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Abstract: In this paper, we study the question of constructing explicit solutions in a half-space of a
hyperbolic equation containing translation operators in space variables in all coordinate directions.
Such equations are a natural generalization of classical equations of hyperbolic type, and the resulting
solution relates the value of the desired function at different points of the half-space where the
process takes place. To construct solutions, a classical operating scheme is used, namely, the formal
application of an integral transformation. A theorem is proved that the constructed solutions are
classical if the real part of the symbol of the differential-difference operator in the equation is positive.
Classes of equations for which this condition is satisfied are given.
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1. Introduction

The theory of problems for differential-difference equations is one of the most im-
portant sections of the modern theory of differential equations. This is explained by its
numerous applications in the mechanics of a deformable solid body; in the study of elasto-
plastic processes; in relativistic electrodynamics; when solving some problems related to
plasma; in crystal lattice modeling; in problems of nonlinear optics; in the study of neural
networks; when studying models of population dynamics in mathematical biology; in the
study of environmental and economic processes; in the theory of automatic control, etc.

For the first time, a differential equation with a translation operator has occurred
in the work of J. Bernoulli [1] in the problem of a weightless stretched string of finite
length, along which equal and equidistant masses are distributed. With the equation
described by J. Bernoulli, mathematicians met in the development of the theory of sound.
After that, several hundred works were written, a review of which can be found in the
book by H. Burkhardt [2]. The systematic study of differential equations with translation
operators began only in the middle of the last century. This is due to their applications to
the theory of automatic control. Ordinary differential-difference equations (or equations
with a delayed argument) have been studied very well and for a long time, see books [3–5]
and the bibliographies in them.

Much less studied are differential-difference equations with partial derivatives. At
present, problems for elliptic differential-difference equations in bounded domains have
been studied quite well. The development of the theory of these problems belongs to
A. Skubachevskii [6,7]. According to the developed theory, non-local problems for clas-
sical elliptic equations are related to boundary value problems in a bounded domain for
differential-difference equations containing shifts of arguments in higher derivatives that
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map boundary points into the domain. The presence of such shifts in the equation leads
to the appearance of solutions with a loss of their smoothness inside the region and to
fundamentally new properties of these solutions. In unbounded domains, problems for el-
liptic equations with translation operators were studied in the works of A. Muravnik [8–11].
Problems for parabolic equations with translation operators with respect to time or space
variables are studied in [12].

Very few works are known for hyperbolic differential-difference equations. In pa-
pers [13,14], hyperbolic equations were considered with shifts in time. For the first time,
two-dimensional hyperbolic differential-difference equations with translation operators
in spatial variables were studied in [15–17]. Infinitely smooth solutions were found for
them in the half-plane. The method of integral transformations was used to construct
solutions. The question of the uniqueness of the solutions obtained was not considered.
In [18], the solvability of the Cauchy problem in the strip of a two-dimensional hyperbolic
equation with a shift in the space variable in the free term of the equation is studied. And in
papers [19–21], classical solutions of already multidimensional hyperbolic differential-
difference equations with shifts in spatial variables in a half-space were found.

The purpose of this work is to investigate the question of the existence of classical
solutions of a multidimensional hyperbolic equation with translation operators in space
variables in the free terms of the equation, which can be arbitrarily many. Note that shifts in
these non-local terms act in arbitrary directions. The results of this work are more general
than those in [21].

2. Formulation of the Problem— Materials and Methods

In the half-space {(x, t) : x ∈ Rn, t > 0}, we study the hyperbolic equation

utt(x, t)− a2
n

∑
j=1

uxjxj(x, t) +
n

∑
j=1

bju(x− hj, t) = 0, (1)

where a 6= 0, b1, . . . , bn are given real numbers; hj := (hj1, . . . , hjn) are given vectors with
real coordinates, wherein h2

j1 + . . . + h2
jn 6= 0, j = 1, n; the function u is real-valued.

Equation (1) contains translation operators by arbitrary vectors in the free terms of
the equation in all spatial coordinate directions. Such equations, which in addition to
differential operators contain translation operators, are called, according to [3], differential-
difference equations.

The process described by Equation (1) relates the value of the desired function at differ-
ent points of the half-space, which distinguishes this equation from the classical hyperbolic
equation (which idealizes the real physical process of oscillation). Thus, the hyperbolic
equation with translation operators in space variables is a generalization of the classical
wave equation.

The purpose of this paper is to obtain a multiparameter family of solutions to Equation (1)
containing translation operators in spatial variables, which has not been studied before.
Moreover, we will be interested in classical (smooth) solutions.

Based on the results of the works [18,22,23], consider the following functions:

F(x, t; ξ) := et G1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ), (2)

and
H(x, t; ξ) := e−t G1(ξ) sin (t G2(ξ)− ϕ(ξ)− x · ξ), (3)

where x · ξ is the inner product.
Here, the designations

G1(ξ) := ρ(ξ) sin ϕ(ξ), and G2(ξ) := ρ(ξ) cos ϕ(ξ), (4)
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ϕ(ξ) :=
1
2

arctan
β(ξ)

a2|ξ|2 + α(ξ)
, (5)

ρ(ξ) :=
[(

a2|ξ|2 + α(ξ)
)2

+ β2(ξ)

]1/4
,

α(ξ) :=
n

∑
j=1

bj cos
( n

∑
k=1

hjkξk

)
, and β(ξ) :=

n

∑
j=1

bj sin
( n

∑
k=1

hjkξk

)
are introduced. The variable ξ := (ξ1, . . . , ξn) is an arbitrary vector with real coordinates;
|ξ|2 = ξ2

1 + . . . + ξ2
n.

Let for all ξ ∈ Rn the inequality

a2|ξ|2 +
n

∑
j=1

bj cos
( n

∑
k=1

hjkξk

)
> 0 (6)

holds. This means that the Function (5) is correctly defined for all its arguments. Therefore,
Functions (2)–(4) are also correctly defined.

Inequality (6) means the condition of positiveness of the real part of the symbol of
the differential-difference operator with respect to the multidimensional space variable in
Equation (1). According to [7], such an operator is called strongly elliptic.

To find Functions (2) and (3), an operating scheme was used (see [18,22,23]). First,
the integral Fourier transform with respect to a multidimensional space variable x was
formally applied to the Equation (1) according to the formula

û(ξ, t) := Fx[u](ξ, t) =
∫

Rn

u(x, t)eiξ·xdx.

Taking into account the well-known formulas for the Fourier transform

Fx[∂
α
x∂

β
t u] = (−iξ)α∂

β
t Fx[u] and Fx[u(x− h)] = ei h·ξ Fx[u],

we obtain for the function û(ξ, t), an ordinary second-order differential equation of the
form

d2û(ξ, t)
dt2 +

(
a2|ξ|2 + α(ξ) + i β(ξ)

)
û(ξ, t) = 0, (7)

where ξ ∈ Rn.
The characteristic roots for this equation are determined by the formulas

k1,2 = ±
√
−(a2|ξ|2 + α(ξ) + i β(ξ)) = ± i

√
a2|ξ|2 + α(ξ) + i β(ξ) = ± iρ(ξ)ei ϕ(ξ),

and the general solution for Equation (7) has the form

û(ξ, t) = C1(ξ)ei t ρ(ξ)[cos ϕ(ξ)+i sin ϕ(ξ)] + C2(ξ)e−i t ρ(ξ)[cos ϕ(ξ)+i sin ϕ(ξ)],

where C1(ξ), and C2(ξ) are arbitrary constants depending on the parameter ξ. To find these
constants, we add initial conditions to the equation:

û(ξ, 0) = 0, and ût(ξ, 0) = 1,

where ξ ∈ Rn. Substituting the function û(ξ, t) into these initial conditions, we obtain a
system of the form{

C1(ξ) + C2(ξ) = 0,
C1(ξ)− C2(ξ) = −i(ρ(ξ)[cos ϕ(ξ) + i sin ϕ(ξ)])−1.
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Finding solutions to the system

C1(ξ) =
e−i ϕ(ξ)

2i ρ(ξ)
, and C2(ξ) = −

e−i ϕ(ξ)

2i ρ(ξ)
.

Substituting the found values of the constants C1(ξ), and C2(ξ) into the function
û(ξ, t), we obtain its final form

û(ξ, t) =
e−i ϕ(ξ)

2i ρ(ξ)

[
ei t ρ(ξ)[cos ϕ(ξ)+i sin ϕ(ξ)] − e−i t ρ(ξ)[cos ϕ(ξ)+i sin ϕ(ξ)]

]

=
e−i ϕ(ξ)

2i ρ(ξ)

[
e−t ρ(ξ) sin ϕ(ξ)ei t ρ(ξ) cos ϕ(ξ) − et ρ(ξ) sin ϕ(ξ)e−i t ρ(ξ) cos ϕ(ξ)

]
=

1
2i ρ(ξ)

[
e−t ρ(ξ) sin ϕ(ξ)ei(t ρ(ξ) cos ϕ(ξ)−ϕ(ξ)) − et ρ(ξ) sin ϕ(ξ)e−i(t ρ(ξ) cos ϕ(ξ)+ϕ(ξ))

]
=

1
2i ρ(ξ)

[
e−t G1(ξ)ei(t G2(ξ)−ϕ(ξ)) − et G1(ξ)e−i(t G2(ξ)+ϕ(ξ))

]
.

We now apply the inverse Fourier transform to the resulting expression by the formula

F−1
ξ [û](x, t) =

1
(2π)n

∫
Rn

û(ξ, t)e−iξ·xdξ.

And we obtain the integral expression

1
(2π)n

∫
Rn

1
2i ρ(ξ)

[
e−t G1(ξ)ei(t G2(ξ)−ϕ(ξ)) − et G1(ξ)e−i(t G2(ξ)+ϕ(ξ))

]
e−ix·ξ dξ

=
1

2i(2π)n

∫
Rn

1
ρ(ξ)

[
e−t G1(ξ)ei(t G2(ξ)−ϕ(ξ)−x·ξ) − et G1(ξ)e−i(t G2(ξ)+ϕ(ξ)+x·ξ)

]
dξ.

In the integrand, by analogy [18], we choose functions containing a sine. Thus,
Functions (2) and (3) have been found, which will be used in the next section of the work.

3. Results

Based on the obtained Functions (2) and (3), we construct a family of solutions to
Equation (1). The main result of the paper is formulated in the following theorem.

Theorem 1. Under Condition (6) for all ξ ∈ Rn, the family of functions

G(x, t; C1, C2, ξ) := C1 F(x, t; ξ) + C2 H(x, t; ξ), (8)

where F and H are determined by Formulas (2) and (3), satisfies Equation (1) in the classical sense
for any parameters C1,2 ∈ R1 and ξ ∈ Rn.

Proof. Consider first Function (2). Calculate the derivatives:

Fxj(x, t; ξ) = ξ jetG1(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ),

Fxjxj(x, t; ξ) = −ξ2
j etG1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ),

Ft(x, t; ξ) = G1(ξ)etG1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ) + G2(ξ)etG1(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ),

and
Ftt(x, t; ξ) =

[
G2

1(ξ)− G2
2(ξ)

]
etG1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ)+
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+2G1(ξ)G2(ξ)etG1(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ). (9)

From Formula (5), it follows that |2ϕ(ξ)| < π/2, which means that the inequality

cos 2ϕ(ξ) > 0 (10)

holds.
Since Conditions (6) and (10) are satisfied, relations

sin 2ϕ(ξ) =
tan 2ϕ(ξ)√

1 + tan2 2ϕ(ξ)

= tan
(

arctan
β(ξ)

a2|ξ|2 + α(ξ)

)[
1 + tan2

(
arctan

β(ξ)

a2|ξ|2 + α(ξ)

)]−1/2

=
β(ξ)

a2|ξ|2 + α(ξ)

[
1 +

β2(ξ)

(a2|ξ|2 + α(ξ))
2

]−1/2

=
β(ξ)

a2|ξ|2 + α(ξ)

[ (
a2|ξ|2 + α(ξ)

)2

(a2|ξ|2 + α(ξ))
2 + β2(ξ)

]1/2

=
β(ξ)

a2|ξ|2 + α(ξ)

|a2|ξ|2 + α(ξ)|
ρ2(ξ)

=
β(ξ)

a2|ξ|2 + α(ξ)

a2|ξ|2 + α(ξ)

ρ2(ξ)
=

β(ξ)

ρ2(ξ)

are satisfied.
From here and from Formula (4) follows the equality

2G1(ξ)G2(ξ) = ρ2(ξ) sin 2ϕ(ξ) = β(ξ). (11)

Since Conditions (6) and (10) are satisfied, relations

G2
1(ξ)− G2

2(ξ) = ρ2(ξ)
[
sin2 ϕ(ξ)− cos2 ϕ(ξ)

]
= −ρ2(ξ) cos 2ϕ(ξ) = − ρ2(ξ)√

1 + tan2 2ϕ(ξ)

= −ρ2(ξ)

[ (
a2|ξ|2 + α(ξ)

)2

(a2|ξ|2 + α(ξ))
2 + β2(ξ)

]1/2

= −a2|ξ|2 − α(ξ) (12)

are satisfied.
Substituting Expressions (11), and (12) into Formula (9), we obtain

Ftt(x, t; ξ) =
[
−(a2|ξ|2 + α(ξ)) sin (t G2(ξ) + ϕ(ξ) + x · ξ)

+β(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ)]etG1(ξ).

Let us now substitute derivatives Ftt and Fxjxj into Equation (1):

Ftt(x, t; ξ)− a2
n

∑
j=1

Fxjxj(x, t; ξ) =
[
−(a2|ξ|2 + α(ξ)) sin (t G2(ξ) + ϕ(ξ) + x · ξ)

+β(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ) + a2
n

∑
j=1

ξ2
j sin (t G2(ξ) + ϕ(ξ) + x · ξ)

]
etG1(ξ)

= [−α(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ) + β(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ)]etG1(ξ)
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=

[
−

n

∑
j=1

bj cos
( n

∑
k=1

hjkξk

)
sin (t G2(ξ) + ϕ(ξ) + x · ξ)

+
n

∑
j=1

bj sin
( n

∑
k=1

hjkξk

)
cos (t G2(ξ) + ϕ(ξ) + x · ξ)

]
etG1(ξ)

= −
n

∑
j=1

bj sin
(

t G2(ξ) + ϕ(ξ) + x · ξ −
n

∑
k=1

hjkξk

)
etG1(ξ)

= −
n

∑
j=1

bj sin
(

t G2(ξ) + ϕ(ξ) + x1ξ1 + . . . + xnξn − hj1ξ1 − . . .− hjnξn

)
etG1(ξ)

= −
n

∑
j=1

bj sin
(

t G2(ξ) + ϕ(ξ) + (x1 − hj1)ξ1 + . . . + (xn − hjn)ξn

)
etG1(ξ)

= −
n

∑
j=1

bj sin
(

t G2(ξ) + ϕ(ξ) + (x− hj) · ξ
)

etG1(ξ) = −
n

∑
j=1

bjF(x− hj, t; ξ).

Let us now check that Function (3) satisfies Equation (1). To do this, taking into account
Expressions (11) and (12), we find its derivatives:

Hxj(x, t; ξ) = −ξ je−tG1(ξ) cos (t G2(ξ)− ϕ(ξ)− x · ξ),

Hxjxj(x, t; ξ) = −ξ2
j e−tG1(ξ) sin (t G2(ξ)− ϕ(ξ)− x · ξ),

Ht(x, t; ξ) = −G1(ξ)e−tG1(ξ) sin (t G2(ξ)− ϕ(ξ)− x · ξ)+

+G2(ξ)e−tG1(ξ) cos (t G2(ξ)− ϕ(ξ)− x · ξ),

and
Htt(x, t; ξ) =

[
G2

1(ξ)− G2
2(ξ)

]
e−tG1(ξ) sin (t G2(ξ)− ϕ(ξ)− x · ξ)

−2G1(ξ)G2(ξ)e−tG1(ξ) cos (t G2(ξ)− ϕ(ξ)− x · ξ)

=
[
−(a2|ξ|2 + α(ξ)) sin (t G2(ξ)− ϕ(ξ)− x · ξ)− β(ξ) cos (t G2(ξ)− ϕ(ξ)− x · ξ)]e−tG1(ξ).

Let us now substitute derivatives Htt and Hxjxj into Equation (1):

Htt(x, t; ξ)− a2
n

∑
j=1

Hxjxj(x, t; ξ) =
[
−(a2|ξ|2 + α(ξ)) sin (t G2(ξ)− ϕ(ξ)− x · ξ)

−β(ξ) cos (t G2(ξ)− ϕ(ξ)− x · ξ) + a2
n

∑
j=1

ξ2
j sin (t G2(ξ)− ϕ(ξ)− x · ξ)

]
e−tG1(ξ)

= −[α(ξ) sin (t G2(ξ)− ϕ(ξ)− x · ξ) + β(ξ) cos (t G2(ξ)− ϕ(ξ)− x · ξ)]etG1(ξ)

= −
[

n

∑
j=1

bj cos
( n

∑
k=1

hjkξk

)
sin (t G2(ξ)− ϕ(ξ)− x · ξ)

+
n

∑
j=1

bj sin
( n

∑
k=1

hjkξk

)
cos (t G2(ξ)− ϕ(ξ)− x · ξ)

]
etG1(ξ)

= −
n

∑
j=1

bj sin

(
t G2(ξ)− ϕ(ξ)− x · ξ +

n

∑
k=1

hjkξk

)
e−tG1(ξ)
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= −
n

∑
j=1

bj sin
(

t G2(ξ)− ϕ(ξ)− x1ξ1 − . . .− xnξn + hj1ξ1 + . . . + hjnξn

)
etG1(ξ)

= −
n

∑
j=1

bj sin
(

t G2(ξ)− ϕ(ξ)− (x1 − hj1)ξ1 − . . .− (xn − hjn)ξn

)
etG1(ξ)

= −
n

∑
j=1

bj sin
(

t G2(ξ)− ϕ(ξ)− (x− hj) · ξ
)

etG1(ξ) = −
n

∑
j=1

bj H(x− hj, t; ξ).

Since each of the Functions (2) and (3) satisfies Equation (1) in the classical sense,
Function (8) also satisfies Equation (1) in the classical sense, provided that Condition (6)
of the theorem is satisfied for all parameters ξ ∈ Rn and C1,2 ∈ R1. The theorem has
been proven.

Fulfillment of the Theorem Condition

We write Condition (3) of the theorem in the form

a2(ξ2
1 + ξ2

2 + . . . + ξ2
n)+

+b1 cos
( n

∑
k=1

h1kξk

)
+ b2 cos

( n

∑
k=1

h2kξk

)
+ . . . + bn cos

( n

∑
k=1

hnkξk

)
> 0.

It is obvious that for ξ j = 0, j = 1, n, the condition on the coefficients of the free terms
of the Equation (1)

n

∑
j=1

bj > 0 (13)

must be satisfied.
Since a2|ξ|2 ≥ 0 for any ξ ∈ Rn, then we study the fulfillment of the inequality

b1 cos
( n

∑
k=1

h1kξk

)
+ b2 cos

( n

∑
k=1

h2kξk

)
+ . . . + bn cos

( n

∑
k=1

hnkξk

)
> 0. (14)

To fulfill Inequality (14), according to the Vietoris’ theorem (see [24] (p. 65)), all shifts
in one of the free terms of the Equation (1) must be zero, for example, in the first one, that is

h11 = h12 = . . . = h1n = 0.

The coefficients at free terms of Equation (1) must satisfy the conditions:

b1 ≥ b2 ≥ . . . ≥ bn > 0,

which does not contradict Inequality (13); and the coefficients must also satisfy the condition

2m b2m−1 ≤ (2m− 1)b2m, j = 1, 2, . . . ,
[n− 1

2

]
,

where [·] is the integer part of the number.
And besides this, n− 1 equalities

n

∑
k=1

h2kξk = θ,
n

∑
k=1

h3kξk = 2θ, . . . ,
n

∑
k=1

hnkξk = (n− 1)θ, 0 < θ < π.

must be satisfied.
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4. Conclusions and Discussion

1. In this paper, a three-parameter family of solutions is constructed in explicit form for
a multidimensional hyperbolic equation containing shifts of space variables in the
free terms of the equation in all coordinate directions. When constructing solutions,
a classical operational scheme was used, namely, formally direct and inverse Fourier
transforms were used.

2. It is proved that the obtained solutions are classical if the real part of the symbol of
the differential-difference operator in the equation is positive.

3. Sufficient conditions are obtained on the coefficients and shifts in the equation, which
guarantee the existence of classical infinitely smooth solutions.

In the future, we plan to use the family of solutions obtained explicitly to study
the solvability of the Cauchy problem and model initial problems for the specified class
of hyperbolic differential-difference equations. Also in the future, the authors plan to
obtain solutions to Equation (1) in the class of generalized functions according to the
same operational scheme described in the article. It is also planned to find generalized
solutions of initial problems (with different initial data on the boundary t = 0) in the form
of convolutions.

The results of the work were reported by the authors and discussed at scientific semi-
nars of Lomonosov Moscow State University and Belgorod State National Research Univer-
sity. The results of the research were also reported at the international scientific conference
on differential and functional-differential equations (DPDE-2022, Peoples’ Friendship Uni-
versity of Russia, July 2022, Moscow, Russia).
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