ilvsis and Cnmnarison
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(Au)(x) = (2n)-mj j ei(y-xH /1(x,%)u(%)dyd%, x e D, 2)
D Rm

and a sign ~ over the function u denotes its Fourier transform

U@ = j e~ix%u(x)dx.
Rm

Definition 1 The function A (x,%) is called a symbol of a pseudo-differential opera-
tor A. A symbol A(x, %) is called an elliptic symbol if ess inf A(x,%| > 0.
y (X, % ptic sy P CXCRR
As far as | know it is impossible to find an exact solution of the equation (1) for an
arbitrary domain D . Therefore all researches are interested in describing Fredholm
properties of the equation at least. But for simplest cases it can very easy by the
Fourier transform.

Example 1 Let K(x) be a Calderon-Zygmund kernel and the operator A is defined
by the formula [4]

(Ku)(x) = v.p. K(x - y)u(y)dy, ®)
Rm

so that it can represented in the form (6)

(Ku)(x) = (2n)~m f Ieny-xm(%)ﬁ(%)dyd%,
RmRm

and the function a(%) is called a symbol of the operator A. It is well known that
for the operator A to be invertible in the space L 2(Rm) necessary and sufficient its
symbol a(%) should be an elliptic [4].

Let Dd= D MhZm,h > 0. We are interested in studying some discrete equations
which we call discrete pseudo-differential equations and which are related to the
Eq.(1). Let us define a discrete pseudo-differential operator by the formula

(Adud)(x) = N j e,(y-x)%Ad (x,%)ud(%)d% xe Dd,
yeDdbT

where ud(x) is a function of a discrete variable x e hZm, ud(%) denotes its discrete
Fourier transform

ud©@) = (Fdud)@®) = J2 eiy%ud(y), %e Klm, (4)
yehZm
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Zm is an integer lattice in Rm, Tm is m-dimensional cube [—, n]Jm, h= h -, and
given function Ad(x,£),X e hZm e hTm, is called a symbol of the discrete
pseudo-differential operator Ad.

We would like to study the equation

(Adud)(X) = vd(X), X e Dd, (5)

in some discrete functional spaces. Since itis difficult to study such general operators
(as it was said above) for discrete cases also we’ll consider certain model situations.

2 The Concept of the Research

We’ll present here main ideas for studying this large problem. In contrast of algebraic
approaches [2, 3, 5] we use analytical methods based on properties of the Fourier
transform and considered operators. A plan of the studying is the following:

- infinite discrete and finite discrete Fourier transform
- discrete functional spaces

- solvability of infinite discrete equation

- solvability of finite discrete equation

- comparison of continual and infinite discrete solution
- comparison of infinite and finite discrete solution.

2.1 Local Discrete Operators

We’ll illustrated the above scheme with very simple model pseudo-differential oper-
ator namely operator A from example 1because many our results are related to this
operator. In addition we assume that kernel K (x) of the operator A is differentiable
on Rm\ {0}

2.2 Discrete and Continual

Discrete Fourier Transform To obtain a good approximation for the integral equa-
tion (1) we will use the following reduction. First instead of the integral in (1) we
introduce the series
K (X —y)ud(y)hm, (6)
yehZm
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which generates a discrete operator

(KdUud)(X) = £ K(X —y)Ud(y)hm, X e hZm, @)
yehZm

defined on functions ud of discrete variable X e hZm. Since the Calderon-Zygmund
kernel has a strong singularity at the origin we mean K (0) = 0. Convergence for the
series (6) means that the following limit

lim zV ! K (X—y)Ud(y)hm
yehZmQN
exists, where Qn = {x e Rm: 1rgka<>r<n [Xk| < N }. It was shown earlier that a norm of

the operator Kd : L2(hZm) ~ L2(hZm) does not depend on h [11]. But although
the operator is a discrete object it is an infinite one.

Let us define the infinite discrete Fourier transform for functions ud of a discrete
variable X e hZm

(Fdud)(£) = J2 ud(X)eiXEhm, £ e hTm.
XehZm

Such discrete Fourier transform preserves all basic properties of the classical
Fourier transform, particularly for a discrete convolution of two discrete functions

ud, vd
(ud * Vd)(X) = "2 ud(X —y)Vd(y)hm
yehZm

we have the well known multiplication property
(Fd(ud * Vd))(£) = (Fdud)(£) « (FdVd)(£).
If we apply this property to the operator Kd we obtain
(Fd(Kdud))(£) = (FdKd)(E)  (Fdud)(£).

Let us denote (FdKd)(£) = ad(£) and give the following

Definition 2 The function ad(£),£ e hTm, is called a symbol of the discrete oper-
ator Kd.

We will assume below that the symbol ad(£) e C(hTm) therefore we have imme-
diately the following

Property 1 The operator Kdis invertible in the space L2(hzZm) iffad(£) = 0, Vf e
hTm.
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We say that a continuous symbol is called an elliptic symbol ifad(%) = 0, Wo e
hTm.

So we see that an arbitrary elliptic symbol ad(%) corresponds to an invertible
operator Kd in the space L2(hZm).

A very interesting fact was proved in [8, 9].

Theorem 1 Operators (3) and (7) are invertible or non-invertible inspaces L 2(Rm)
and L 2(hZm) simultaneously Vh > 0.

If we consider the equation
(Kdud)(x) = vd(x), x e hZm,

in the space L2(hZm) then we solve the equation by the discrete Fourier transform
Fd. Indeed after applying the Fourier transform we have the trivial equation

ad(%)ud(®) = Vd(%), %e HTm,

in the dual space L2(hTm).

We have first difficulties when consider this equation in the space L2(hZ+), where
Z+ = {xeZm:x = (Xi,...,xm), xm > 0}. We can not apply the Fourier transform
directly as above because the functions under consideration are defined not on awhole
space. Thus we need to describe images of such function after the discrete Fourier
transform, ant it leads us to the next extensions.

A Half-Space Case Ifwe consider Egs. (3) and (7) in spaces L2(Rm) and L2(hZ+)
orin other words operators K : L2(Rin) ~ L2(Rm)and Kd : L2(hZ+) » L2(hZ+)
then for studying invertibility of the operator Kd one has constructed a special peri-
odic Riemann boundary value problem [10]. A solvability of mentioned Riemann
problem depends on a certain topological invariant x related to a symbol of an ellip-
tic operator. This number x is called an index of periodic Riemann boundary value
problem. It was shown these topological numbers for elliptic operators K and Kd
are the same and it implies the following [8, 9]

Theorem 2 Operators (3) and (7) are invertible or non-invertible inspaces L2(R+)
and L2(hz+) simultaneously Vh > 0.

Studying more complicated situations related to cones [6] was started in [14], first
steps were done.

Discrete Boundary Value Problems These arise first in the case hZ+ then we
have aboundary, and it is possible the mentioned index x is not a zero. To exclude a
non-uniqueness of solution one needs some boundary conditions [1, 6]. Some similar
situations were considered for difference equations in papers [12, 13, 15].
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2.3 Infinite and Finite

Finite Discrete Fourier Transform Here we will introduce a special discrete peri-
odic kernel Kd,N(X) which is defined in the following way. We take a restriction of
the discrete kernel Kd(X) on the set Qn n hZm = QW& and periodically continue it
to a whole hZm. Further we consider discrete periodic functions ud,N with discrete
cube of periods QU&l. We can define a cyclic convolution for a pair of such functions
ud,N, vd,N by the formula

(ud,N * Vd,N)(X) = ud,N(X —y)Vd,N(y)hm. (8)
yeQN

Further we introduce finite discrete Fourier transform by the formula

(Fd,nud,N)(£) = J 2 ud,N(X)eixlhm, £ e rN,
XeQul

where R = hTmn KZm. Let us note that here f is a discrete variable.
Finite Discrete Operator According to the formula (8) one can introduce the
operator
Kd,Nud,N(X) = ~ Kd,N(X —y)ud,N (y)hm
yeQN

on periodic discrete functions ud,N and a finite discrete Fourier transform for its
kernel

°d,N(1) = J 2 Kd,N(X)eixfhm, 1 e RM.
XeQul

Definition 3 A function od,N(f),| e RW, is called s symbol of the operator Kd,N.
This symbol is called an elliptic symbol ifad,n (1) = 0, Vfe RN.

Theorem 3 Let ad(£) be an elliptic symbol. Thenfor enough large N the symbol
&I,N (™) is elliptic symbol also.

A proof of the theorem follows immediately.
As before an elliptic symbol ad,N(f) corresponds to the invertible operator Kd,N
in the space L2(QW).

3 Discrete Functional Spaces

Since we’ll use projectors on points of lattice we need subspaces of continuous
functions instead of Lebesgue spaces. We introduce the space Ch which is the space
of functions ud of discrete variable X e hZm with the norm
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Ch= max |ud(x)].
xehZm

In other words, the space Chis the space of functions u e C(Rm) restricted on
lattice points Zm. Here we remind, that the operator K isn’t bounded in the space
C (Rm), butitis bounded in the space L 2(Rm), and it is well-known, that if the right
hand side of the equation

(Ku)(x) = v(x)

has some smoothness properties (for example, it satisfies the Holder condition), then
the solution ofthis (ifitexists in the space L 2(Rm)) has the same smoothness property

41
Further we define the discrete space Ch(a, B) as a functional space of discrete
variable x e hZm with finite norm

lud|[Ck(a,B) = [jud||Ck+ sup Jud(x) - ud(y)l,
x,yehZm

and additional assumptions

ud(x) - ud(y)l < c -y
(max{1+ [x|, 1+ ly[}e”

lud(x)] < -—mm-mmm-mm- -, Vx,y e hZm,a,B >0, 0 <a < 1
dwl ¢ (1 + W)s-a A A

4 Approximate Solutions

4.1 Infinite Discrete Solutions

Let’s denote Ph the restriction operator on the lattice hZm, i.e. the operator, which
an arbitrary function, defined on Rm, maps to the set of its discrete values in lattice
points hZm.

Definition 4 The approximation rate for the operators K and Kd in vector normed
space X of functions defined on Rm, is called the operator norm

[PhK - KdPh||x~Xd,

where Xd is the normed space of functions defined on the lattice hZm with norm,
which is induced by the norm of the space X.

For the space Ch(a, B) we have
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Theorem 4 Ifm < B < a + m, then the estimate

1K dud Tit(a,B) < clludTIG(a,P),
is valid, and c doesn’t depend on h.

The continual analogue of such spaces is the space Hp(Rm) of functions, which
are continuous in Rm and satisfy the Holder condition of order 0 < a < 1and with
weight (1 + |x|)e. It is well known from results of S.K. Abdullaev (Sov. Math.,
Dokl. 40, No.2, 417-421,1990) that the operator K is a linear bounded operator
K :Hp(Rm)~ Hp(Rm)under the condition m < B < a + m.

We will give the approximation rate for the operators K and Kd in the space
Ch(a, B). It will permit to obtain the error estimate for approximate solution, if we
will change the continual operator K by its discrete analogue Kd.

Theorem 5 The approximate ratefor the operators K and Kd is thefollowing
[|[PhK —KdPh|C*(@B) < cha,

where ¢ doesn’tdependonh, a < a, B > B-

Some of these results were obtained in [7].

4.2 Finite Discrete Solutions

Let us denote PNthe projector L2(hZm) ~ L2(QW).
Theorem 6For operatorsKd and Kd,N we have thefollowing estimate
[[(PNKd —Kd,NPN)ud "12(Q\) < CN m+2(a—P)
for arbitrary ud e Ch(a, B), B8 > a + m/2.
Now we consider the equation
Kd,Nud,N = Pn\d 9

instead of the equation
Kdud = W (10)

and give a comparison for these two solutions assuming that operator Kd is invertible
in L2(hZm).

Theorem 7 1f\W e Ch(a, B), B > a + m/2, ud is a solution ofthe Eq. ( ), ud,N is
a solution of (9) then the estimate
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g — tta ¥ || Loy < CN™THEP)

is valid, and C is a constant non-depending on N.

Conclusion

These considerations are first steps to realize the declared programm. We hope that
obtained results will help us to study more general discrete operators and equations
and to describe a correspondence between discrete and continual objects, and also
between finite and infinite discrete objects.
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