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On a Discrete Boundary Value Problem in a Quarter-Plane
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Abstract—We study a special discrete boundary value problem for a digital elliptic pseudo-
differential operator in a discrete quadrant. Using a special periodic wave factorization for a
symbol of the pseudo-differential operator we can construct a general solution of the pseudo-
differential equation and then to choose appropriate boundary conditions for its unique solvability
in corresponding Sobolev–Slobodetskii spaces. We also give a comparison between discrete and
continuous solutions for boundary value problems under consideration.
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1. INTRODUCTION

We interested in studying discrete pseudo-differential equations and their solvability in appropriate
discrete functional spaces. There are certain approaches to studying discrete boundary value problems
for partial differential equations [1, 2]. But these approaches are not applicable to studying discrete
boundary value problems for elliptic pseudo-differential equations. According to this statement one of
authors with colleagues has started to develop discrete theory for elliptic pseudo-differential equations
[3]. First considerations were related to discrete m-dimensional space and half-space, and here we
consider discrete quadrant.

Let Z
2 be an integer lattice in a plane. Let K = {x ∈ R

2 : x = (x1, x2), x1 > 0, x2 > 0} be a
quadrant, Kd = hZ2 ∩K,h > 0. We consider functions of discrete variable ud(x̃), x̃ = (x̃1, x̃2) ∈ hZ2.

Let us denote T
2 = [−π, π]2, � = h−1. We consider functions defined in �T

2 as periodic functions
defined in R

2 with basic square of periods �T2.

One can define the discrete Fourier transform for the function ud

(Fdud)(ξ) ≡ ũd(ξ) =
∑

x̃∈hZ2

e−ix̃·ξud(x̃)h
2, ξ ∈ �T

2,

under the condition of convergence of the above series, the function of the form ũd(ξ) will be periodic in
R
2 while the base square of the periods will be �T2. The Fourier transform of this form will have the same

properties as the integral Fourier transform. The inverse discrete Fourier transform will look like this

(F−1
d ũd)(x̃) =

1

(2π)2

∫

�T2

eix̃·ξũd(ξ)dξ, x̃ ∈ hZ2.
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Working with the discrete Fourier transform will allow one to obtain a one-to-one correspondence
between the spaces L2(hZ

2) and L2(�T
2) with norms

||ud||2 =

⎛

⎝
∑

x̃∈hZ2

|ud(x̃)|2h2
⎞

⎠
1/2

, ||ũd||2 =

⎛

⎜⎝
∫

ξ∈�T2

|ũd(ξ)|2dξ

⎞

⎟⎠

1/2

.

We need more general discrete functional spaces and we introduce such spaces using divided
differences [1] and their Fourier transforms.

We introduce discrete analogue of the Schwartz space S(hZ2) and the notation ζ2 = h−2((e−ih·ξ1 −
1)2 + (e−ih·ξ2 − 1)2).

Definition 1. The space Hs(hZ2) consists of discrete distributions and it is a closure of the space
S(hZ2) with respect to the norm

||ud||s =

⎛

⎝
∫

�T2

(1 + |ζ2|)s|ũd(ξ)|2dξ

⎞

⎠
1/2

. (1)

We have the space Hs(Kd). This space consists of discrete distributions from Hs(hZ2). Distribution
data carriers belong to the set Kd. A norm in the space Hs(Kd) is induced by the norm of the space
Hs(hZ2). The space Hs

0(Kd) will consist of discrete distributions represented as functions fd ∈ S′(hR2)
with supports inside of Kd. These discrete distributions will allow continuation into the space Hs(hZ2).
A norm in the space Hs

0(Kd) will be determined by the following formula

||fd||+s = inf ||�fd||s,
where infimum is taken for all continuations �.

Denote the Fourier image of the space Hs(Kd) as H̃s(Kd). Denote a measurable periodic function
in R

2 as Ãd(ξ) with the basic square of periods �T
2. Such functions we call symbols.

Definition 2. A digital pseudo-differential operator Ad with the symbol Ad(ξ) in the discrete
quadrant Kd is called an operator of the following type

(Adud)(x̃) =
∑

ỹ∈hZ2

h2
∫

�T2

Ãd(ξ)e
i(x̃−ỹ)·ξũd(ξ)dξ, x̃ ∈ Kd, (2)

We say that the operator Ad is elliptic one if

ess inf
ξ∈�T2

|Ad(ξ)| > 0.

A more general digital pseudo-differential operator with the symbol Ãd(x̃, ξ) depending on a spatial
variable x̃

(Adud)(x̃) =
∑

ỹ∈hZ2

h2
∫

�T2

Ad(x̃, ξ)e
i(x̃−ỹ)·ξũd(ξ)dξ, x̃ ∈ пЫd,

can be defined in the same way, but here we consider only operators of type (2).
We consider symbols satisfying the condition

c1(1 + |ζ2|)α/2 ≤ |Ad(ξ)| ≤ c2(1 + |ζ2|)α/2 (3)

with constants c1, c2 non-depending on h. The number α ∈ R is called an order of digital pseudo-
differential operator Ad.

It is well known that a digital pseudo-differential operator Ad with the symbol Ãd(ξ) is a linear
bounded operator Hs(hZ2) → Hs−α(hZ2) with a norm non-depending on h.
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2. BASIC METHODS

We study a solvability of the discrete equation

(Adud)(x̃) = vd(x̃), x̃ ∈ Kd, (4)

in the space Hs(Kd) assuming that vd ∈ Hs−α
0 (Kd).

We will use certain special domain in two-dimensional complex space C
2. A domain of the type

Th(K) = �T
2 + iK is called a tube domain over the quadrant K, and we will consider analytical

functions f(x+ iτ) in the domain Th(K) = �T
2 + iK.

Let us introduce the periodic Bochner kernel similar [4]

Bh(z) =
∑

x̃∈Kd

eix̃·(ξ+iτ)h2, ξ ∈ �T
2, τ ∈ K,

and corresponding integral operator

(Bhũd)(ξ) = lim
τ→0,τ∈K

1

4π2

∫

�T2

Bh(ξ + iτ − η)ũd(η)dη.

Using calculations from [5] one can verify that for the quadrant K the operator Bh has the following
form

(Bhũd)(ξ) =
h2

8π2

∫

T2

ũd(η)dη + lim
τ→0+

ih

8π2

∫

T2

cot
h(ξ1 − η1 + iτ1)

2
ũd(η)dη

+ lim
τ→0+

ih

8π2

∫

T2

cot
h(ξ2 − η2 + iτ2)

2
ũd(η)dη

− lim
τ→0+

h2

8π2

∫

T2

cot
h(ξ1 − η1 + iτ1)

2
cot

h(ξ2 − η2 + iτ2)

2
ũd(η)dη,

and Bh is a linear bounded operator Hs(�T2) → Hs(�T2) for |s| < 1/2. Moreover, the operator Bh is a
projector H̃s(hZ2) → H̃s(Kd).

Such operator Bh is so called periodic bi-singular operator. Using classical results for Cauchy type
integral [6, 7] one can evaluate the boundary value, but it is not important this time. Since these formulas
are very huge we can do some simplifications without lost of generality. For example, we can consider the
space S1(hZ

2) ⊂ S1(hZ
2) with zeroes in coordinate axes and consider the space Hs(hZ2) as closure of

the set S1(hZ
2) assuming that all functions of discrete variable vanish on coordinate axes. For this case

the first three summands in Bh will be zero. One more property of the operator Bh is that for |s| < 1/2

the space H̃s(hZ2) is uniquely represented as the direct sum

H̃s(hZ2) = H̃s(Kd)⊕ H̃s(hZ2 \Kd).

To describe a solvability picture for the discrete equation (4) we need some additional elements of
multidimensional complex analysis.

This concept is a periodic analogue of the wave factorization [8]. Some first preliminary considera-
tions and results were obtained earlier for a half-space case.

Definition 3. A periodic wave factorization for the elliptic symbol Ad(ξ) ∈ Eα is called its rep-
resentation in the form Ad(ξ) = Ad, �=(ξ)Ad,=(ξ), where the factors Ad, �=(ξ), Ad,=(ξ) admit analytical
continuation into tube domains Th(K),Th(−K) respectively with estimates

c1(1 + |ζ̂2|)æ
2 ≤ |Ad, �=(ξ + iτ)| ≤ c′1(1 + |ζ̂2|)æ

2 ,

c2(1 + |ζ̂2|)
α−æ

2 ≤ |Ad,=(ξ − iτ)| ≤ c′2(1 + |ζ̂2|)
α−æ

2 ,
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and constants c1, c
′
1, c2, c

′
2 non-depending on h, where

ζ̂2 ≡ �
2
(
(e−ih(ξ1+iτ1) − 1)2 + (e−ih(ξ2+iτ2) − 1)2

)
, ξ = (ξ1, ξ2) ∈ �T

2, τ − (τ1, τ2) ∈ K.

The number æ ∈ R is called an index of periodic wave factorization.
Unfortunately, we have no an algorithm to construct the factorization. But there are certain examples

of periodic symbols which admit such factorization. We give one of them.
If f is an arbitrary function of a discrete variable, f ∈ S(hZ2), supp f ⊂ Kd ∪ (−Kd), then we have

f = χ+f + χ−f, where χ± are indicators of ±Kd. Applying the discrete Fourier transform, we obtain
the representation f̃ = f̃+ + f̃−, and f̃± admit an analytical continuation into Th(±K). Thus, we can
write exp f̃ = exp f̃+ · exp f̃−, therefore, we obtain periodic wave factorization with index zero for the
function exp f̃ .

Everywhere below we assume existence of such periodic wave factorization for the symbol Ad(ξ) with
index æ.

3. MAIN RESULTS

For some cases a solution of the equation (4) exists and it is unique.
Theorem 1. Let |æ− s| < 1/2. Then, the equation (4) has a unique solution for arbitrary right

hand side vd ∈ Hs−α
0 (Kd), and it is given by the formula

ũd(ξ)−A−1
d, �=(ξ)Bh(A

−1
d,=(ξ)(̃�vd)(ξ)),

where �vd is an arbitrary continuation of vd into Hs−α(hZ2).
Other cases are more interesting when the equation (4) have a lot of solutions.
We use here some results from [3] concerning a form of a discrete distribution supported at the origin.
Theorem 2. Let æ− s = n+ δ, n ∈ N, |δ| < 1/2. Then, a general solution of the equation (4)

has the following form

ũd(ξ) = A−1
d, �=(ξ)Qn(ξ)Bh(Q

−1
n (ξ)A−1

d,=(ξ)(̃�vd)(ξ)) +A−1
d, �=(ξ)

(
n−1∑

k=0

c̃k(ξ1)ζ̂
k
2 + d̃k(ξ2)ζ̂

k
1

)
, (5)

in this caseQn(ξ) will be an arbitrary polynomial of order n with variables ζk = �(e−ihξk − 1), k =

1, 2, which will satisfy condition (3) with α = n, c̃k(ξ1), d̃k(ξ2), k = 0, 1, · · · , n− 1, are arbitrary
functions from Hsk(hT), sk = s− æ+ k − 1/2.

The a priori estimate

||ud||s ≤ const

(
||f ||+s−α +

n−1∑

k=0

([ck]sk + [dk]sk)

)
,

holds, where [·]sk denotes a norm in Hsk(hT), and const does not depend on h.
Now we consider here the case æ− s = 1 + δ, |δ| < 1/2 and the homogeneous equation

(Adud)(x̃) = 0, x̃ ∈ Kd, (6)

with the following boundary conditions
∑

x̃1∈hZ+

ud(x̃1, x̃2)h = fd(x̃2),
∑

x̃2∈hZ+

ud(x̃1, x̃2)h = gd(x̃1),
∑

x̃∈hZ++

ud(x̃1, x̃2)h
2 = 0. (7)

These additional conditions will help us to determine uniquely the unknown functions c0, d0 in the
solution (5).

Indeed, using the discrete Fourier transform we rewrite the conditions (7) as follows

ũd(0, ξ2) = f̃d(ξ2), ũd(ξ1, 0) = g̃d(ξ1), ũd(0, 0) = 0. (8)
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Now we substitute the formulas (8) into (5). The first two equality are

ũd(0, ξ2) = A−1
d, �=(0, ξ2)(c̃0(0) + d̃0(ξ2)) = f̃d(ξ2),

ũd(ξ1, 0) = A−1
d, �=(ξ1, 0)(c̃0(ξ1) + d̃0(0)) = g̃d(ξ1).

It implies the following relations according to the third condition

f̃d(0) = g̃d(0), and from which c̃0(0) + d̃0(0) = 0, and c̃0(0) = d̃0(0) = 0.

Then, we have at least formally

ũd(ξ) = A−1
d, �=(ξ)

(
Ad, �=(ξ1, 0)g̃d(ξ1) +Ad, �=(0, ξ2)f̃d(ξ2)

)
. (9)

Theorem 3. Let fd, gd ∈ Hs+1/2(hZ). Then the discrete problem (6), (7) has unique solution
which is given by the formula (9).

The a priori estimate
||ud||s ≤ const(||fd||s+1/2 + ||gd||s+1/2)

holds with a const non-depending on h.
Now we will describe the continuous analogue of the discrete boundary value problem is the following

[9].
Let A be a pseudo-differential operator with the symbol A(ξ), ξ = (ξ1, ξ2) satisfying the condition

c1(1 + |ξ)α ≤ |A(ξ)| ≤ c2(1 + |ξ)α

and admitting the wave factorization with respect to the quadrant K with index æ.
We consider the equation

(Au)(x) = 0, x ∈ K, (10)

with the following additional conditions
+∞∫

0

u(x1, x2)dx1 = f(x2),

+∞∫

0

u(x1, x2)dx2 = g(x1),

∫

−K

u(x)dx = 0. (11)

A solution of the problem (10) and (11) is sought in the space Hs(K) [8] and boundary functions are
taken from the space Hs+1/2(R+). Such problem was considered in [9] and it has the solution

ũ(ξ) = A−1
�= (ξ)

(
A�=(ξ1, 0)g̃(ξ1) +A�=(0, ξ2)f̃(ξ2)

)
(12)

under condition that the symbol A(ξ) admits the wave factorization with respect to the quadrant K
A(ξ) = A�=(ξ)A=(ξ)

with index æ such that æ− s = 1 + δ, |δ| < 1/2.
To construct a discrete boundary value problem which is good approximation to (10) and (11) we need

to choose Ad(ξ) and fd, gd in a special way. First, we introduce the operator lh which acts as follows.
For a function u defined in R we take its Fourier transform f̃ then we take its restriction on �T and
periodically extend it to R. Finally, we take its inverse discrete Fourier transform and obtain the function
of discrete variable (lhu)(x̃), x̃ ∈ hR. Thus, we put

fd = lhf, gd = lhg.

Second, the symbol of digital operator Ad we construct in the same way. If we have the wave
factorization for the symbol A(ξ) then we take restrictions of factors on �T

2 and the periodic symbol
Ad(ξ) is a product of these restrictions. For such fd, gd and the symbol Ad(ξ) we obtain the following
result.

Theorem 4. Let f, g ∈ S(R),æ > 1. Then, we have the following estimate for solutions u andud
of the continuous problem (10) and (11) and the discrete one (6) and (7)

|u(x̃)− ud(x̃)| ≤ C(f, g)hβ ,

where the const C(f, g) depends on functions f, g, β > 0 can be an arbitrary number.
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4. CONCLUSIONS

In this paper, we have considered two-dimensional cone only, but the authors continue to work in
multidimensional situations and we hope to obtain results similar to a discrete half-space. Also it has
the sense to consider different boundary conditions.
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