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Abstract With the help of integral representations of the Poisson type, it is estab-
lished that the Cauchy problem for a number of abstract singular equations with
fractional derivatives reduces to a simpler problem for a non-singular equation.
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1 Introduction

One of the methods for studying differential equations is the method of transforma-
tion operators. Using conversion operators, many important results are established
for various classes differential equations, including those for singular differential
equations containing the Bessel differential expression

d2

dt2
+ k

t

d

dt
, k ∈ R.

So in the monograph [1] the singular equation of Euler–Poisson–Darboux in
partial derivatives

∂2u(t, x)

∂t2
+ k

t

∂u(t, x)

∂t
= Δu(t, x), k > 0, x ∈ Rn,

whereΔ is the Laplace operator in space variables, investigated by reduction with the
help of a suitable transformation operator to a simpler wave equation when k = 0.
In this case, the formulas for the solution are written using spherical averages over
spatial variables.
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The review paper [2] presents the results of studies in which transformation opera-
tors are used inmore general situation, when in the Euler–Poisson–Darboux equation
the Laplace operator in space variables is replaced by some abstract operator A act-
ing in a Banach space, as well as for some other singular equations of integer order.
In these studies, a class of operators A is described for which the corresponding
initial value problem is well-posed and an explicit representation is established for
the enabling operator.

In this paper, the method of transformation operators is applied to abstract
singular differential equations, containing fractional derivatives (see [3, Sect. 5],
[4, Chap. 2]).

2 Generalized Euler–Poisson–Darboux Differential
Equation

Let A be a closed operator in a Banach space E with dense in E domain D(A). For
k ≥ 0, 0 < α < 1, consider abstract singular equation with fractional derivatives

Bk,αu(t) ≡ d

dt
∂α
0,t u(t) + k

t
∂α
0,t u(t) = Au(t), t > 0, (1)

where ∂α
0,t u(t) is the fractional Caputo derivative defined by the equality

∂α
0,t u(t) = Dα

0,t (u(t) − u(0)) , ∂α
0,t u(0) = lim

t→0
∂α
0,t u(t),

wherein

Dα
0,t (u(t) − u(0)) = d

dt
I 1−α
0,t (u(t) − u(0)) , I 1−α

0,t u(t) = 1

Γ (1 − α)

t∫

0

u(τ )

(t − τ )α
dτ

respectively, the left-hand fractional derivative and the fractional Riemann–Liouville
integral, Γ (·) is the gamma function.

If α = 1, then the Eq. (1) becomes the Euler–Poisson–Darboux equation

u′′(t) + k

t
u′(t) = Au(t), t > 0, (2)

for which the abstract Cauchy problem with conditions

u(0) = u0, u′(0) = 0 (3)

previously explored in detail in [5–7] (see also [2]). In these papers there is a review
of the studies of the Euler–Poisson–Darboux equation, the class Gk of operators A is
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described, with which the problem (2), (3) is uniformly well-posed, the construction
of the resolving operator of the problem (2), (3), which is called the operator Bessel
function and which we denote by Yk,1(t).

In this paper, we present the setting of initial conditions for an equation with
fractional derivatives (1), let us describe the class of operators A with which the
corresponding initial problems are solvable and establish a number of properties of
the solutions.

We will look for a solution to the Eq. (1) that satisfies the initial conditions

u(0) = u0, ∂α
0,t u(0) = 0. (4)

Definition 1 A solution of the problem (1), (4) is a function continuous for t > 0
u(t) such that for t > 0 the functions I 1−αu(t) are twice continuously differentiable,
the function u(t) takes values from the domain D (A) of the operator A and satisfies
the equalities (1), (4).

We begin the study of the solvability of the problem (1), (4) from the case when
the parameter k = 0 in the Eq. (1) and describe the class considered operators A.

Condition 1 If Re λ > ω ≥ 0 and 0 < α ≤ 1, then λα+1 belongs to the resolvent set
ρ(A) of the operator A and for all integers n ≥ 0 the resolution R(λ) = (λI − A)−1

satisfies the inequalities

∥∥∥∥ dn

dλn

(
λαR

(
λα+1

))∥∥∥∥ ≤ Mn!
(Re λ − ω)n+1

. (5)

Theorem 1 Let k = 0, 0 < α ≤ 1, u0 ∈ D(A) and the operator A satisfies Condi-
tion 1. Then the problem (1), (4) uniquely resolvable.

Proof After applying to the Eq. (1) the integration operator I 10,t and fractional dif-
ferentiation D1−α

0,t the problem (1), (4) reduces to the next initial problem

u′(t) = 1

Γ (α)

t∫

0

(t − s)α−1Au(s) ds, t ≥ 0, (6)

u(0) = u0. (7)

Problem (6), (7) is a special case of the problem studied in [8]. In Theorem 3
of [8], it is established that Condition 1 is necessary and sufficient condition on
the operator A, which, under the assumptions made in the theorem being proved,
ensures the unique solvability problem (6), (7), and thus the equivalent problem
(1), (4). The resolving operator of the problem (6), (7) will be denoted by Y0,α(t),
while u(t) = Y0,α(t)u0. For Y0,α(t) in [8] the representation and estimate are set
respectively
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Y0,α(t)u0 = 1

2πi

σ+i∞∫

σ−i∞
eλt λαR

(
λα+1) u0 dλ, u0 ∈ D

(
A2) , (8)

∥∥Y0,α(t)
∥∥ ≤ M eσt , σ > ω.

�

Let us proceed to consider the case k > 0 and introduce the Poisson-type trans-
formation operator

Pk,αu(t) = ck,α

1∫

0

(
1 − sα+1

)k/(α+1)−1
u(ts) ds, (9)

where B(·, ·) is the beta function,

ck,α = α + 1

B(k/(α + 1), 1/(α + 1))
.

The Poisson-type transformation operator is expressed in terms of the Erdelyi–
Kober fractional integral I γ

0+,σ,η (see [3, Sect. 18]) as follows

Pk,αu(t) = Γ ((k + 1)/(α + 1))

Γ (1/(α + 1))
I k/(α+1)
0+,α+1,−α/(α+1)u(t),

and the constant ck,α is chosen so that

lim
t→0

Pk,αu(t) = u(0).

Theorem 2 Let k > 0, 0 < α ≤ 1 and the function u(t) be that there is a fractional
derivative of the form

(
∂α
0,t u(t)

)′
. Then the equality

Bk,α Pk,αu(t) = Pk,α
(
∂α
0,t u(t)

)′ + ck,α
t

∂α
0,t u(0). (10)

Proof Applying the operator Bk,α to (9), after integrating by parts we get

Bk,α Pk,αu(t) = ck,α

1∫

0

(
1 − sα+1

)k/(α+1)−1
sα+1 d

d(ts)
∂α
0,tsu(t) ds+

+ k ck,α
t

1∫

0

(
1 − sα+1

)k/(α+1)−1
sα ∂α

0,tsu(t) ds =
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= ck,α

1∫

0

(
1 − sα+1

)k/(α+1)−1
sα+1 d

d(ts)
∂α
0,tsu(t) ds+

+ck,α
t

∂α
0,t u(0) + ck,α

1∫

0

(
1 − sα+1)k/(α+1) d

d(ts)
∂α
0,tsu(t) ds =

= ck,α

1∫

0

(
1 − sα+1)k/(α+1)−1 (

sα+1 + 1 − sα+1) d

d(ts)
∂α
0,tsu(t) ds+

+ck,α
t

∂α
0,t u(0) = Pk,α

(
∂α
0,t u(t)

)′ + ck,α
t

∂α
0,t u(0).

�

An immediate consequence of Theorem 2 is a theorem that establishes the solv-
ability of the problem (1), (4) for k > 0.

Theorem 3 Let k > 0, 0 < α ≤ 1, u0 ∈ D(A) and operator A satisfy Condition 1.
Then the function

u(t) = Pk,αY0,α(t)u0 = ck,α

1∫

0

(
1 − sα+1

)k/(α+1)−1
Y0,α(ts)u0 ds (11)

is a solution to the problem (1), (4).

In what follows, for k > 0, 0 < α ≤ 1 we will use the notation

Yk,α(t) = Pk,αY0,α(t).

Example 1 If the operator A is bounded and 0 < α ≤ 1, then it is easy to verify
directly that the function

Y0,α(t)u0 = Eα+1,1(t
α+1A)u0 =

∞∑
j=0

t (α+1) j A ju0
Γ ((α + 1) j + 1)

,

where Eα,β(·) is the Mittag–Leffler function, is the solution to the problem

d

dt
∂αu(t) = Au(t), u(0) = u0 ∈ E, ∂αu(0) = 0.

By virtue of Theorem 3, the function
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u(t) = Yk,α(t)u0 = Pk,αY0,α(t)u0 =

= Γ ((k + 1)/(α + 1))

Γ (1/(α + 1))

∞∑
j=0

Γ ( j + 1/(α + 1)) t (α+1) j A jw0

Γ ((α + 1) j + 1) Γ ( j + (k + 1)/(α + 1))
=

= Γ ((k + 1)/(α + 1))

Γ (1/(α + 1))
2�2

[
(1/(α + 1), 1) , (1, 1)

(1,α + 1) , ((k + 1)/(α + 1), 1)

∣∣∣∣ tαA
]

w0, (12)

where p�q(·) is the Fox–Wright function (see [9, 10]) is the solution to the problem
(1), (4).

Note that for α = 1 the series in the formula (12) turns into the operator Bessel
function (see [2, 5–7])

Yk,1(t) = Γ (k/2 + 1/2)
∞∑
j=0

(
t
√
A/2

)2 j

j ! Γ ( j + k/2 + 1/2)
=

= Γ (k/2 + 1/2)
(
t
√
A/2

)1/2−k/2
Ik/2−1/2

(
t
√
A
)

,

where Iν(·) is the modified Bessel function.

Example 2 The operator function Y0,α(t) satisfies the principle of subordination,
which for the Eq. (1) with k = 0 was actually established in Chap.3 of [11]. Let
0 ≤ β < α ≤ 1, then the following shift formulawith respect to the second parameter
is valid

Y0,β(t) = 1

t (1+β)/(1+α)

∞∫

0

φ

(
−1 + β

1 + α
,
α − β

1 + α
;− τ

t (1+β)/(1+α)

)
Y0,α(τ ) dτ ,

in which the Wright function is used

φ(μ, ν; z) =
∞∑
n=0

zn

n! Γ (μn + ν)
.

In particular, if the operator A is the generator of the operator cosine function
C(t; A), then for α = 1 we obtain

Y0,β(t) = 1

t (1+β)/2

∞∫

0

φ

(
−1 + β

2
,
1 − β

2
;− τ

t (1+β)/2

)
C(τ ; A) dτ , (13)

Yk,β(t) = Pk,βY0,β(t).
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In the limiting case, when β = 0, α = 1, the equality (13) becomes the well-
known semigroup connection formula T (t; A) and cosine of the operator-function
C(t; A) generated by the operator A, which has the form

T (t; A) = 1√
πt

∞∫

0

exp

(
−τ 2

4t

)
C(τ ; A) dτ . (14)

The operator function Yk,α(t) also satisfies the shift formula with respect to the
first parameter.

Theorem 4 Let m > k ≥ 0, 0 < α ≤ 1 and operator A satisfy Condition 1. Then
there is an equality

Ym,α(t) = α + 1

B((m − k)/(α + 1), (k + 1)/(α + 1))
×

×
1∫

0

sk (1 − sα+1)(m−k)/(α+1)−1 Yk,α(ts) ds. (15)

Proof After a series of obvious transformations, using the integral 2.2.5.1 [12], we
obtain

1∫

0

sk (1 − sα+1)(m−k)/(α+1)−1 Yk,α(ts) ds =

=
t∫

0

τ k (tα+1 − τα+1)(m−k)/(α+1)−1 Yk,α(τ ) dτ =

= ck,α

t∫

0

τα (tα+1 − τα+1)(m−k)/(α+1)−1×

×
τ∫

0

(
τα+1 − ξα+1

)k/(α+1)−1
Y0,α(ξ) dξdτ = ck,α×

×
t∫

0

Y0,α(ξ)

t∫

ξ

τα (tα+1 − τα+1)(m−k)/(α+1)−1
(
τα+1 − ξα+1

)k/(α+1)−1
dτdξ =
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= ck,α
α + 1

t∫

0

Y0,α(ξ)

tα+1∫

ξα+1

(tα+1 − η)(m−k)/(α+1)−1
(
η − ξα+1

)k/(α+1)−1
dηdξ =

= ck,α B((m − k)/(α + 1), k/(α + 1))

α + 1

t∫

0

(tα+1 − ξ)m/(α+1)−1Y0,α(ξ) dξ =

= Γ ((m − k)/(α + 1)) Γ ((k + 1)/(α + 1))

(α + 1) Γ ((m + 1)/(α + 1))
tm−αYm,α(t).

Consequently,

Ym,α(t) = (α + 1)Γ ((m + 1)/(α + 1)) tα−m

Γ ((k + 1)/(α + 1)) Γ ((m − k)/(α + 1))
×

×
t∫

0

τ k (tα+1 − τα+1)(m−k)/(α+1)−1 Yk,α(τ ) dτ =

= α + 1

B((m − k)/(α + 1), (k + 1)/(α + 1))

1∫

0

sk (1 − sα+1)(m−k)/(α+1)−1 Yk,α(ts)ds,

and the required equality (15) is established. �

3 Generalized Functional-Differential Bessel–Struve
Equation

Let us proceed to the study of the case of a nonzero second initial condition∂α
0,t u(0) 
=

0 and we will study the following initial problem for the functional differential
equation

d

dt
∂α
0,t u(t) + k

t

(
∂α
0,t u(t) − ∂α

0,t u(0)
) = Au(t), t > 0, (16)

u(0) = 0, ∂α
0,t u(0) = u1. (17)

For α = 1 the problem (16), (17) becomes the initial problem for the Bessel–
Struve equation, which was previously investigated by the author in [13].
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Let us first consider the case when the parameter k = 0 in the Eq. (16).

Theorem 5 Let k = 0, 0 < α ≤ 1, u1 ∈ D(A) and the operator A satisfies Condi-
tion 1. Then the problem (16), (17) is uniquely solvable.

Proof After applying to the Eq. (1) the integration operator I 10,t and fractional dif-
ferentiation D1−α

0,t problem (16), (17) reduces to the following initial problem for the
inhomogeneous equation

u′(t) = 1

Γ (α)

t∫

0

(t − s)α−1Au(s) ds + tα−1

Γ (α)
u1, t ≥ 0, (18)

u(0) = 0. (19)

Just like task (6), (7), task (18), (19) is is a special case of the problem investigated
in [8] and is uniquely solvable. The resolving operator of the problem (18), (19)
will be denoted by L0,α(t), and u(t) = L0,α(t)u1, and L0,α(t) in [8] is set to the
representation

L0,α(t) = Iα
0,t Y0,α(t) = 1

Γ (α)

t∫

0

(t − s)α−1Y0,α(s) ds. (20)

�

An immediate consequence of Theorems 5 and 2 is the solvability of the problem
(16), (17) for k > 0. For 0 < α ≤ 1 we introduce the following notation:

dk,α = k

α + 1
B

(
k

α + 1
,

1

α + 1

)
, Lk,α(t) = dk,αPk,αL0,α(t).

Theorem 6 Let k > 0, 0 < α ≤ 1, u1 ∈ D(A) and operator A satisfy Condition 1.
Then the function

u(t) = Lk,α(t)u1 = dk,αPk,αL0,α(t)u1 (21)

is a solution to the problem (16), (17).

Example 3 If 0 < α ≤ 1 and A is a bounded operator, then

Lk,α(t) = Γ (k/(α + 1) + 1)
∞∑
j=0

Γ ( j + 1) t (α+1) j+αA j

Γ ((α + 1) j + α + 1) Γ ( j + k/(α + 1) + 1)
.

(22)
Forα = 1, the series on the right-hand side (22) is expressed in terms of the Struve

function
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Lk(t) =
√

π

2
Γ (k/2 + 1)

∞∑
j=0

(
t
√
A/2

)2 j

Γ ( j + 3/2) Γ ( j + k/2 + 1)
=

= 2k/2−1/2√π Γ (k/2 + 1)

Ak/4+1/4 t k/2−1/2
Lk/2−1/2

(
t
√
A
)

,

where Lν(·) is the modified Struve function ([14], p. 655).

Example 4 If 0 < β < 1 and the operator A is the generator of the operator cosine
function C(t; A), then

Lk,β(t) = dk,βPk,β I
β
0,t Y0,β(t),

where the operator function Y0,β(t) is defined by the equality (13).
The operator function Lk,α(t) satisfies the shift formula with respect to the first

parameter, whose proof is carried out in the same way as in Theorem 4.

Theorem 7 Let m > k ≥ 0, 0 < α ≤ 1 and operator A satisfy Condition 1. Then

Lm,α(t) = α + 1

B((m − k)/(α + 1), k/(α + 1) + 1)
×

×
1∫

0

sk (1 − sα+1)(mk)/(α+1)−1 Lk,α(ts) ds.

The constructed operator functions Yk,α(t), Lk,α(t), as well as Theorems 3 and
6 allow us to establish the following statement about the solvability of the general
initial problem for the Eq. (16).

Theorem 8 Let k ≥ 0, 0 < α ≤ 1, u0, u1 ∈ D(A) and the operator A satisfies Con-
dition 1. Then the function u(t) = Yk,α(t)u0 + Lk,α(t)u1 is a solution to the Eq. (16)
satisfying the conditions

u(0) = u0, ∂α
0,t u(0) = u1. (23)

Theorems 3, 6, 8 do not contain a statement about the uniqueness of the solution.
To prove the uniqueness of the solution of these problems, we make an additional
assumption. We assume that A ∈ Gk , i.e., with the operator A, the Cauchy problem
(2), (3) is uniformly well-posed for the Euler–Poisson–Darboux equation, and the
resolving operator of this problem, as indicated earlier, is denoted by Yk,1(t).

Theorem 9 Let k ≥ 0, 0 < α ≤ 1 and operator A ∈ Gk. Then the solutions of prob-
lems (1), (4) and (16), (23) are unique.

Proof Proof of the uniqueness of the solution to the problem (16), (23) we will lead
from the contrary. If u1(t) and u2(t) are two solutions to the problem (16), (23),
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then consider a function of two variablesw(t, s) = f (Yk(s) (u1(t) − u2(t))), where
f ∈ E∗ (E∗ is the dual space), t, s ≥ 0. She, obviously satisfies the equation

Bk,αw(t, s) = ∂2w(t, s)

∂s2
+ k

s

∂w(t, s)

∂s
, t, s > 0 (24)

and conditions

lim
t→0

w(t, s) = lim
t→0

∂α
0,tw(t, s) = lim

s→0

∂w(t, s)

∂s
= 0. (25)

As was done in [15], we interpret w(t, s) as a generalized function of moderate
growth and on the variable s we apply the Fourier–Bessel transformation

ŵ(t,λ) =
∞∫

0

s2p+1 jp(λs) w(t, s) ds, w(t, s) = γp

∞∫

0

λ2p+1 jp(λs) ŵ(t,λ) dλ,

p = 1 − k

2
, γp = 1

22p Γ 2(p + 1)
, jp(s) = 2p Γ (p + 1)

s p
Jp(s),

where Jp(·) is the Bessel function.
From (24), (25) for the image ŵ(t,λ) we get the following problem

Bk,αŵ(t,λ) = −λ2 ŵ(t,λ), t > 0, (26)

lim
t→0

ŵ(t,λ) = lim
t→0

∂α
0,t ŵ(t,λ) = 0. (27)

By virtue of Examples 1 and 3, the general solution of the Eq. (26) has the form

ŵ(t,λ) = d1(λ)Γ ((k + 1)/(α + 1))

Γ (1/(α + 1))

∞∑
j=0

Γ ( j + 1/(α + 1)) t(α+1) j (−λ2) j

Γ ((α + 1) j + 1) Γ ( j + (k + 1)/(α + 1))
+

+d2(λ) Γ (k/(α + 1) + 1)
∞∑
j=0

Γ ( j + 1) t (α+1) j+α(−λ2) j

Γ ((α + 1) j + α + 1) Γ ( j + k/(α + 1) + 1)
,

and the initial conditions (27) imply the equalities d1(λ) = d2(λ) = 0. Hence
ŵ(t,λ) = w(t, s) = 0 for any s ≥ 0. Since the functional f ∈ E∗ is arbitrary, for
s = 0 we obtain the equality u1(t) ≡ u2(t), and the uniqueness of the solution of the
considered problems is established. �

As an application of Theorem 8 consider the problem (16), (23) with the operator
which is a fractional power of the operator A. Let A be the generator of a uniformly
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bounded cosine-operator function. Then one can define a positive fractional power
of the operator −A (see, for example, [16, p. 358])

− (−A)γ x = sin γπ

π

∞∫

0

λγ−1 (λI − A)−1 Ax dλ, (28)

where γ ∈ (0, 1) , x ∈ D(A).
Moreover, if y ∈ E, μ > 0, then the resolvent of the operator Aγ = −(−A)γ

satisfies the representation

(
μI − Aγ

)−1
y = sin γπ

π

∞∫

0

λγ (λI − A)−1 y dλ

μ2 − 2μλγ cos γπ + λ2γ
. (29)

Next, we establish the solvability of the initial problem (16), (23) with the operator
Aγ , where the exponent is γ = (α + 1)/2.

Theorem 10 Let γ = (α + 1)/2, 0 < α < 1, u0, u1 ∈ D(A), the operator A —
generator of uniformly bounded cosine-operator function C(t; A) and operator Aγ

defined by (28). Then the solution of the initial problem

d

dt
∂α
0,t u(t) + k

t

(
∂α
0,t u(t) − ∂α

0,t u(0)
) = Aγu(t), t > 0, (30)

u(0) = u0, ∂α
0,t u(0) = u1. (31)

is the function u(t) = Yk,α(t; Aγ)u0 + Lk,α(t; Aγ)u1, where

Y0,α(t; Aγ) = sin γπ

γπ

∞∫

0

C
(
ts−1/(2γ); A)

ds

s2 − 2s cos γπ + 1
, (32)

while the operator functions Yk,α(t; Aγ), L0,α(t; Aγ), Lk,α(t; Aγ) are defined
respectively by the formulas (11), (20), (21).

Proof The operator A is the generator of a uniformly bounded cosine operator func-
tion, and in order to to use Theorem 8, one should check the fulfillment of Condition
1 for the operator Aγ . In the In our case, this condition is that for Re μ > 0 the

resolvent
(
μα+1 I − Aγ

)−1
satisfied the inequality

∥∥∥∥∥∥
dn

(
μα

(
μα+1 I − Aγ

)−1
)

dμn

∥∥∥∥∥∥ ≤ Mn!
(Re μ)n+1

. (33)

Given the representation (29), after the change of variables, we get
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μα
(
μα+1 I − Aγ

)−1
y = μ sin γπ

γπ

∞∫

0

s1/γ
(
μ2s1/γ I − A

)−1
y ds

s2 − 2s cos γπ + 1
=

= sin γπ

γπ

∞∫

0

s1/(2γ)ξ
(
ξ2 I − A

)−1
y ds

s2 − 2s cos γπ + 1
,

where ξ = μs1/(2γ) and hence

dn
(
μα

(
μα+1 I − Aγ

)−1
y
)

dμn
=

= sin γπ

γπ

∞∫

0

s(1+n)/(2γ)

s2 − 2s cos γπ + 1

dn

dξn

(
ξ
(
ξ2 I − A

)−1
y
)
ds. (34)

Since for the resolvent of the generator of a uniformly bounded cosine-operator
function for Re ξ > 0 there is an estimate

∥∥∥∥ dn

dξn

(
ξ
(
ξ2 I − A

)−1
y
)∥∥∥∥ ≤ M1 n!

(Re ξ)n+1
, (35)

then (34), (35) implies the validity of the inequality

∥∥∥∥ dn

dμn

(
μα

(
μα+1 I − Aγ

)−1
)∥∥∥∥ ≤ M1 n!

(Re μ)n+1

∞∫

0

ds

s2 − 2s cos γπ + 1
≤ Mn!

(Re μ)n+1 ,

and thus the inequality (33) is proved, and with it the solvability of the problem (30),
(31).

It remains for us to obtain the representation (32) for the operator function
Y0,α(t; Aγ). Using (8), (29), for u0 ∈ D(A2) we get

Y0,α(t; Aγ)u0 = 1

2πi

σ+i∞∫

σ−i∞
eλt λα

(
λα+1 I − Aγ

)−1
u0 dλ =

= sin γπ

γπ

∞∫

0

s1/γ

s2 − 2s cos γπ + 1

1

2πi

σ+i∞∫

σ−i∞
λeλt

(
λ2s1/γ I − A

)−1
u0 dλds =

= sin γπ

γπ

∞∫

0

C
(
ts−1/(2γ); A)

u0 ds

s2 − 2s cos γπ + 1
.
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The representation established on the dense set D(A2) ⊂ E (32) for the operator
function Y0,α(t; Aγ) extends by continuity to all E .

Operator functions Yk,α(t; Aγ), L0,α(t; Aγ), Lk,α(t; Aγ) are defined respectively
by the formulas (11), (20), (21). In particular,

L0,α(t; Aγ) = Iα
0,t Y0,α(t; Aγ) = 1

Γ (α)

t∫

0

(t − s)α−1Y0,α(s; Aγ) ds =

= sin γπ

γπΓ (α)

t∫

0

(t − s)α−1

∞∫

0

C
(
sη−1/(2γ); A)

dη

η2 − 2η cos γπ + 1
ds =

= 2γ sin γπ

γπΓ (α)

t∫

0

(t − s)α−1

∞∫

0

s2γξ2γ−1C(ξ; A) dξ

s4γ − 2(sξ)2γ cos γπ + ξ4γ
ds =

= 2γ sin γπ

γπΓ (α)

∞∫

0

ξ2γ−1C(ξ; A)

t∫

0

s2γ(t − s)α−1 ds

s4γ − 2(sξ)2γ cos γπ + ξ4γ
dξ.

�

4 Appendix

If A is the generator of an exponentially bounded β times integrated cosine operator
of the function Cβ(t; A), then for

0 < α < 1, β ≤ 1 − α

1 + α
, γ = (β − 1)(1 + α)

2
+ α ≤ 0

performance for Y0,α(t; A) in Theorem 1 can be written as

Y0,α(t; A) = 1

2πi

σ+i∞∫

σ−i∞
eλt λα

(
λα+1 I − A

)−1
dλ =

= 1

2πi

σ+i∞∫

σ−i∞
eλtλγ

∞∫

0

e−τλ(α+1)/2
Cβ(τ ; A)dτdλ =
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=
∞∫

0

Cβ(τ ; A)
1

2πi

σ+i∞∫

σ−i∞
λγeλt−τλ(α+1)/2

dλdτ =
∞∫

0

Cβ(τ ; A)I−γ
0,t fτ ,(α+1)/2(t) dτ ,

(36)
in doing so, we used the introduced in [16, p. 357] function

fτ ,γ(t) =
⎧⎨
⎩

1
2πi

σ+i∞∫
σ−i∞

exp (t z − τ zγ) dz, t ≥ 0,

0, t < 0,

where σ > 0, τ > 0, 0 < γ < 1.
The function fτ ,γ(t) for t > 0 is expressed in terms of a Wright-type function

([17, Chap. 1]) fτ ,γ(t) = t−1e1,01,γ

(−τ t−γ
)
, where is the function

eμ,δ
α,β(z) =

∞∑
k=0

zk

Γ (αk + μ) Γ (δ − βk)
, α > max{0;β}, μ, z ∈ C

satisfies the assessment

e1,δ1,β(−τ ) ≤ Mn(τ ) exp
(−(1 − β)ββ/(1−β)τ 1/(1−β)

)
, (37)

Mn(τ ) =
n∑

m=0

(βτ )m

Γ (δ + m(1 − β))
,

and the number n is chosen from the condition δ + n(1 − β) ≥ 1.
In the equality (36), the fractional integral I−γ

0,t fτ ,(α+1)/2(t) is calculated (see
formula (1.2.12) in [17]) and we arrive at the equality

Y0,α(t; A) = 1

tγ+1

∞∫

0

Cβ(τ ; A)e1,−γ
1,(α+1)/2

(−τ t−(α+1)/2
)
dτ . (38)

Note that the convergence of the integral in the representation (38) is ensured by
the estimate (37).

In the limiting case, when α = 0, β = 0, γ = −1/2, the formula (36) becomes
(14). Indeed, in this particular case we have (see [16, p. 369, formula (32)])

fτ ,1/2(t) = τ

2t
√

πt
exp

(
−τ 2

4t

)

and, taking into account the integral 2.3.4.1 [12]), we obtain
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Y0,0(t; A) =
∞∫

0

C(τ ; A)I 1/20,t fτ ,(1/2(t)dτ =

=
∞∫

0

C(τ ; A)I 1/20,t

(
τ

2t
√

πt
exp

(
−τ 2

4t

))
dτ =

= 1

2π

∞∫

0

τC(τ ; A)

t∫

0

1

s
√
s(t − s)

exp

(
−τ 2

4s

)
dsdτ =

= 1

2π
√
t

∞∫

0

τC(τ ; A)

∞∫

1/t

(
ξ − 1

t

)−1/2

exp

(
−ξτ 2

4

)
dξdτ =

= 1√
πt

∞∫

0

exp

(
−τ 2

4t

)
C(τ ; A)dτ ,

which coincides with the representation (14), while, naturally, one should assume
that Y0,0(t; A) = T (t; A), Y0,1(t; A) = C0(t; A) = C(t; A).
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