

УДК 680.3

ПРИМЕНЕНИЕ СЕМАНТИКО-ЧИСЛОВОЙ СПЕЦИФИКАЦИИ ФОРМУЛ АЛГЕБРЫ ЛОГИКИ ДЛЯ РАЗРАБОТКИ ЦИФРОВЫХ СХЕМ НА ЛОГИЧЕСКОМ УРОВНЕ

Г. А. ПОЛЯКОВ В. В. ЛЫСЫХ

Белгородский государственный национальный исследовательский университет

e-mail: tda_ua@pochtamt.ru lysykh@bsu.edu.ru В статъе представлен подход решения задачи формализации разработки цифровых схем на логическом уровне с использованием семантико-числовой спецификации формул алгебры логики (ФАЛ).

Ключевые слова: Структуры Семантико – Числовой Спецификации (СЧС), формулы алгебры логики, СДН Φ , цифровые схемы.

Введение.

Под алгеброй принято понимать множество элементов произвольной природы, на котором определены некоторые конечноместные операции. Произвольная алгебра считается определенной, если определены следующие понятия: множество объектов («порождающее множество»), множество операций («сигнатура»), понятие функции и понятие формулы [2]. Алгебра логики («булева» алгебра) имеет в качестве «объектов» переменные x_i ($i \in N=1,2,...,n$), которые могут принимать два значения $x_i=0,1$; сигнатура алгебры логики содержит три операции: конъюнкцию "&", x_i & x_j (принимает значение «1» только при $x_i=x_j=1$, дизъюнкцию $x_i \mid x_j$ (принимает значение «0» только при $x_i=x_j=0$) и отрицание/инверсию x_i (для $x_i=1, x_i=0, x_i=0, x_i=1$) [1].

Функция F(X) алгебры логики — это зависимость переменной F, принимающей значения O,I, от некоторого множества двоичных аргументов X=(x1,x2,...,xn). Формулы алгебры логики (ФАЛ) — это конструкции, представляющие собой связанные символами операций «&», «|», «!» совокупности «конъюнктивных термов» $\mathcal{C}t_{\rho}$ — конъюнкций переменных и/или «дизъюнктивных термов» $\mathcal{C}t_{\rho}$ — дизъюнкций переменных, принимающих также только значения O,I.

Необходимость использования семантико – числовой спецификации ФАЛ для формализации разработки цифровых схем на логическом уровне требует расширения современных средств аппарата Семантико—Числовой Спецификации (СЧС) [3].

Постановка задачи.

Определим «конъюнктивный терм» \mathfrak{Cl}_{ρ} как конъюнкцию некоторых переменных из набора X = (x1, x2, ..., xn), имеющую следующий вид:

$$ct_{\rho} = \& \left(x_{i}^{\sigma_{i}}\right),$$

$$i \in N_{\rho}$$

где ρ — номер текущего терма: $N_{\rho} \subseteq N$ — подмножество номеров i переменных $x_i, x_i^{e_i} \in X_{\rho}$, входящих в состав ρ —го терма, $n_{\rho} = \left| N_{\rho} \right|, n = \left| N \right|$ Конъюнктивный терм» ct_{ρ} , состоящий из одной переменной, является «простым термом», для которого $N_{\rho} = 1$.

Конституентой единицы функции $F(X) = F(x_1, x_2, ..., x_n)$ от «п» переменных является конъюнктивный терм следующего вида:

$$kt = & (x_i^{\sigma_i}).$$

$$i = 1$$

Определим «ранг» r_{ρ} конъюнктивного терма \mathfrak{Ct}_{ρ} следующим соотношением:

$$r_{\rho} = \sum_{i \in N_{\rho}} 2^{i}$$
 .

Будем понимать под «весом» конъюнктивного терма ${\mathfrak C}{\mathfrak l}_{\rho}$ число W_{ρ} , определяемое соотношением:

$$\mathbf{w}_{\scriptscriptstyle
ho} = \sum_{i \in N_{\scriptscriptstyle
ho}} \!\! \sigma_i^{\;*} 2^i$$
 ,

где значения $\sigma_i=0,1$ определяются «вхождением» переменной $x_i^{\sigma_i}$ в конкретный терм: $\sigma_i=1,0;\; x_i^1=x_i, x_i^0=!x_i$. Двоичное представление «веса» w_ρ терма ct_ρ задает характер вхождения переменных $x_i^{\sigma_i}\in X_\rho$ (в прямом виде или в инверсном виде) в конъюнктивный терм ct_ρ .

Совершенная Дизъюнктивная Нормальная Форма (СДНФ) $F_{\text{СДНФ}}(x_1, x_2, ..., x_n)$ функции алгебры логики от «п» аргументов $X = (x_1, x_2, ..., x_n)$ — это множество соединенных символами « |» операции дизъюнкции конституент единицы & $(x_i^{\sigma_i})$, для котой i = 1 рых имеются наборы значений переменных, порождающие равное «1» значение функции

$$F_{\text{СДН}\Phi}\left(\mathbf{x}_{1},\mathbf{x}_{2},...,\mathbf{x}_{n}\right) = \begin{pmatrix} \mathbf{x}_{1} & \mathbf{x}_{1} \\ \mathbf{x}_{1} & \mathbf{x}_{2} \end{pmatrix}_{p},$$

где $NT_{\text{СДФ}}$ – множество номеров ρ конституент единицы, входящих в $F_{\text{СДНФ}}$ (X).

Дизъюнктивная Нормальная Форма (ДНФ) $F_{\text{дн}\Phi}(x_1,x_2,...,x_n)$ представляет собой множество конъюнктивных термов ct_{ρ} , соединенных символами «|» операции дизъюнкции

$$F_{CДH\Phi}(x_1, x_2, ..., x_n) = (ct_\rho),$$

где $NT_{\text{Д}\Phi}$ – множество номеров ρ конъюнктивных термов $\operatorname{ct}_{\rho} \in F_{\text{Д}\!H\Phi}(X)$ (различающихся в общем случае составом переменных $x_i^{\sigma_i} \in X_{\rho}$, различным «вхождением» переменных (в прямом/инверсном виде) и «различной длиной» $n_{\rho} = |N_{\rho}|$) и соответствующие термам наборы значений переменных, на которых функция $F_{\text{Д}\!H\Phi}(X)$ принимает значение «1».

Аналогичные понятия определяются также для «симметричных» рассмотренным формам (СДНФ, ДНФ) совершенной конъюнктивной и конъюнктивной нормальных форм (СКНФ, КНФ).

Семантико-числовая спецификация СДНФ и ДНФ при синтезе схем функциональных модулей на логическом уровне должна поддерживать возможность задания следующих текстовых конструкций:

- а) множества $X = (x_1, x_2, ..., x_n)$ имен X_i двоичных переменных аргументов кодово матричных функций (КМФ) Алгебры Кодовых Матриц и Функций Алгебры Логики (ФАЛ);
- б) множества SEM , задающего для имен $\mathbf{x}_{i} \in \mathbf{X} = (\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n})$ переменных единицы измерения \mathbf{Sm}_{i} («семантику») физических величин;
- в) множества N номеров j «имен» переменных x_i , «имен» конституент kt_ρ и «имен» конъюнктивных термов \mathfrak{Ct}_ρ КМФ/ФАЛ («имена» нумеруются далее в интересах формализации синтеза в сквозном порядке переменной \mathfrak{j});
- г) подмножеств $N_{\rho} \subseteq N$ номеров j имен X_{i} переменных $x_{i}^{\sigma_{i}} \in X_{\rho}$, входящих в состав каждого конкретного терма ${\mathfrak C}{\mathfrak t}_{\rho}$ КМФ/ФАЛ;
- д) множества $NT_{Д\Phi}$ номеров ρ конъюнктивных термов $ct_{\rho} \in F_{ДH\Phi}(X)$ и множества $W = \{w_{\rho}\}, \rho \in NT_{Д\Phi}$, значений «весов» W_{ρ} термов ct_{ρ} , задающих характер вхождения переменных $x_{i}^{\sigma_{i}} \in X_{\rho}$ (в прямом виде или в инверсном виде) в различные конъюнктивные термы ct_{ρ} ;
- е) средств объединения (сборки) числовых и текстовых спецификаций переменных $X_i^{\sigma_i}$ и термов \mathfrak{Ct}_{ρ} в текстовые спецификации выходных КМФ/ФАЛ схемы φ модуля на логическом уровне ее детализации.

Для семантико-числового представления перечисленных категорий данных введем в состав структур аппарата СЧС [4,5] модифицированные структуры BFL и CFL логического уровня (L), интерпретирующие и расширяющие состав структур СЧС применительно к задаче спецификации и синтеза схем ϕ -модулей на логическом уровне детализации.

Модифицированная базовая структура BFL СЧС состава переменных $\mathbf{X_i}^{\sigma_i}$ и термов ФАЛ имеет следующий состав и семантику полей (табл. 1):

Таблица 1

Структура BFL

Структура БГГ					
Имена полей	Функциональное назначение полей				
N	Массив N номеров ј переменных и номеров конституент/термов (которые считаются «операторами»				
	и нумеруются подряд от $j = 0, 1,, n, n + 1,$).				
RES	Массив RES задает множество $X = (x_1, x_2,, x_n)$ имен X_i переменных, от которого зависят				
	СДНФ/ДНФ специфицируемой ФАЛ, имен термов ${ m Ct}_{ m p}$ и имен выходных функций.				
SEM	Массив $^{ m SEM}$ задает для каждой переменной $^{ m X}_{ m i}$ и каждого терма $^{ m ct}_{ ho}$ специфицируемой				
	$\mathrm{sm_{_i}}/\mathrm{sm_{_p}}$ физических величин.				
NSJ	NSI указателей $nsj(i)$, $nsj(ho)$ на номер k – й строки структуры CFL , с которой начи-				

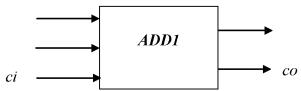
	нается цепочка номеров j переменных с именами $x_i^{\sigma_i} \in X_{\rho}$; входящих в состав каждого конкр						
	ct ного терма с именем $^{ ho}$ рассматриваемой КМ Φ/Φ АЛ						
SJD	Массив SJD количества $kv_{\rho}=\left R_{\rho}\right $ имен переменных $x_{i}^{\sigma_{i}}\in X_{\rho}$ входящих в состав произвольно-						
	го терма с именем Ct_{ρ} .						

Модифицированная структура CFL CЧС «вида вхождения» переменных в термы КМФ/ФАЛ имеет следующий состав и семантику полей (табл. 2):

Таблица 2 Структура СЕІ.

Структура СЕС						
Имена полей	Функциональное назначение полей					
K	массив K номеров k строк структуры CFL .					
JSD	массив JSD цепочек указателей $jsd(k)$, начинающихся с указателя $jsd(k) = nsj(i)$ или					
	$\operatorname{nsj}(ho)$ (поле NSJ структуры BF_{MJI}) на начало цепочки номеров ј имен $x_i^{\sigma_i} \in X_{ ho}$ перемен-					
	ных текущего терма с именем Ct_{\wp} и заканчивающихся $k-\breve{\mathbf{n}}$ строкой массива JSD , имеющей					
	jsd(k) = -1 (при этом каждый указатель $jsd(k) - 1$ указывает на некоторый элемент мас-					
	сива SPJD , задающий номер очередной переменной $X_i^{\ \sigma_i}$, входящей в текущий терм с име-					
	$_{\text{Hem }}$ $\text{Ct}_{_{\rho}}$).					
SPJD	Массив SPJD цепочек номеров j имен $X_i^{\sigma_i}$ переменных, входящих в текущую конституенту					
	$kt_{ ho}$ /терм с именем $ct_{ ho}$ (указателями на имена переменных $x_{ m i}^{\alpha_{ m i}}$ множества $X_{ ho}$ являются					
	соответствующие указатели $jsd(k)$ поля JSD структуры CFL).					
RNG	Элементы массива RNG задают значения рангов переменных, входящих в конкретные конституенты единицы СДНФ и/или в конкретные термы ДНФ КМФ/ФАЛ, определяя тем самым конкретный состав имен переменных текстовых спецификаций конституент/термов.					
WGT	Значения элементов массива WGT задают для каждой переменной с именем $x_i^{\sigma_i} \in X_{\rho}$ теку-					
	щей конституенты/терма с именем kt_{p} / ct_{p} характер вхождения (в прямом виде – при σ_{i} = 1					
	или в инверсном виде – при $\sigma_i = 0$), определяя тем самым обобщенную характеристику кон-					
	σ_{i} ституенты/терма – «вес» σ_{i} конституенты/терма (указателями на элементы σ_{i} массива					
	WGT являются соответствующие указатели $jsd(k)$ поля JSD структуры CFL).					

Проиллюстрируем на конкретном примере введенные выше понятия и возможности использования модифицированных структур СЧС BFL и CFL для семантико-числовой спецификации Φ AЛ.


Пример.

Семантико-числовая спецификация системы $\Phi A \Pi$ одноразрядного полного сумматора ADD1.

Одноразрядный полный сумматор ADD1 выполняет операцию сложения двух одноразрядных чисел ¼ и bc учетом разряда сі переноса из предшествующего младшего разряда суммы чисел и возможного переноса со в следующий старший разряд получаемой суммы.

Внешние интерфейсы сумматора ADD1 показывает рис. 1.

Puc. 1. Входной и выходной интерфейсы одноразрядного сумматора ADD1

Систем y(s, co) ФАЛ, реализуемую сумматором ADD1 (СДНФ функции s суммы и ДНФ функции со переноса), представляют следующие соотношения []

$$s = (|a\&|b\&ci) | (|a\&b\&|ci) | (a\&b\&|ci) | (a\&b\&ci) = kt_3, kt_4, kt_5, kt_6; co = (a\&b) | (a\&c) | (b\&c) = kt_7 kt_8 kt_9.$$

Для СДНФ функции \S суммы имеем: множество X имен и номеров j «равновесных» (веса 20) входных переменных $X = \{a,b,c\}$, $N_{arg} = \{0,1,2\}$, $k_{arg} |X| = 3$; множество номеров j конституент $NT_{kt} = (3,4,5,6)$, множество имен конституент единицы $KT = \{kt_3, kt_4, kt_5, kt_6\}$, количество конституент $k_{kt} = 4$; для всех конституент функции \S суммы общий ранг $r = 2^3 - 1 = 7$. Для ДНФ функции со переноса имеем: множество X имен и номеров j «равновесных» (веса 20) входных переменных $X = \{a,b,c\}$, $N_{arg} = \{0,1,2\}$, $k_{arg} = |X| = 3$; множество номеров j термов $NT_{ct} = (7,8,9)$, множество имен термов $CT = \{kt_7, kt_8, kt_9\}$, количество термов $k_{ct} = 3$.

Покажем, что семантико — числовую спецификацию ФАЛ выходной функции s одноразрядного сумматора ADD1 можно представить следующими модифицированными структурами BFL и CFL СЧС (таблица 3 и таблица 4).

Таблица з **Структура BFL состава переменных/конституент СДНФ функций s, со**

CIUDU	писременив	121, 110110	ullychia	C/411 = 1
	RES	SEM	NSJ	SJD
0	a	$\mathrm{sm}_{\scriptscriptstyle{\mathrm{O}}}$	1	0
1	b	sm_1	1	0
2	ci	sm_2	1	0
3	kt ₃	sm_3	0	3
4	kt ₄₃	sm_4	3	3
5	kt ₅	sm_5	6	3
6	kt ₆	sm ₆	19	3
7	kt ₇	sm_7	12	2
8	kt ₈	sm ₈	14	2
9	kt ₉	\mathbf{sm}_9	16	2
10	s	$\mathrm{sm}_{\scriptscriptstyle 10}$	18	4
11	co	sm_{11}	22	3

Таблица 4

Структура CFL связей конституент СДНФ функций s,co

K	JSD	SPJD	RNG	WGT
О	1	0	1	0
1	2	1	1	0
2	-1	2	1	1
3	4	0	1	0
4	5	1	1	1
5	-1	2	1	0
6	7 8	О	1	1
7		1	1	0
8	-1	2	1	0
9	10	0	1	1
10	11	1	1	1
11	-1	2	1	1
12	13	0	1	1
13	-1	1	1	1
14	15	0	1	1
15	-1	2	1	1
16	17	1	1	1
17	-1	2	1	1
18	19	3	3	4
19	20	4	3	2
20	21	5 6	3	1
21	-1	6	3	7
22	23	7	3	3
23	24	8	5	5
24	-1	9	6	6

В таблице 3 элементы массива RES структуры BFL задают имена переменных входного интерфейса сумматора ADD1 ${\mathfrak d}$, ${\mathfrak b}$, ${\mathfrak c}{\mathfrak i}$ — аргументов выходных ФАЛ ${\mathfrak S}$ и ${\mathfrak C}{\mathfrak O}$, имена конституент ${\mathfrak k}{\mathfrak t}_3$, ${\mathfrak k}{\mathfrak t}_4$, ${\mathfrak k}{\mathfrak t}_5$, ${\mathfrak k}{\mathfrak t}_6$, ${\mathfrak k}{\mathfrak t}_7$, ${\mathfrak k}{\mathfrak t}_8$, ${\mathfrak k}{\mathfrak t}_9$ и имена выходных функций ${\mathfrak S}$, ${\mathfrak C}{\mathfrak O}$. Элементы массива NSJ = ${\mathsf RS}_j$ задают для каждой конституенты ${\mathfrak k}{\mathfrak t}_j$ номер ${\mathfrak k}={\mathsf RS}_j$ строки структуры CFL (таблица 4), с которой в массиве SPJD начинается цепочка номеров элементов (входных переменных ${\mathfrak d}$, ${\mathfrak b}$, ${\mathfrak c}{\mathfrak i}$ — для термов ${\mathsf k}{\mathfrak t}_3$, ${\mathsf k}{\mathfrak t}_4$, ${\mathsf k}{\mathfrak t}_5$, ${\mathsf k}{\mathfrak t}_6$, ${\mathsf k}{\mathfrak t}_7$, ${\mathsf k}{\mathfrak t}_8$, ${\mathsf k}{\mathfrak t}_9$; номеров термов ct3, ct4, ct5, ct6 — для функции ${\mathfrak S}$ и ct7, ct8, ct9 — для функции ${\mathsf C}{\mathfrak O}$). Значение указателя ${\mathsf RS}_j^{\mathsf I}=-1$ соответствует случаю, когда элемент с номером ${\mathsf J}$ является входной переменной, для которой $|{\mathsf X}{\mathsf J}|=1$. «По умолчанию» принималось, что в рамках примера семантика элементов массива SEM не обсуждается, так как определяется конкретными прикладными областями и задачами.

Элементы массивов RNG WGT k —й строки (k=0,1,2) структуры CFL CЧС задают числовую спецификацию ранга и веса конкретных переменных (a,b,ci), ранга и веса конкретных конъюнктивных термов $(kt_3,...,kt_9)$ и ФАЛ выходных функций s,co. Например, для терма kt_3 : указатель nsj(N=3)=0) показывает, что цепочка номеров его «сопряженных» — переменных задачи в структуре CFL начинается со строки с номером k=nsj(N=3)=0, продолжается строкой структуры CFL с номером k=JSD[0]=1 и заканчивается строкой с номером k=JSD[1]=2, имеющей JSD[2]=-1.

Элементами массива SPJD рассматриваемых строк являются SPJD[k=0]=0, SPJD[1]=1, SPJD[2]=2. Это означает, что в состав конъюнктивного терма kt_3 входят все переменные входного интерфейса: RES[N=0]=a, RES[N=1]=b, RES[N=]=ci. Числовой спецификацией этого факта являются значения элементов массива RNG «рангов» структуры CFL: RNG[k=0]=1, RNG[k=1]=1, RNG[k=2]=1 (ra= 20=1, rb= 20=1, rci= 20=1), характер «вхождения» каждой переменной в терм $kt_3=!a\&!b\&ci$ специфицируется значениями элементов массива «весов» WGT структуры CFL:

WGT
$$[k=0]=0$$
, WGT $= [k=1]=0$, WGT $[k=2]=1$
 $w_a = \sigma_a 2^0 = 0 \times 2^0 = 0 \leftrightarrow !a$; $w_b = \sigma_b 2^0 = 0 \times 2^0 = 0 \leftrightarrow !b$;
 $w_{ci} = \sigma_{ci} 2^0 = 1 \times 2^0 = 1 \leftrightarrow !ci$.

Приведенная для компонентов таблиц 3, 4 выходной функции s трактовка семантико — числовой спецификации сохраняется и для выходной функции со. Например, для терма kt_7 : указатель nsj(N=7)=12) показывает, что цепочка номеров его «сопряженных» -переменных задачи в структуре CFL начинается со строки с номером k=nsj(N=7)=12 и заканчивается строкой с номером k=JSD[12]=13, имеющей JSD[13]=-1. Элементами массива SPJD рассматриваемых строк являются SPJD[k=12]=0, SPJD[13]=1. Это означает, что в состав конъюнктивного терма kt_7 входят только переменные а,b входного интерфейса: RES[N=0]=a, RES[N=1]=b. Числовой спецификацией этого факта являются значения элементов массива RNG «рангов» структуры CFL: RNG[k=12]=1, RNG=[k=13]=1, (ra=20=1,rb=20=1), характер «вхождения» каждой переменной (a,b) в терм $kt_7=a$ & b специфицируется значениями элементов массива «весов» WGT структуры CFL: WGT[k=12]=1, WGT=[k=13]=1 $W_a=\sigma_a 2^0=1x2^0=1 \leftrightarrow !a$, $W_b=\sigma_b 2^0=1x2^0=1 \leftrightarrow !b$.

Отметим, что принятое соответствие между номерами ј конституент/ термов, составом переменных различных конституент/термов и их именами в функции ѕ суммы имеет следующий вид: состав конституент ct_{p} : (!a & !b & ci), (!a & b & !ci), (a & !b & !ci), (a & b & ci); имена термов — ct3, ct4, ct5, ct6; номера ј термов — j=3, j=4, j=5, j=6.

Принятое соответствие между номерами ј термов, составом переменных различных термов и их именами в функции со переноса имеет следующий вид: состав термов – (a&b), (a&ci), (b&ci); имена термов – ct7, c8, ct9; номера ј термов – j =7, j =8, j =9

Выводы.

- 1. Необходимым условием корректности семантико числовой спецификации формул Алгебры Логики (булевой алгебры) и, в более общем случае, Алгебры Кодовых Матриц является «расширение» состава полей структур СЧС ВF, СF до состава полей структур BFL, CFL логического уровня детализации спецификации;
- 2. Расширенные структуры СЧС логического уровня детализации обеспечивают возможность семантико числовой спецификации всех категорий информации, содержащейся в текстовой спецификации Формул Алгебры Логики и, в более общем случае,

АКМ, и могут рассматриваться, наряду с текстовой спецификацией, как эквивалентная семантико – числовая форма представления ФАЛ и КМФ.

Литература

- 1. Поляков Г. А. Основы построения и автоматического проектирования самоорганизующихся систем параллельной цифровой обработки информации и повышение эффективности комплексов радиолокационного вооружения ПВО / Г. А. Поляков ; [под общ. ред. проф. В. К. Стрельникова]. X.: ВИРТА ПВО, 1986. 572 с.
- 2. Поляков Г. А. Адаптивные самоорганизующиеся системы с мультипараллельной обработкой данных стратегия развития цифровой вычислительной техники в XXI-м веке / Г. А. Поляков // Прикладная радиоэлектроника. X. : АН ПРЭ, 2002. № 1. C. 57—69.
- 3. Поляков Г.А. Синтез и анализ параллельных процессов в адаптивных времяпараметризованных вычислительных системах / Г.А. Поляков, С.И. Шматков, Е.Г. Толстолужская, Д.А. Толстолужский: монография. X.: XHУ имени В.Н. Каразина, 2012. C. 434 575.
- 4. Поляков Г. А., Лысых В.В. Метод функционального СЧС-синтеза проблемно- ориентированных параллельно-конвейерных цифровых устройств// Научные ведомости БелГУ. Серия: История. Политология. Экономика. Информатика. 2013. № 15(158). Вып. 27/1 С. 139-145.
- 5. Поляков Г.А., Лысых В.В. Формальный метод функционального СЧС-синтеза проблемноориентированных паралельно-конвейерных аппаратных средств //Сборник научных трудов VI международной научной конференции Функциональная база наноэлектроники — Харьков, 2013 г., С. 370-373.

APPLICATION OF SSN SPECIFICATIONS OF BOOLEAN FORMULAS FOR LOGIC DEVELOPMENT OF DIGITAL CIRCUITS AT THE LOGICAL LEVEL

G. A. POLYAKOV V. V. LYSYKH

Belgorod National Research University

e-mail: tda_ua@pochtamt.ru lysykh@bsu.edu.ru The paper presents an approach for solving the problem of formalizing the development of digital circuits at the logical level, using semanticnumerical specification of Boolean formulas (BF).

Key words: Semantic Structures – Number Specifications (SNS, Boolean formulas (BF) PDNF, digital circuit.