
ilvsis and Cnm narison
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(Au )(x ) =  (2 n) -m j  j  ei(y-xн / I (x,%)u(%)dyd%, x e  D,  (2)

D Rm

and a sign ~  over the function u denotes its Fourier transform

U(%) =  j  e~ix%u(x)dx.
Rm

D efinition 1 The function A (x,%) is called a symbol of a pseudo-differential opera­
tor A. A  symbol A (x, %) is called an elliptic symbol if ess  in f | A (x , %)| >  0.

(x,%)eRm xRm

As far as I know it is im possible to find an exact solution of the equation (1) for an 
arbitrary domain D . Therefore all researches are interested in describing Fredholm  
properties of the equation at least. But for sim plest cases it can very easy by the 
Fourier transform.

E xam ple  1 Let K(x) be a C alderon-Zygm und kernel and the operator A is defined 
by the formula [4 ]

( K u ) ( x ) =  v .p .  K ( x  -  y ) u (y ) dy ,  (3)
Rm

so that it can represented in the form (6)

( K u ) ( x ) =  (2n)~m f I eny- x>■*а(%)й(%)dyd%,
Rm Rm

and the function a(%) is called a symbol of the operator A. It is well known that 
for the operator A to be invertible in the space L 2(R m) necessary and sufficient its 
symbol a(%) should be an elliptic [4 ].

Let D d =  D  П h Z m, h >  0. We are interested in studying some discrete equations 
which we call discrete pseudo-differential equations and which are related to the 
E q .( 1). Let us define a discrete pseudo-differential operator by the formula

(Adud ) (x ) = ^  j  e ,(y~x)'% Ad (x ,%)u d (%)d %, x e  Dd,

yeDdbT

where ud (x) is a function of a discrete variable x e  h Z m, ud (%) denotes its discrete 
Fourier transform

ud(%) =  (Fdud)(%) =  J2 eiy %ud(y),  % e  KTm,
yehZm

(4)
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Z m is an integer lattice in R m, T m is m-dim ensional cube [—п, п ]m, h =  h- -, and 
given function A d (x ,£ ) ,X  e  h Zm e hTm, is called a symbol o f the discrete 
pseudo-differential operator A d .

We would like to study the equation

(Adud)(X) =  vd(X), X e  Dd , (5)

in some discrete functional spaces. Since it is difficult to study such general operators 
(as it was said above) for discrete cases also w e’ll consider certain model situations.

2 The Concept of the Research

W e’ll present here main ideas for studying this large problem . In contrast o f algebraic 
approaches [2 , 3, 5] we use analytical m ethods based on properties of the Fourier 
transform  and considered operators. A  plan of the studying is the following:

-  infinite discrete and finite discrete Fourier transform
-  discrete functional spaces
-  solvability o f infinite discrete equation
-  solvability o f finite discrete equation
-  com parison of continual and infinite discrete solution
-  com parison of infinite and finite discrete solution.

2.1 Local Discrete Operators

W e’ll illustrated the above scheme with very sim ple model pseudo-differential oper­
ator nam ely operator A from  exam ple 1 because many our results are related to this 
operator. In addition we assume that kernel K  (x) o f the operator A is differentiable 
on R m \  {0}.

2.2 Discrete and Continual

D iscrete F o u rie r  T ran sfo rm  To obtain a good approxim ation for the integral equa­
tion ( 1) we will use the following reduction. F irst instead of the integral in ( 1) we 
introduce the series

K (X — y )ud(y)hm, (6)
yehZm
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(KdUd)(X) = £  K(X — y)Ud(y)hm, X e  h Z m, (7)
yehZm

defined on functions ud o f discrete variable X e  h Z m. Since the Calderon-Zygm und 
kernel has a strong singularity at the origin we mean K  (0) =  0. Convergence for the 
series (6) means that the following limit

lim  V '  K  (X — y)Ud (y)hm
N z—'

yehZm nQN

exists, where Q n =  {x e  R m : m ax |Xk | <  N }. It was shown earlier that a norm  of
1<k<m

the operator K d : L 2(hZm) ^  L 2(hZm) does not depend on h [11]. But although 
the operator is a discrete object it is an infinite one.

Let us define the infinite discrete Fourier transform  for functions ud o f a discrete 
variable X e  hZm

(Fdud)(£) =  J 2  ud(X)eiX£hm, £ e  hTm.
XehZm

Such discrete Fourier transform  preserves all basic properties of the classical 
Fourier transform, particularly for a discrete convolution of two discrete functions
ud , vd

(ud * Vd)(X) =  ^ 2  ud(X — y)Vd(y)hm
yehZm

we have the well known multiplication property

(Fd(ud * Vd))(£) =  (Fdud)(£)  • (FdVd)(£).

If  we apply this property to the operator Kd  we obtain

(Fd(Kdud))(£) =  (FdKd)(£)  • (Fdud)(£).

Let us denote (FdK d)(£) =  ad(£) and give the following

D efinition 2 The function ad (£ ) ,£  e  hTm, is called a symbol of the discrete oper­
ator K d .

We will assume below that the symbol ad (£) e  C (hT m) therefore we have im m e­
diately the following

P ro p e rty  1 The operator K d is invertible in the space L 2(hZm) iff ad(£) =  0, Vf e  
hTm.

which generates a discrete operator
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We say that a continuous symbol is called an ellip tic sym bol if  ad(%) =  0, V% e 
hTm.

So we see that an arbitrary elliptic symbol a d(%) corresponds to an invertible 
operator K d in the space L 2(hZm).

A very interesting fact was proved in [8, 9].

T heo rem  1 Operators (3) and (7) are invertible or non-invertible in spaces L 2(Rm) 
and L 2(hZm) simultaneously Vh >  0.

If  we consider the equation

(Kdud) (x ) =  vd(x), x  e  h Z m,

in the space L 2(hZm) then we solve the equation by the discrete Fourier transform 
Fd . Indeed after applying the Fourier transform  we have the trivial equation

ad(%)ud(%) =  Vd(%), % e  HTm,

in the dual space L 2(hTm).
We have first difficulties when consider this equation in the space L 2 (hZ + ), where 

Z+ =  {x e  Z m : x =  ( x i , . . . , x m), xm >  0}. We can not apply the Fourier transform 
directly as above because the functions under consideration are defined not on a whole 
space. Thus we need to describe images of such function after the discrete Fourier 
transform, ant it leads us to the next extensions.

A H alf-Space C ase If  we consider Eqs. (3) and (7) in spaces L  2 (Rm) and L  2 (hZ+) 
or in other words operators K  : L 2(R’m) ^  L 2(Rm) and K d : L 2(hZ+) ^  L 2(hZ+) 
then for studying invertibility of the operator Kd one has constructed a special peri­
odic Riemann boundary value problem  [10]. A  solvability of m entioned Riemann 
problem  depends on a certain topological invariant ж related to a symbol of an ellip­
tic operator. This num ber ж is called an index of periodic Riemann boundary value 
problem . It was shown these topological numbers for elliptic operators K  and Kd 
are the same and it implies the following [8 , 9]

T heo rem  2 Operators (3) and (7) are invertible or non-invertible in spaces L 2( R + ) 
and L 2(hZ+) simultaneously Vh >  0.

Studying m ore com plicated situations related to cones [6] was started in [14], first 
steps were done.

D iscrete B o u n d a ry  Value P rob lem s These arise first in the case hZ +  then we 
have a boundary, and it is possible the mentioned index ж is not a zero. To exclude a 
non-uniqueness of solution one needs some boundary conditions [1, 6]. Some similar 
situations were considered for difference equations in papers [12, 13, 15].
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2.3 Infinite and Finite

F in ite  D iscrete F o u rie r  T ran sfo rm  Here we will introduce a special discrete peri­
odic kernel K d,N (X) which is defined in the following way. We take a restriction of 
the discrete kernel K d (X) on the set Q n  n  h Z m =  QdN and periodically continue it 
to a whole h Z m. Further we consider discrete periodic functions ud,N with discrete 
cube of periods QdN . We can define a cyclic convolution for a pair of such functions 
ud,N, vd,N by the formula

(ud,N * Vd,N)(X) =  ud,N(X — y)Vd,N(y)hm. (8)
yeQN

Further we introduce finite discrete Fourier transform  by the formula

(Fd,n ud,N)(£) = J 2  ud,N(X)eixIhm, £ e  r N,
XeQdN

where R dN =  hTm n  KZm. Let us note that here f  is a discrete variable.
F in ite  D iscrete O p e ra to r  A ccording to the formula (8) one can introduce the 

operator

Kd,Nud,N (X) =  ^  Kd,N (X — y)ud,N (y )hm 
yeQN

on periodic discrete functions ud,N and a finite discrete Fourier transform  for its 
kernel

°d,N(I) = J 2  Kd,N(X)eiX f hm, I  e  R dN.
XeQdN

D efinition 3 A  function od,N ( f ), |  e  R dN, is called s symbol o f the operator K d,N . 
This symbol is called an elliptic symbol if ad ,n ( I ) =  0, V f e  RN .

T heo rem  3 Let ad (£) be an elliptic symbol. Then for  enough large N  the symbol  
&d,N (^) is elliptic symbol also.

A proof of the theorem  follows immediately.
As before an elliptic symbol ad,N (f ) corresponds to the invertible operator K d,N 

in the space L 2( Q dN).

3 Discrete Functional Spaces

Since w e’ll use projectors on points o f lattice we need subspaces of continuous 
functions instead of Lebesgue spaces. We introduce the space Ch which is the space 
of functions ud of discrete variable X e  h Z m with the norm
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Ch =  m ax |ud (x )|.
xehZm

In other words, the space Ch is the space of functions u e  C (Rm) restricted on 
lattice points Zm. Here we remind, that the operator K  isn’t bounded in the space 
C (R m), but it is bounded in the space L 2(R m), and it is well-known, that if  the right 
hand side of the equation

( K u ) ( x ) =  v ( x )

has some smoothness properties (for example, it satisfies the H older condition), then 
the solution o f this (if it exists in the space L  2 (Rm)) has the same smoothness property 
[4 ].

Further we define the discrete space Ch (а, в )  as a functional space of discrete 
variable x e  hZm with finite norm

||ud || Cft (а,в) =  ||ud || Cft +  sup |ud (x) -  ud (y ) |,
x ,yehZm

and additional assumptions

|x -  y |“
|ud (x) -  ud(y )| <  c

(max{ 1 +  |x |, 1 +  |y |})e ’

|ud (x)| < ------------- т.— , Vx., y  e  hZm, а,  в  >  0, 0 <  а  <  1.
' d W I “  (1 +  Щ)в-а  ^  ^

4 Approximate Solutions

4.1 Infinite Discrete Solutions

L et’s denote Ph the restriction operator on the lattice hZ m, i.e. the operator, which 
an arbitrary function, defined on R m, maps to the set of its discrete values in lattice 
points h Z m.

D efinition 4  The approxim ation rate for the operators K  and Kd in vector normed 
space X  o f functions defined on R m, is called the operator norm

|| PhK -  KdPh ||x  ̂ Xd,

where X d is the norm ed space of functions defined on the lattice h Z m with norm, 
which is induced by the norm  of the space X.

For the space Ch (а, в )  we have
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T heorem  4 If  m <  в  <  a  +  m , then the estimate

11 K dud 'l'lCh (а,в) <  cllud 'l'lCh (a,P),

is valid, and c doesn’t depend on h.

The continual analogue of such spaces is the space H p ( R m) o f functions, which 
are continuous in R m and satisfy the Holder condition of order 0 <  a  <  1 and with 
w eight (1 +  |x |) e . It is well known from results o f S.K. Abdullaev (Sov. M ath., 
Dokl. 40, No.2, 417-421,1990) that the operator K  is a linear bounded operator 
K  : H p ( R m) ^  H  p ( R m) under the condition m <  в  <  a  +  m.

We will give the approxim ation rate for the operators K  and Kd  in the space 
Ch(a, в ) .  It will perm it to obtain the error estimate for approxim ate solution, if  we 
will change the continual operator K  by its discrete analogue K d.

T heorem  5 The approximate rate fo r  the operators K  and K d is the following

|| PhK — KdPh ||C* (a, в) <  cha ,

where c doesn’t depend on h, a  <  a, в  >  в- 

Some of these results w ere obtained in [7].

4.2 Finite Discrete Solutions

Let us denote PN the projector L 2(hZm) ^  L 2( Q dN).

T heorem  6 For operators K d and K d,N we have the following estimate

| |(  PNKd — Kd,NPN )ud "l2(QN ) <  C N m+2(a—P)

fo r  arbitrary ud e  Ch (a, в ) ,  в  >  a  +  m /2 .

Now we consider the equation

Kd,N ud,N =  Pn  Vd (9)

instead of the equation
Kdud =  Vd (10)

and give a com parison for these two solutions assuming that operator K d is invertible 
in L 2(hZm).

T heo rem  7 If  Vd e  Ch(a, в ) ,  в  >  a  +  m /2 , ud is a solution o f  the Eq. ( ), ud,N is 
a solution o f  (9) then the estimate



||ud -  ud,N | | l  2(hZm) <  C N m+2(lX-e) 

is valid, and C is a constant non-depending on N.
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Conclusion

These considerations are first steps to realize the declared programm. We hope that 
obtained results will help us to study m ore general discrete operators and equations 
and to describe a correspondence between discrete and continual objects, and also 
between finite and infinite discrete objects.

References

1. EskinG  (1981) Boundary value problems for elliptic pseudodifferential equations. AMS, Prov­
idence

2. Didenko V, Silbermann B (2008) Approximation of additive convolution-like operators. Real 
C * -algebra approach. Birkhauser, Basel

3. Hagen R, Roch S, Silbermann B (2001) C *-algebras and numerical analysis. Marcel Dekker, 
New York

4. Mikhlin SG, Prossdorf S (1986) Singular integral operators. Akademie-Verlag, Berlin
5. Prossdorf S, Silbermann B (1991) Numerical analysis for integral and related operator equa­

tions. Birkhauser, Basel
6. Vasil'ev VB (2000) Wave factorization o f elliptic symbols: theory and applications. Kluwer, 

Dordrecht
7. Vasilyev AV, Vasilyev VB (2012) Numerical analysis for some singular integral equations. 

Neural Parall Sci Comput 20:313-326
8. Vasilyev AV, Vasilyev VB (2013) Discrete singular operators and equations in a half-space. 

Azerb J Math 3:84-93
9. Vasilyev AV, Vasilyev VB (2015) Discrete singular integrals in a half-space. In: Mityushev V, 

Ruzhansky M (eds) Current trends in analysis and its applications. Proceedings o f 9th ISAAC 
congress, Krakow, Poland, 2013. Birkhauser, Basel, pp 663-670

10. Vasilyev AV, Vasilyev VB (2015) Periodic Riemann problem and discrete convolution equa­
tions. Differ Equ 51:652-660

11. Vasil’ev AV, Vasil’ev VB (2015) On the solvability o f certain discrete equations and related 
estimates o f discrete operators. Dokl Math 92:585-589

12. Vasilyev AV, Vasilyev VB (2016) On solvability o f some difference-discrete equations. Opusc 
Math 36:525-539

13. Vasilyev AV, Vasilyev VB (2016) Difference equations in a multidimensional space. Math 
Model Anal 21:336-349

14. Vasilyev VB (2016) Discrete equations and periodic wave factorization. AIP Conf Proc 
1759:0200126

15. Vasilyev AV, Vasilyev VB (2016) Difference equations and boundary value problems. In: 
Pinelas S et al (eds) Differential and difference equations and applications. Springer proceeding 
mathematics & statistics vol 164. Birkhauser, Basel, pp 421-432


