|ξ|2ε + λ|ξ|2α) dξ.

For ξ ∈ B(ξκ , 1/(2κ)), we have

rΞ = |ξ0| = |ξ0 − ξ + ξ − 1
κ

η +
1
κ

η| ≤ |ξ|+ |ξ0 +
1
κ

η − ξ|+ |1
κ

η| ≤ |ξ|+ 1
2κ

+
1
κ

,

whence we get

|ξ| ≥ rΞ −
3

2κ
.

Therefore, ∫
B(ξκ ,1/(2κ))

ξγ(−|ξ|2ε) dξ 6 −
(

rΞ −
3

2κ

)2ε

Vκ .

On the other hand, we showed earlier that for ξ ∈ B(ξκ , 1/(2κ))

|ξ| 6 rΞ +
3

2κ
.

Therefore, ∫
B(ξκ ,1/(2κ))

ξγ(|ξ|2α) dξ 6
(

rΞ +
3

2κ

)2α

Vκ .

> From the last two inequalities, we have

0 6 L( fκ) 6 σ

(
−
(

rΞ +
3

2κ

)−2α(
rΞ +

3
2κ

)2ε

+ λ

)
.

Since λ = r2(ε−α)
Ξ , we obtain

lim
κ→∞
L( fκ) = 0. (12)

Let us return to the integral

Π−1
∫
RN
+

ξγ |ξ|2α |Fγ fκ(ξ)|2 dξ = Π−1
∫

B+(0,rΞ)

ξγ |ξ|2α |Fγ fκ(ξ)|2 dξ+

+Π−1
∫

B(ξκ ,1/(2κ))

ξγ |ξ|2α|Fγ fκ(ξ)|2 dξ =
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= δ2Π−1
∫

B+(0,rΞ)

ξγ |ξ|2α dξ+

+σΠ−1 Π V−1
κ

(
rΞ +

3
2κ

)−2α ∫
B(ξκ ,1/(2κ))

ξγ |ξ|2α dξ >

> δ2Π−1
∫

B+(0,rΞ)

ξγ |ξ|2α dξ+

+σ

(
rΞ +

3
2κ

)−2α(
rΞ −

3
2κ

)2α

.

This sequence tends to 1 when κ → ∞. Hence, since

δ2Π−1
∫

B+(0,rΞ)

ξγ |ξ|2α dξ + σ

(
rΞ +

3
2κ

)−2α(
rΞ −

3
2κ

)2α

6

6 Π−1
∫
RN
+

ξγ |ξ|2α |Fγ fκ(ξ)|2 dξ 6 1,

we have
lim

κ→∞
Π−1

∫
RN
+

ξγ |ξ|2α |Fγ fκ(ξ)|2 dξ = 1. (13)

Based on Formulas (12) and (13), we get

lim
κ→∞

Π−1
∫
RN
+

ξγ |ξ|2ε |Fγ fκ(ξ)|2 dξ = λ + lim
κ→∞

δ2Π−1
∫
RN
+

ξγ p(ξ) dξ+

+λ lim
κ→∞

Π−1
∫
RN
+

ξγ |ξ|2α |Fγ fκ(ξ)|2 dξ − 1

− lim
κ→∞
L( fκ)+

+ lim
κ→∞

Π−1
∫
RN
+

ξγ p(ξ)(|Fγ fκ(ξ)|2 − δ2) dξ =

= λ + δ2Π−1
∫
RN
+

ξγ p(ξ) dξ.

This fact means that the value

λ + r−2γ
Ξ δ2Π−1

∫
RN
+

ξγ p(ξ) dξ (14)

is the value of the problem I2
∞, and the square root from (14) is the value of the problem I∞.

The integral ∫
B+(0,rΞ)

ξγ |ξ|2ε dξ
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is a special case of the integral calculated in the book [23] (p. 613, Formula (4.635.1)). In our
case, we get

∫
B+(0,rΞ)

ξγ |ξ|2ε dξ =

r|γ|+N+2ε
Ξ

n
∏
j=1

Γ
(
(γj + 1)/2

)
π(N−n)/2

2n−1(|γ|+ N + 2ε)Γ((|γ|+ N)/2)
. (15)

Now we can calculate the value of the problem I2
∞, substituting (15) into (14):

λ + δ2Π−1
∫
RN
+

ξγ p(ξ) dξ =

=
22−N−2|ν|π(n−N)/2δ2(α− ε)r|γ|+N+2ε

Ξ

(|γ|+ N + 2ε)(|γ|+ N + 2α)Γ((|γ|+ N)/2)
n
∏
j=1

Γ
(
(γj + 1)/2

)+
+

1

r2(α−ε)
Ξ

. (16)

> From here, using Lemmas 1 and 2, we get a lower estimate of the error of optimal
recovery (10). The lemma is proved.

Lemma 4. Let rΞ > r̂. The lower estimate

E
(
(−∆B)

ε/2, Wγ,α
∞,2(RN

+), Ξ+, δ
)
>

>

√
|γ|+ N + 2α

|γ|+ N + 2ε

 2−|γ|−N+n+1π(n−N)/2δ2

Γ(N + |γ|)/2)
n
∏
j=1

Γ(νj + 1)


α−ε

|γ|+N+2α

(17)

holds.

Proof. Explore a functions u0(•) ∈ Wγ,α
∞,2(RN

+) whose Fourier–Bessel transform has the form

Fγu0(ξ) =

{
δ, if ξ ∈ B+(0, r̂),
0, else.

Obviously, ‖Fγu0‖L∞(Ξ) 6 δ.
Let us again match “the Lagrange function” L( f )( f (•)) to the problem I2

∞

L( f ) = Π−1
∫

RN
+

ξγ(−|ξ|2ε + p̂(ξ) + λ̂|ξ|2α)|Fγ f (ξ)|2 dξ, (18)

where λ̂ = r̂−2(α−ε),

0 6 p̂(ξ) =
{
|ξ|2ε − λ̂|ξ|2α, if ξ ∈ B+(0, r̂),
0, if ξ ∈ RN

+ \ B+(0, r̂).

Obviously, L(u0) = 0. Moreover, taking into account (15), we get

Π−1
∫

RN
+

ξγ|ξ|2α|Fγ f (ξ)|2 dξ = δ2Π−1
∫

RN
+

ξγ|ξ|2α dξ =
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=

δ2r̂|γ|+N+2α
n
∏
j=1

Γ
(
(γj + 1)/2

)
π(N−n)/2

2n−1(|γ|+ N + 2α)Γ((|γ|+ N)/2)(2π)N−n22|ν|
n
∏

k=1
Γ2(νk + 1)

= 1. (19)

It means that function u0 is acceptable in problem I2
∞. Given these facts, for any

I2
∞-acceptable function, we have

Π−1
∫

RN
+

ξγ|ξ|2ε|Fγ f (ξ)|2 dξ 6 Π−1
∫

RN
+

ξγ|ξ|2ε|Fγ f (ξ)|2 dξ−

−Π−1
∫

Ξ+

ξγ p̂(ξ)
(
|Fγ f (ξ)|2 − δ2

)
dξ−

−λ̂

Π−1
∫

RN
+

ξγ|ξ|2α|Fγ f (ξ)|2 dξ − 1

 =

= −L( f ) + δ2Π−1
∫

RN
+

ξγ p(ξ) dξ + λ 6

6 −L(u0) + δ2Π−1
∫

RN
+

ξγ p̂(ξ) dξ + λ̂ =

= Π−1
∫

RN
+

ξγ|ξ|2ε|Fγu0(ξ)|2 dξ−

−Π−1
∫

B+(0,̂r)

ξγ p̂(ξ)(|Fγu0(ξ)|2 − δ2) dξ+

+λ̂

Π−1
∫

RN
+

ξγ|ξ|2α|Fγu0(ξ)|2 dξ − 1

 =

= Π−1
∫

RN
+

ξγ|ξ|2ε|Fγu0(ξ)|2 dξ.

This means that u0 is the solution to problem I2
∞. The value of this problem is equal to

Π−1
∫

RN
+

ξγ|ξ|2ε|Fγu0(ξ)|2 dξ = δ2Π−1
∫

B+(0,̂r)

ξγ|ξ|2ε dξ =

= δ2Π−1
∫

B+(0,̂r)

ξγ(|ξ|2ε − λ̂|ξ|2α) dξ + λ̂ =

= δ2Π−1


r̂|γ|+N+2ε

n
∏
j=1

Γ
(
(γj + 1)/2

)
π(N−n)/2

2n−1(|γ|+ N + 2ε)Γ((|γ|+ N)/2)
−
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− λ̂

r̂|γ|+N+2α
n
∏
j=1

Γ
(
(γj + 1)/2

)
π(N−n)/2

2n−1(|γ|+ N + 2α)Γ((|γ|+ N)/2)

+ λ̂ =

=
|γ|+ N + 2α

|γ|+ N + 2ε


Γ(N + |γ|)/2)

n
∏
j=1

Γ(νj + 1)

2−|γ|−N+n+1π(n−N)/2δ2


2(ε−α)
|γ|+N+2α

> From here, using Lemmas 1 and 2, we get a lower estimate of the error of optimal
recovery (17). The lemma is proved.

5. Upper Error Estimation and Optimal Recovery Method

We explore one more auxiliary extremal task.
Extremal task E.

‖ (−∆B)
ε/2 f (•)− µ̂r(g(•))(•) ‖Lγ

2 (RN
+)−→ max,

‖ Fγ f (•)− g(•) ‖L∞(Ξ+)≤ δ,
‖ (−∆B)

α/2 f (•) ‖Lγ
2 (RN

+)≤ 1, g(•) ∈ L∞(Ξ+), f (•) ∈ Wγ,α
∞,2(RN

+).

The optimality of the method µ̂r from the statement of the theorem means that the
value of extremal task E is equal to E

(
(−∆B)

ε/2, Wγ,α
∞,2(RN

+), Ξ+, δ
)

.
We will look for the optimal method among linear mappings, which in Fourier images

act according to the rule Fγµ(g) = ag with a vanishing outside the ball B(0, r0) function a.
Let m be a mapping of this kind. Then

‖ (−∆B)
ε/2 f (•)− µ̂r(g(•))(•) ‖2

Lγ
2 (RN

+)
=

= Π−1
∫

|ξ|6r0

ξγ ||ξ|εFγ f (ξ)− a(ξ)g(ξ)|2 dξ+

+Π−1
∫

|ξ|>r0

ξγ ||ξ|εFγ f (ξ)|2 dξ. (20)

Let λ̃ = λ, p̃ = p, when rΞ < r̂, λ̃ = λ̂ and p̃ = p̂, when rΞ > r̂. Accord-
ing to the Cauchy–Bunyakovsky inequality, we obtain for the integrand function in the
second integral: ∣∣∣|ξ|2ε Fγ f (ξ)− a(ξ)g(ξ)

∣∣∣2 =∣∣∣∣∣ a(ξ)
√

p̂(ξ)√
p̂(ξ)

(Fγ f (ξ)− g(ξ)) +
|ξ|ε − a(ξ)√

λ̃|ξ|α

√
λ̃|ξ|αFγ f (ξ)

∣∣∣∣∣
2

6

6

(
|a(ξ)|2

p̃(ξ)
+
| |ξ|ε − a(ξ) |2

λ̃ |ξ|2α

)
×

×( p̃(ξ)|Fγ f (ξ)− g(ξ)|2 + λ̃|ξ|2α|Fγ f (ξ)|2).

For any ξ the minimum value of the expression

J(a) =
|a(ξ)|2

p̃(ξ)
+
| |ξ|ε − a(ξ) |2

λ̃ |ξ|2α
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is reached at the point

â = |ξ|ε
(

1−
(
|ξ|
r0

)2(α−ε)
)

. (21)

This minimum value is equal to 1. Substituting (21) into the first term of (20) and
taking into account the first constraint of the problem E, we get

Π−1
∫

|ξ|6r0

ξγ ||ξ|εFγ f (ξ)− a(ξ)g(ξ)|2 dξ 6

6 Π−1
∫

|ξ|6r0

ξγ ( p̃(ξ)|Fγ f (ξ)− g(ξ)|2 + λ̃|ξ|2α|Fγ f (ξ)|2) dξ 6

6 δ2Π−1
∫

|ξ|6r0

ξγ p̃(ξ) dξ + λ̃Π−1
∫

|ξ|6r0

ξγ |ξ|2α|Fγ f (ξ)|2 dξ. (22)

For the second term of (20), we have

Π−1
∫

|ξ|>r0

ξγ |ξ|2ε|Fγ f (ξ)|2 dξ 6

6 Π−1
∫

|ξ|>r0

ξγ |ξ|2ε−2α|ξ|2α|Fγ f (ξ)|2 dξ 6

6 λ̃Π−1
∫

|ξ|>r0

ξγ |ξ|2α|Fγ f (ξ)|2 dξ. (23)

Adding up (22) and (23), we obtain the next upper estimation

‖ (−∆B)
ε/2 f (•)− m̂r(g(•))(•) ‖2

Lγ
2 (RN

+)
6

6 δ2Π−1
∫

|ξ|6r0

ξγ p̃(ξ) dξ + λ̃Π−1
∫
RN
+

ξγ |ξ|2α|Fγ f (ξ)|2 dξ =

= δ2Π−1
∫

|ξ|6r0

ξγ p̃(ξ) dξ + λ̃ ‖ (−∆B)
α/2 f (•) ‖2

Lγ
2 (RN

+)
6

6 δ2Π−1
∫

|ξ|6r0

ξγ p̃(ξ) dξ + λ̃.

The obtained upper estimate of the squared error for the constructed method does not
exceed the squared error of the optimal recovery method. This means that the constructed
method is optimal. Thus, we proved the next result.

Theorem 3. If 0 ∈ Ξ and rΞ < r̂, then

E
(
(−∆B)

ε/2, Wγ,α
∞,2(RN

+), Ξ+, δ
)
=

=

 22−N−2|ν|π(n−N)/2δ2(α− ε)r|γ|+N+2ε
Ξ

(|γ|+ N + 2ε)(|γ|+ N + 2α)Γ((|γ|+ N)/2)
n
∏
j=1

Γ
(
(γj + 1)/2

) +
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+
1

r2(α−ε)
Ξ

)1/2

.

If rΞ > r̂, then
E
(
(−∆B)

ε/2, Wγ,α
∞,2(RN

+), Ξ+, δ
)
=

=

√
|γ|+ N + 2α

|γ|+ N + 2ε

 2−|γ|−N+n+1π(n−N)/2δ2

Γ(N + |γ|)/2)
n
∏
j=1

Γ(νj + 1)


α−ε

|γ|+N+2α

.

The method

µ(g) = Π−1
∫

B(0,r0)+

|ξ|ε
(

1−
(
|ξ|
r0

)2(α−ε)
)
×

×g(ξ)
n

∏
k=1

jνk (ξkxk)eix′′•ξ ′′(ξ ′)γ dξ

is optimal.
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