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Abstract—We consider an abstract Euler–Poisson–Darboux equation containing powers of an
unbounded operator that is the generator of a Bessel operator function. Sufficient conditions
for the unique solvability of the Dirichlet problem on the half-line are obtained. The question
concerning the convergence of the solution to zero at infinity is investigated. Examples are
given.
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INTRODUCTION

The study of differential equations with unbounded operator coefficients acting in a Banach
space E necessitates the development of the theory of resolving operators for the corresponding
initial value problems. As a result of the study of first-order evolution equations u′(t) = Au(t),
semigroups of linear operators T (t) arose, and studying the second-order equation (abstract wave
equation) u′′(t) = Au(t) gave rise to operator cosine functions C(t). Relaxing the requirements for
resolving operators of the Cauchy problem for abstract differential equations of the first and second
orders led to the concepts of an integrated semigroup and an integrated cosine operator function.
For terminology and literature sources, see the monographs [1, 2] and the survey papers [3, 4].

The Bessel operator function (OBF) was introduced into consideration in the papers [5, 6] as
the resolving operator of the Cauchy problem for the Euler–Poisson–Darboux (EPD) equation.
However, just as in the theory of semigroups and operator cosine functions, the family of Bessel
operator functions can be introduced (see [7]) independently of the EPD differential equation that
it is ultimately associated with. In what follows, we recall the process of constructing a BOF.

An important role in the construction of the family is played by the generalized shift operator T t
s

depending on a parameter k > 0 and defined by the relation (see [8])

T t
sY (s) =

Γ(k/2 + 1/2)√
πΓ(k/2)

π∫
0

Y (
√

s2 + t2 − 2st cosϕ) sink−1 ϕdϕ, s, t ≥ 0, (1)

where Γ(·) is the Euler gamma function. The generalized shift operator depends on the parame-
ter k > 0, but, following [8], we do not indicate this fact in the notation.

We also point out that in the present paper, we make do with the concept of integral of a contin-
uous function, but if necessary, we can use the Bochner integral of a function ranging in a Banach
space.

Let E be a Banach space, let k > 0 be a parameter, and let Yk(·) : [0,∞)→ B(E) be an operator
function ranging in the space B(E) of linear bounded operators.

Definition 1. A strongly continuous family Yk(t) : [0,∞) → B(E) of linear bounded operators
depending on a parameter k > 0 is called a Bessel operator function if

Yk(0) = I, Yk(t)Yk(s) = T t
sYk(s), s, t ≥ 0,

and there exist constants Υ ≥ 1 and ω ≥ 0 such that∥∥Yk(t)
∥∥ ≤ Υeωt, t ≥ 0.
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Associated with the BOF family is the Bessel differential operator

d2

dt2
+

k

t

d

dt
,

which often occurs in differential equations with axial symmetry.

Definition 2. The generator of the BOF Yk(t) is the operator A whose domain D(A) consists
of those x ∈ E for which the function Yk(t)x is twice differentiable at the point t = 0 and which is
defined by the formula

Ax = lim
t→+0

(
d2Yk(t)x

dt2
+

k

t

dYk(t)x

dt

)
.

The following statements were proved in [7].
1. The generator A of the BOF Yk(t) is closed, and its domain D(A) is dense in E; moreover,

the set of elements on which all powers of the operator A are defined is dense in E.
2. For any t, s ≥ 0 and x ∈ D(A), one has the relations

Yk(t)Yk(s) = Yk(s)Yk(t),

AYk(t)x = Yk(t)Ax.

3. Let x ∈ D(A) and t > 0; then Yk(t)x ∈ D(A) and

AYk(t)x =
d2Yk(t)x

dt2
+

k

t

dYk(t)x

dt
.

4. If u0 ∈ D(A), then the function Yk(t)u0 is a solution of the following Cauchy problem for the
EPD equation:

u′′(t) +
k

t
u′(t) = Au(t), t > 0, u(0) = u0, u′(0) = 0;

in what follows, it is convenient to use the symbol Y0(t) to denote the operator cosine func-
tion C(t) with generator A.

5. Let 0 ≤ k < m, and let A be the generator of the BOF Yk(t); then A is also the generator
of Ym(t), where the corresponding BOF Ym(t) has the form

Ym(t) =
2Γ(m/2 + 1/2)

Γ(k/2 + 1/2)Γ(m/2− k/2)

1∫
0

sk(1− s2)(m−k)/2−1Yk(ts) ds; (2)

relation (2) is called the shift formula of the BOF with respect to the parameter.
If operator A is the generator of the operator cosine function Y0(t) = C(t), then it follows from (2)

for k = 0 that the BOF Ym(t) is the operator cosine function integrated in a special way (for more
details, see the paper [9]).

1. DIRICHLET PROBLEM

In a Banach space E, on the half-line t ≥ 0 with the parameter value k < 1, consider the Dirichlet
problem for the Euler–Poisson–Darboux equation containing powers of an unbounded operator A,

u′′(t) +
k

t
u′(t) = −Pm(A)u(t), t > 0, (3)

u(0) = u0, sup
t≥0

∥∥u(t)∥∥ ≤ M, (4)
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where Pm(A)u(t) = (−1)m+1BmA
mu(t) +

∑m−1

n=0 BnA
nu(t), the Bn, n = 0, . . . ,m, are bounded

operators acting in E, and A is the generator of the BOF Yq(t) for some q ≥ 0.
We will assume that the bounded operator coefficients Bn and the generator A satisfy the fol-

lowing condition.

Condition 1. The domain D(A) is invariant under the bounded operators Bn, n = 0, . . . ,m,
ABnx = BnAx, x ∈ D(A), and the spectrum σ(Bm) of the operator Bm is located to the right of
the vertical line Reλ = δ > 0 (parabolicity condition).

We refer to the case we are considering as elliptic. A solution of the Dirichlet problem (3), (4)
is an abstract function u(t) that ranges in the domain D(Am), is twice continuously differentiable
for t > 0, is continuous for t ≥ 0, and satisfies Eq. (3) and conditions (4).

Abstract parabolic equations with the operator Pm(A) were studied earlier in [10]. In the hy-
perbolic case, the initial value problem for an Euler–Poisson–Darboux equation containing powers
of the BOF generator was studied in the papers [11, 12].

We also point out that the papers [13–17] deal with solving elliptic problems for partial differential
equations containing the Bessel operator in one or more variables and also give an extensive survey
of relevant publications.

In the present paper, we consider problem (3), (4) in the elliptic case using the fundamental
solution G(t, s) (constructed in [10]) of the equation

∂v(t, s)

∂t
= (−1)m+1Bm

∂2mv(t, s)

∂s2m
+

m−1∑
n=0

Bn

∂2nv(t, s)

∂s2n
, t > 0, s ∈ R, (5)

which has the form

G(t, s) =
1

2π

+∞∫
−∞

eisσQ(t, σ) dσ, (6)

where

Q(t, σ) = exp

(
−tσ2mBm − t

m−1∑
n=0

σ2nBn

)
.

In this case, for the function G(t, s) we have the convolution formula
+∞∫

−∞

G(t− t1, s− s1)G(t1 − τ, s1 − ξ) ds1 = G(t− τ, s− ξ), 0 ≤ τ < t1 < t. (7)

Along with Eq. (5), in the domain t > 0, s ∈ R we consider the problem

∂2w(t, s)

∂t2
+

k

t

∂w(t, s)

∂t
= (−1)mBm

∂2mw(t, s)

∂s2m
−

m−1∑
n=0

Bn

∂2nw(t, s)

∂s2n
, w(0, s) = δ(s), (8)

where δ(s) is the Dirac delta function.
Applying the Fourier transform in the variable s ∈ R to problem (8) and taking into account the

formula for connecting the solution of the Dirichlet problem for the EPD equation with the solution
of the Cauchy problem for a parabolic equation (see [18, Theorem 3]), we introduce the following
operator function, which is a solution of problem (8):

Zk(t, s) =
t1−k

2kπΓ(1/2− k/2)

∞∫
−∞

eisσ
∞∫
0

τk/2−3/2 exp

(
− t2

4τ

)
Q(τ, σ) dτdσ =

∞∫
0

hk(t, τ)G(τ, s) dτ, (9)

where the fundamental solution G(τ, s) is defined by relation (6),

hk(t, τ) =
t1−kτk/2−3/2

21−kΓ(1/2− k/2)
exp

(
− t2

4τ

)
, t ≥ 0, τ > 0.
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To justify the existence of a solution of the Dirichlet problem (3), (4), we need the following
assertion.

Lemma 1. Let t ≥ 0, b > 0, β > 0, and γ > 1. Then for a function of the form

f(t) =

∞∫
0

s−γ exp

(
− b

s
− t

sβ

)
ds

there exist constants M1,M2 > 0 such that one has the estimate

f(t) ≤ M1

M2 + t(γ−1)/β
. (10)

Proof. For t > 0, after a change of variables, we obtain

f(t) = t(1−γ)/β

∞∫
0

ξ−γ exp

(
− b

ξt1/β
− 1

ξβ

)
dξ < M4t

(1−γ)/β,

which, together with the obvious inequality f(t) ≤ f(0) = M3, leads to the desired relation (10).
The proof of the lemma is complete.

Depending on the type and properties of the operators A and P (A), further research will be
divided into two cases.

2. DIRICHLET PROBLEM IN THE CASE OF k < 1 WITH AN OPERATOR
OF THE FORM Pm(A)u(t) = (−1)m+1 ×BmA

mu(t)

For the fundamental solution G(t, s) defined by relation (6), the paper [10] established the fol-
lowing estimate for this case:∥∥∥∥∂jG(t, s)

∂sj

∥∥∥∥ ≤ Mjt
−(j+1)/(2m) exp

(− at1/(1−2m)|s|2m/(2m−1)
)
, a > 0, (11)

the proof of which is carried out using methods developed in [19, Ch. 1] for the case of matrix
coefficients Bj . In addition, if Y0(s) is uniformly bounded, then the analytic semigroup

U
(
t;Pm(A)

)
x = 2

∞∫
0

G(t, s)Y0(s)x ds

is defined with generator Pm(A) whose domain is D(Am). Note that the semigroup property
for U(t;Pm(A)) is valid due to the convolution formula (7).

Now let us estimate the derivatives of the operator function Zk(t, s).

Lemma 2. For the operator function Zk(t, s) defined by relation (9) and its derivatives up to
order j = 0, . . . , 2m, the following estimate holds for t > 0:∥∥∥∥∂jZk(t, s)

∂sj

∥∥∥∥ ≤ Mk,jt
1−k

t1−k+(j+1)/m + |s|m(1−k)+j+1
, Mk,j > 0. (12)

Proof. Let us differentiate relation (9) and use the estimate (11). After a change of variables,
we have

∥∥∥∥∂jZk(t, s)

∂sj

∥∥∥∥ ≤ Mj

∞∫
0

hk(t, τ)τ
−(j+1)/(2m) exp

(− aτ 1/(1−2m)|s|2m/(2m−1)
)
dτ
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=
Mjt

1−k

21−kΓ(1/2− k/2)

∞∫
0

τk/2−3/2−(j+1)/(2m) exp

(
− t2

4τ
− aτ 1/(1−2m)|s|2m/(2m−1)

)
dτ

=
Mjt

−(j+1)/m

21−kΓ(1/2− k/2)

∞∫
0

ξk/2−3/2−(j+1)/(2m) exp

(
− 1

4ξ
− a

(|s|m/t)2/(2m−1)

ξ1/(2m−1)

)
dξ.

Estimating the last integral using inequality (10) in Lemma 1 with

b =
1

4
, β =

1

2m− 1
, γ =

j + 1−m(k − 3)

2m
,

we obtain the desired inequality (12),∥∥∥∥∂jZk(t, s)

∂sj

∥∥∥∥ ≤ Mjt
−(j+1)/m

21−kΓ(1/2− k/2)

M1

M2 +
(
1/4

(|s|m/t)2/(2m−1)
)(j+1+m−mk)(2m−1)/(2m)

≤ Mk,jt
1−k

t1−k+(j+1)/m + |s|m(1−k)+j+1
.

The proof of the lemma is complete.
In what follows, we also need estimates for weighted derivatives of the operator function Zk(t, s).

To this end, we first establish the following lemma, which is proved by induction.

Lemma 3. Let Z(s) ∈ Cn(0,∞), n ∈ N. Then

(
1

s

d

ds

)n

Z(s) =

n∑
j=1

θj,ns
j−2nZ(j)(s), (13)

where
θj,n =

(2n− j − 1)!

(−2)n−j(n− j)!(j − 1)!
. (14)

Proof. Let relation (13) hold for some n. Then

(
1

s

d

ds

)n+1

Z(s) =

n∑
j=1

θj,n(j − 2n)sj−2n−2Z(j)(s) +

n+1∑
j=2

θj−1,ns
j−2n−2Z(j)(s),

and to prove formula (13) for n+ 1 it remains to establish the relations

θ1,n+1 = (1− 2n)θ1,n,

θn+1,n+1 = θn,n = 1,

θj,n+1 = (j − 2n)θj,n + θj−1,n, 2 ≤ j ≤ n,

which can be verified directly taking into account the definition of the numbers θj,n by formula (14).
The proof of the lemma is complete.

The following lemma is a corollary of Lemmas 2 and 3.

Lemma 4. For t > 0, the operator function Zk(t, s) defined by relation (9) satisfies the estimate∥∥∥∥∥
(
1

s

∂

∂s

)n

Zk(t, s)

∥∥∥∥∥ ≤
n∑

j=1

|θj,n|Mk,jt
1−ksj−2n

t1−k+(j+1)/m + |s|m(1−k)+j+1
, Mk,j > 0. (15)
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Assuming the uniform boundedness of the BOF Yq(s), q ≥ 0, whose generator is the operator A,
in what follows we take the smallest n ∈ N with 2n ≥ q and introduce the operator function

Wk(t)x =
(−1)n · 2
(2n− 1)!!

∞∫
0

(
1

s

∂

∂s

)n

Zk(t, s)s
2nY2n(s)x ds, x ∈ E,

where the BOF Y2n(s) is expressed via the BOF Yq(s) using formula (2).
The convergence of the integral and the possibility of its differentiation with respect to t are

determined by relation (8) and the estimate (15). The operator function Wk(t) bounded in the
space E will be used to establish the unique solvability of the Dirichlet problem (3), (4).

Note that if the operator A is the generator of a bounded operator cosine function C(t), then,
as follows from [20, Ch. 9, p. 11 of the Russian translation], the operator function

W0(t) = 2

∞∫
0

Z0(t, s)C(s) ds =

∞∫
0

h0(t, τ)U
(
τ ;P (A)

)
dτ,

where

h0(t, τ) =
t

2
√
πτ 3/2

exp

(
− t2

4τ

)
, t ≥ 0, τ > 0,

is a semigroup, and the pseudodifferential operator P1/2(A) = −√−Pm(A) is the generator of this
semigroup W0(t).

Theorem 1. Assume that for some q ≥ 0 the operator A is the generator of a uniformly bounded
BOF Yq(s), u0 ∈ D(Am), and Condition 1 is satisfied. Then the Dirichlet problem (3), (4) has
a unique solution, which can be represented in the form

u(t) =Wk(t)u0 =
(−1)n · 2
(2n− 1)!!

∞∫
0

(
1

s

∂

∂s

)n

Zk(t, s)s
2nY2n(s)u0 ds, (16)

where Zk(t, s) is defined by relation (9), while the BOF Y2n(s) is expressed via the BOF Yq(s) using
formula (2).

Proof. First, assume that u0 ∈ D(Am+[n/2]+2) and q > 0. Then after n-fold integration by parts
we obtain

u(t) =Wk(t)u0 =
2

(2n− 1)!!

∞∫
0

Zk(t, s)

(
1

s

d

ds

)n(
s2n−1Y2n(s)u0

)
ds = 2

∞∫
0

Zk(t, s)Ỹ0(s)u0 ds. (17)

When written using the operators of shift of the solution of the EPD equation by the parameter
(for more details, see [21, 22]), the function

Ỹ0(s)u0 =
1

(2n− 1)!!

(
1

s

d

ds

)n(
s2n−1Y2n(s)u0

)
(18)

is no longer a BOF but determines the solution of the Cauchy problem

u′′(s) = Au(s), s > 0, u(0) = u0 ∈ D(A[n/2]+2), u′(0) = 0.

Since the function Zk(t, s)u0 satisfies problem (8), it can readily be verified that the func-
tion u(t) =Wk(t)u0 defined by relation (17) is a solution of the Dirichlet problem (3), (4). Indeed,
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obviously, u(0) = u0, and after integration by parts, the integrated terms vanish and we obtain

u′′(t) +
k

t
u′(t) = 2

∞∫
0

(
∂2Zk(t, s)

∂t2
+

k

t

∂Zk(t, s)

∂t

)
Ỹ0(s)u0 ds

=

∞∫
0

(−1)mBm

∂2mZk(t, s)

∂s2m
Ỹ0(s)u0 ds =

∞∫
0

(−1)mBmZk(t, s)
d2mỸ0(s)u0

ds2m
ds

=

∞∫
0

(−1)mBmZk(t, s)A
mỸ0(s)u0ds = −Pm(A)u(t).

(19)

Thus, relation (19) has been established for the elements u0 of the set D(Am+[n/2]+2) dense
in D(Am). Owing to the boundedness of the operator function Wk(t) in the space E, this relation
remains valid for u0 ∈ D(Am).

The case of q = 0 can be treated in a similar way with significant simplifications.
We will prove the uniqueness of the solution of problem (3), (4) by contradiction. Let u1(t)

and u2(t) be two solutions of this problem. Consider the function

w(t, y) = f
(
Wk(y)

(
u1(t)− u2(t)

))
of two variables, where f ∈ E∗ (E∗ is the dual space) and t, y ≥ 0, which obviously satisfies the
following equation and conditions:

∂2w(t, y)

∂t2
+

k

t

∂w(t, y)

∂t
=

∂2w(t, y)

∂y2
+

k

y

∂w(t, y)

∂y
, t, y > 0, (20)

w(0, y) = 0, sup
t,y≥0

∥∥w(t, y)∥∥ < M. (21)

We interpret the function w(t, y) as a generalized function and apply the I-transform with respect
to variable y. For ordinary functions decaying exponentially as y → +∞, the I-transform is defined
by the relation

ŵ(t, λ) =

∞∫
0

√
λyIp(λy)w(t, y) dy,

where p = (k − 1)/2 and Ip(·) is the modified Bessel function. The extension of this transform to
generalized functions is presented in [23; 24, p. 63], while the space of test functions also includes
functions that decay exponentially as y → +∞, on which the correct definition of the I-transform
of the generalized function w(t, y) is actually ensured.

From conditions (20), (21), for the transform ŵ(t, λ) in the space of regular generalized functions
we obtain the problem

∂2ŵ(t, λ)

∂t2
+

k

t

∂ŵ(t, λ)

∂t
= λ2ŵ(t, λ), t > 0, (22)

ŵ(0, λ) = 0, sup
t≥0
λ∈R

∥∥ŵ(t, λ)∥∥ < M. (23)

The general solution of Eq. (22) has the form

ŵ(t, λ) = t(1−k)/2
(
d1(λ)I(k−1)/2(λt) + d2(λ)K(k−1)/2(λt)

)
,

where I(k−1)/2(·) is the modified Bessel function and K(k−1)/2(·) is the Macdonald function.
The second condition in (23) implies that d1(λ) = 0, and the first condition in (23) implies

that d2(λ) = 0; therefore ŵ(t, λ) = w(t, y) = 0 for any y ≥ 0. Owing to the arbitrariness of the
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functional f ∈ E∗, for y = 0 we obtain the relation u1(t) ≡ u2(t), and the uniqueness of the solution
of the Dirichlet problem (3), (4) is thus established. The proof of the theorem is complete.

Example 1. Let k < 1, Bm = I, and Pm(A)u(t) = (−1)m+1Amu(t). Then, taking into account
formula (6), we obtain

Q(t, σ) = e−tσ2m

,

G(t, s) =
1

2π

+∞∫
−∞

eisσ−tσ2m

dσ =
1

2π

+∞∫
−∞

cos(sσ)e−tσ2m

dσ.

The last integral can be calculated in elementary functions only for m = 1 and determines the
fundamental solution of the heat equation,

G(t, s)|m=1 =
1

2
√
πt
exp

(
−s2

4t

)
.

For m ≥ 2, the expression for the integral is very cumbersome and contains special functions.
For example, for m = 2 it has the form

G(t, s) =
Γ(5/4)

πt1/4
0F2

(
1

2
,
3

4
;

s4

256t

)
− Γ(3/4)s2

8πt3/4
0F2

(
5

4
,
3

2
;

s4

256t

)
,

where 0F2(·) is the hypergeometric function.
Substituting the fundamental solution into (9) and taking into account integral 2.3.3.1 in [25],

we determine

Zk(t, s)|m=1 =
t1−k

22−k
√
πΓ(1/2− k/2)

∞∫
0

τk/2−2 exp

(
− t2 + s2

4τ

)
dτ

=
t1−k

22−k
√
πΓ(1/2− k/2)

∞∫
0

ξ−k/2 exp

(
− t2 + s2

4
ξ

)
dξ =

Γ(1− k/2)t1−k

√
πΓ(1/2− k/2)

(t2 + s2)k/2−1.

Finally, using formula (16), we write the solution of the Dirichlet problem (3), (4) for m = 1 in
the form

u(t) =Wk(t)u0 =
(−1)n · 2
(2n− 1)!!

∞∫
0

(
1

s

∂

∂s

)n

Zk(t, s)s
2nY2n(s)u0 ds

=
(−1)n · 2Γ(1− k/2)t1−k

(2n− 1)!!
√
π Γ(1/2− k/2)

∞∫
0

(
1

s

∂

∂s

)n

(t2 + s2)k/2−1s2nY2n(s)u0 ds

=
(−1)n · 2Γ(1− k/2)t1−k

(2n− 1)!!
√
π Γ(1/2− k/2)

∞∫
0

(k − 2)(k − 4) · · · (k − 2n)(t2 + s2)k/2−n−1s2nY2n(s)u0 ds

=
2Γ(n+ 1− k/2)t1−k

Γ(n+ 1/2)Γ(1/2− k/2)

∞∫
0

s2nY2n(s)u0

(t2 + s2)n+1−k/2
ds.

Below we give examples of representations of the solution of the Dirichlet problem (3), (4)
for k < 1, m = 1 in specific Banach spaces.
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(a) Let E = Lp(−∞,∞), p > 1, let Y0(s)u0(x) = (u0(x+ s)+u0(x− s))/2 be the operator cosine
function with generator A = d2/dx2, and let B1 = I. Then for k < 1 and m = 1 the solution
of problem (3), (4) has the form

u(t, x) =
Γ(1− k/2)t1−k

√
πΓ(1/2− k/2)

∞∫
0

u0(x+ s) + u0(x− s)

(t2 + s2)1−k/2
ds.

(b) Let E = Lp(0,∞), p > 1, and let B1 = I. If 0 < q ≤ 2, then the generalized shift
operator T s

xu0(x) defined by relation (1) (after replacing the parameter k by q) is the
BOF Yqu0(x) = T s

xu0(x) with generator

A =
d2

dx2
+

q

x

d

dx
.

Then n = 1, and in this case for k < 1 and m = 1 the solution of the Dirichlet problem (3), (4)
has the form

u(t, x) =Wk(t)u0 =
−2Γ(1− k/2)t1−k

√
πΓ(1/2− k/2)

∞∫
0

1

s

∂

∂s
(t2 + s2)k/2−1s2Y2(s)u0(x) ds

=
4Γ(2− k/2)t1−k

√
π Γ(1/2− k/2)

∞∫
0

s2Y2(s)u0(x)

(t2 + s2)2−k/2
ds,

where for q = 2

Y2(s)u0(x) =
1

2

π∫
0

u0

(√
x2 + s2 − 2xs cosϕ

)
sinϕdϕ, x, s ≥ 0,

while for 0 < q < 2 the BOF Yq(s) is determined using formula (2),

Y2(s)u0(x) =

√
π

Γ(q/2 + 1/2)Γ(1− q/2)

1∫
0

τ q(1− τ 2)−q/2Yq(τs)u0(x) dτ,

Yq(s)u0(x) =
Γ(q/2 + 1/2)√

πΓ(q/2)

π∫
0

u0

(√
x2 + s2 − 2xs cosϕ

)
sinq−1 ϕdϕ, x, s ≥ 0.

(c) Let E = R, A = −A2
0, A0 > 0, and B1 = 1. Then the easiest way is to consider n = 0,

Y0(s) = cos(A0s), and for k < 1 and m = 1 the solution of the Dirichlet problem (3), (4) has
the form

u(t) =Wk(t)u0 =
2Γ(1− k/2)t1−ku0√

πΓ(1/2− k/2)

∞∫
0

cos (A0s)

(t2 + s2)1−k/2
ds.

Calculating the integral by formula 2.5.6.4 in [25], we obtain

u(t) =
2k/2+1/2(A0t)

1/2−k/2

Γ(1/2− k/2)
K1/2−k/2(A0t)u0,

where Kν(·) is the Macdonald function.
We arrive at the same result if we take q = 2n,

Y2n(s) = Γ(n+ 1/2)(A0s/2)
1/2−nJn−1/2(A0s),
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where Jν(·) is the Bessel function of the first kind. Then

u(t) =
2n+1/2Γ(n+ 1− k/2)A

1/2−n
0 t1−ku0

Γ(1/2− k/2)

∞∫
0

(t2 + s2)k/2−n−1sn+1/2Jn−1/2(A0s) ds.

Calculating the integral using formula 2.12.4.28 in [26], we have

u(t) =
2k/2+1/2(A0t)

1/2−k/2

Γ(1/2− k/2)
K1/2−k/2(A0t)u0.

Note that due to the exponential decay of the Macdonald function as t → ∞ in the last example,
the solution u(t) =Wk(t)u0 tends to zero as t → ∞. However, in the general case, it does not follow
from the estimate (15) that the solution u(t) = Wk(t)u0 tends to zero as t → ∞. Let us present a
sufficient condition that ensures this convergence.

Theorem 2. Let the assumptions of Theorem 1 be satisfied, and additionally, for s > 0 let
∥∥∥∥∥∥

s∫
0

Yq(τ)u0 dτ

∥∥∥∥∥∥ < ∞. (24)

Then lim
t→∞

Wk(t)u0 = 0.

Proof. By integrating by parts, we write the solution of the Dirichlet problem in the form

u(t) =Wk(t)u0 =
(−1)n · 2
(2n− 1)!!

∞∫
0

(
1

s

∂

∂s

)n

Zk(t, s)s
2nY2n(s)u0 ds

=
(−1)n · 2
(2n− 1)!!

∞∫
0

∂

∂s

(
s2n

(
1

s

∂

∂s

)n

Zk(t, s)

) s∫
0

Y2n(τ)u0 dτds.

(25)

Taking into account relation (13), by differentiation we obtain

∂

∂s

(
s2n

(
1

s

∂

∂s

)n

Zk(t, s)

)
=

n∑
j=1

jθj,ns
j−1∂

jZk(t, s)

∂sj
+

n∑
j=1

θj,ns
j ∂

j+1Zk(t, s)

∂sj+1
;

applying the estimates (12) and (24) in (25), we have

∥∥Wk(t)u0

∥∥ ≤ Υ1‖u0‖t1−k

n∑
j=1

j|θj,n|Mk,j

∞∫
0

sj−1 ds

t1−k+(j+1)/m + sm(1−k)+j+1

+Υ1‖u0‖t1−k

n∑
j=1

|θj,n|Mk,j+1

∞∫
0

sj ds

t1−k+(j+2)/m + sm(1−k)+j+2
= Φ(t) + Ψ(t).

In this relation, after the changes of variables

s = tαξ, α =
1− k + (j + 1)/m

m(1− k) + j + 1
, β =

−m(1− k)− j − 1

m
(
m(1− k) + j + 1

) ,
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the first term Φ(t) becomes

Φ(t) = Υ1‖u0‖tβ
n∑

j=1

jθj,nMk,j

∞∫
0

ξj−1 ds

1 + ξm(1−k)+j+1
,

and since β < 0, we conclude that Φ(t)→ 0 as t → ∞.
The second term Ψ(t) can be treated in a similar way with j replaced by j+1; the latter implies

the desired assertion of the theorem. The proof of the theorem is complete.
For example, if, under the assumptions of Theorem 1, the operator A is the generator of a uni-

formly bounded operator cosine function Y0(s) = C(s), then, as follows from Theorem 2, in addition
to this, for the solution u(t) = Wk(t)u0 to tend to zero as t → ∞ one should additionally require
the boundedness of the operator sine function

S(s) =

t∫
0

C(τ) dτ.

Here condition (24) is satisfied if, for example, A = A2
1, where the operator A1 is the generator

of a uniformly bounded group T (s;A1) and in addition, the point λ = 0 is a regular point of the
operator A1, 0 ∈ ρ(A1). Then

Y0(s) = C(s) =
1

2

(
T (s;A1) + T (−s;A1)

)
,

s∫
0

T (τ ;A1)u0 dτ =

s∫
0

AT (τ ;A1)A
−1u0 dτ

=

s∫
0

T ′(τ ;A1)A
−1u0 dτ =

(
T (s;A1)− I

)
A−1u0,

and condition (24) is obviously satisfied, because the group T (s;A1) is uniformly bounded.

Example 2. Consider the case in which E = H is a Hilbert space and A = −A2
0, where A0 is

a self-adjoint operator acting in H, 0 ∈ ρ(A0). Let Eλ be the spectral function of the operator A0.
By Stone’s theorem (see, e.g., [1, Sec. 4, Theorem 4.7]), the operator A0 is the generator of the
unitary group

T (t;A0)x =

∞∫
−∞

eiλt dEλx, x ∈ H,

which satisfies inequality (24). Indeed,
s∫

0

T (τ ;A0)x dτ =

∞∫
−∞

s∫
0

eiλτdτ dEλx

=

∞∫
−∞

eiλs − 1

iλ
dEλx = −i

(
T (s;A0)− I

)
A−1

0 x;

hence the operator sine function is bounded, inequality (24) holds true, and the solution of the
Dirichlet problem

u(t) =Wk(t)u0 = 2

∞∫
0

Zk(t, s) cos(A0s)u0 ds

tends to zero as t → ∞.

DIFFERENTIAL EQUATIONS Vol. 59 No. 10 2023



DIRICHLET PROBLEM ON THE HALF-LINE 1367

3. DIRICHLET PROBLEM IN THE CASE OF k < 1 WITH AN OPERATOR
OF THE FORM Pm(A)u(t) = (−1)m+1Bm ×Amu(t) +

∑m−1

n=0 BnA
nu(t),

∑m−1

n=0 BnA
n 
= 0

Let us introduce the operator

B = −μ2mBm −
m−1∑
n=0

μ2nBn, μ ∈ R.

Condition 2. If
∑m−1

n=0 BnA
n 
= 0, then for any μ ∈ R the spectrum σ(B) of the operator B

does not lie on the imaginary axis.
For the case where Condition 2 is satisfied for the fundamental solution G(t, s) defined by rela-

tion (6), the paper [10] establishes the estimate∥∥∥∥∂jG(t, s)

∂sj

∥∥∥∥ ≤ Mjt
−(j+1)/(2m) exp

(− at1/(1−2m)|s|2m/(2m−1) − δ1t
)
, (26)

where Mj > 0, a > 0, 0 < δ1 < δ, and the constant δ is taken from Condition 1 (parabolicity). Note
that unlike the estimate (11), the estimate (26) contains the factor exp(−δ1t).

Let us show that Condition 2 permits relaxing the requirement of uniform boundedness of the
BOF Yq(s) when establishing the solvability of the Dirichlet problem and allows its exponential
growth.

Lemma 5. Under Condition 2, for the operator function Zk(t, s) defined by relation (9) and its
derivatives up to order j = 0, . . . , 2m there exist constants Mk,j , Ω, Ω1 > 0 such that for t > 0 one
has the estimate ∥∥∥∥∂jZk(t, s)

∂sj

∥∥∥∥ ≤ Mk,jt
1−k

t1−k+(j+1)/m + |s|m(1−k)+j+1
e−Ω1t−Ω|s|. (27)

Proof. Just as in the proof of Lemma 2, let us differentiate relation (9) and use the estimate (26).
Denoting a = a1 + a2, 0 < a1 < a, a2 = a − a1, 1 = b1 + b2, 0 < b1 < 1, b2 = 1 − b1, δ1 = δ2 + δ3,
0 < δ2 < δ1, and δ3 = δ1 − δ2, we obtain

∥∥∥∥∂jZk(t, s)

∂sj

∥∥∥∥ ≤ Mj

∞∫
0

hk(t, τ)τ
−(j+1)/(2m) exp

(− aτ 1/(1−2m)|s|2m/(2m−1) − δ1τ
)
dτ

=
Mjt

1−k

2k−1Γ(1/2− k/2)

∞∫
0

τk/2−3/2−(j+1)/(2m)

× exp

(
−(b1 + b2)t

2

4τ
− (a1 + a2)τ

1/(1−2m)|s|2m/(2m−1) − (δ2 + δ3)τ

)
dτ.

(28)

Further, let us show that for s ∈ R and t, τ > 0 one has the inequalities

exp
(− a2τ

1/(1−2m)|s|2m/(2m−1) − δ3τ
) ≤ e−Ω|s|, (29)

exp(−b2τ
−1t2 − δ2τ) ≤ e−Ω1t, (30)

where
Ω = a

(2m−1)/(2m)
2

(
δ3(2m− 1)

)1/(2m)
+ δ

1/(2m)
3

(
a2/(2m− 1)

)(2m−1)/(2m)
,

Ω1 = 2
√

b2δ2.
(31)

Obviously, inequality (29) is satisfied for s = 0. Now let s 
= 0. Let us prove the relation

a2τ
1/(1−2m)|s|2m/(2m−1) + δ3τ ≥ Ω|s|
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or the one equivalent to it,

a2

( |s|
τ

)1/(2m−1)

+ δ3
τ

|s| ≥ Ω.

The least value of the function ϕ(t) = a2t
1/(2m−1)+ δ3/t for t > 0 is equal to Ω, as proved by the

estimate (29).
Inequality (30) is obtained from (29) by replacing a2 with b2, m with 1, s with t, and δ3 with δ2.
Taking into account inequalities (29) and (30), from (28) we obtain∥∥∥∥∂jZk(t, s)

∂sj

∥∥∥∥ ≤ Mjt
1−k

2k−1Γ(1/2− k/2)
e−Ω1t−Ω|s|

×
∞∫
0

τk/2−3/2−(j+1)/(2m) exp

(
−b1t

2

4τ
− a1τ

1/(1−2m)|s|2m/(2m−1)

)
dτ.

(32)

The estimate of the integral in inequality (32) was actually carried out earlier in Lemma 2.
Applying this estimate, we arrive at the desired inequality (27). The proof of the lemma is complete.

The next lemma is a straightforward consequence of Lemmas 3 and 5.

Lemma 6. Under Condition 2, for the operator function Zk(t, s) defined by relation (9) with t>0
one has the estimate∥∥∥∥

(
1

s

∂

∂s

)n

Zk(t, s)

∥∥∥∥ ≤ t1−ke−Ω1t−Ω|s|
n∑

j=1

|θj,n|Mk,js
j−2n

t1−k+(j+1)/m + |s|m(1−k)+j+1
, Mk,j > 0. (33)

Theorem 3. Let Conditions 1 and 2 be satisfied, let u0 ∈ D(Am), and let for some q ≥ 0 the
operator A be the generator of a BOF Yq(s) satisfying the estimate∥∥Yq(s)

∥∥ ≤ Υeωs, s ≥ 0, Υ ≥ 1, 0 ≤ ω < Ω, (34)

where Ω is the constant in (31). Then the Dirichlet problem (3), (4) has a unique solution tending
to zero as t → ∞, which can be represented in the form

u(t) =Wk(t)u0 =
(−1)n · 2
(2n− 1)!!

∞∫
0

(
1

s

∂

∂s

)n

Zk(t, s)s
2nY2n(s)u0 ds,

where Zk(t, s) is defined by relation (9) and the BOF Y2n(s) is expressed via the BOF Yq(s) by
formula (2).

Proof. The convergence of the integral defining the function u(t) =Wk(t)u0 and the possibility
of differentiation of this integral are determined by the estimate (33). Let us verify that this function
is a solution of problem (3), (4).

Just as in the proof of Theorem 1, let us first assume that u0 ∈ D(Am+[n/2]+2), q > 0, and Ỹ0(s)u0

is defined by relation (18). After integration by parts, the integrated terms vanish, and we obtain

u′′(t) +
k

t
u′(t) = 2

∞∫
0

(
∂2Zk(t, s)

∂t2
+

k

t

∂Zk(t, s)

∂t

)
Ỹ0(s)u0 ds

= 2

∞∫
0

(
(−1)mBm

∂2mZk(t, s)

∂s2m
−

m−1∑
n=0

Bn

∂2nZk(t, s)

∂s2n

)
Ỹ0(s)u0 ds
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= 2

∞∫
0

Zk(t, s)

(
(−1)mB2m

d2mỸ0(s)u0

ds2m
−

m−1∑
n=0

Bn

d2nỸ0(s)u0

ds2n

)
ds

= 2

∞∫
0

Zk(t, s)

(
(−1)mBmA

mỸ0(s)u0 −
m−1∑
n=0

BnA
nỸ0(s)u0

)
ds

= −2Pm(A)

∞∫
0

Zk(t, s)Ỹ0(s)u0 ds

=
(−1)n · 2
(2n− 1)!!

Pm(A)

∞∫
0

(
1

s

∂

∂s

)n

Zk(t, s)s
2nY2n(s)u0 ds = −Pm(A)u(t).

Thus, the function Wk(t)u0 is a solution of Eq. (3) on the set D(Am+[n/2]+2), dense in D(Am),
of elements u0. Owing to the boundedness of the operator function Wk(t) in the space E, the
statement also holds true for u0 ∈ D(Am).

The case of q = 0 can be treated in a similar way with significant simplifications.
Since the estimate (33) contains the factor exp(−Ω1t), it obviously follows that the solution u(t)

tends to zero as t → ∞.
The remaining statements of Theorem 3 in fact have already been established in Theorem 1.

The proof of the theorem is complete.

Remark. If Condition 2 is not satisfied in Theorem 3, then, just as in Theorem 1, the BOF Yq(s)
must be uniformly bounded. In this case, the indicated solution of the Dirichlet problem (3), (4),
generally speaking, does not have to tend to zero as t → ∞. For the solution to tend to zero, just
as in Theorem 2, the BOF Yq(s) should additionally be required to satisfy inequality (24).

Example 3. Let E = R, m = 1, P1(A) = B1A + B0, where B1 > 0 (the parabolicity condi-
tion), A = −A2

0, A0 ∈ R, and then Y0(s) = cos(A0s). Assume also that B0 < 0 (the condition
of ellipticity of the polynomial P1(A)) with the operator B = −μ2B1 − B0 satisfying Condition 2
for μ ∈ R. Then, taking into account the results in Example 1, we obtain

Q(t, σ) = exp(−tB1σ
2 + tB0),

G(t, s) =
1

2
√
πtB1

exp

(
− s2

4tB1

+ tB0

)
,

Zk(t, s) =
t1−k

22−kΓ(1/2− k/2)
√
πB1

∞∫
0

τk/2−2 exp

(
− t2

4τ
− s2

4τB1

+ τB0

)
dτ

=
t1−k

22−kΓ(1/2− k/2)
√
πB1

∞∫
0

τk/2−2 exp

(
− t2B1 + s2

4τB1

+ τB0

)
dτ

=
2k/2t1−k(t2B1 + s2)k/4−1/2

Γ(1/2− k/2)
√
πB1(−B0B1)k/4−1/2

K1−k/2

(√−B0B1(t2B1 + s2)

B1

)
;

here we have used integral 2.3.16.1 in [25].
Using formula (16), we write the solution of the Dirichlet problem (3), (4) for m = 1 decaying

as t → ∞ in the form

u(t) =Wk(t)u0 = 2

∞∫
0

Zk(t, s) cos(A0s)u0 ds.
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4. WEIGHTED BOUNDARY VALUE PROBLEMS IN THE CASE OF k ≥ 1

A straightforward verification establishes the following assertion.

Lemma 7. If for k < 1 the function vk(t) satisfies the Dirichlet problem (3), (4), then for k > 1
the function u(t) = t1−kv2−k(t) is a solution of Eq. (3) bounded at infinity and satisfying the condition

lim
t→0

tk−1u(t) = u0. (35)

Lemma 7 and Theorem 3 imply the following statement.

Theorem 4. Let k > 1, let u0 ∈ D(Am), let Conditions 1 and 2 be satisfied, and let the
operator A for some q ≥ 0 be the a generator of a BOF Yq(s) satisfying the estimate (34). Then
the weighted Dirichlet problem (3), (35) has a unique solution tending to zero as t → ∞, which can
be represented in the form

u(t) =
(−1)n · 2t1−k

(2n− 1)!!

∞∫
0

(
1

s

∂

∂s

)n

Z2−k(t, s)s
2nY2n(s)u0 ds,

where Z2−k(t, s) is defined by relation (9), while the BOF Y2n(s), 2n ≥ q , is expressed via the
BOF Yq(s) using formula (2).

As was already established earlier, if Condition 2 is satisfied and the operator A is the generator
of the operator cosine function Y0(s), then the semigroup U(t;Pm(A)) defined by relation (11) is
a contraction; therefore, by Theorem 5.6 in [1, Ch. 1, Sec. 5], the operator

P1/2(A) = −
√

−Pm(A)

is the generator of the contraction semigroup U1(t;P1/2(A)) given by

U1

(
t;P1/2(A)

)
=
1

π

∞∫
0

sin
(
t
√
τ
) (

τI + P1/2(A)
)−1

dτ.

The following holds by virtue of Theorem 4.1 in [27].

Theorem 5. Let k ≥ 1, let u0 ∈ D(A2m), let Conditions 1 and 2 be satisfied, and let the
operator A be the generator of an operator cosine function Y0(s) satisfying the estimate (34). Then
the function

u(t) = − 1

Γ(k)

∞∫
1

(ξ2 − 1)k/2−1U1

(
tξ;P1/2(A)

)(− P1/2(A)
)k−1

u1 dξ

is the unique solution of Eq. (3) with the conditions

lim
t→0

tku′(t) = u1,

lim
t→∞

u(t) = 0.
(36)

Theorem 5, in comparison with problem (3), (35), contains the solution of another weighted
boundary value problem for k > 1 as well as the solution of problem (3), (36) for k = 1, which has
the form

u(t) = −
∞∫
1

(ξ2 − 1)−1/2U1

(
tξ;−

√
−Pm(A)

)
u1 dξ.

REFERENCES

1. Krein, S.G., Lineinye differentsial’nye uravneniya v banakhovom prostranstve (Linear Differential Equa-
tions in a Banach Space), Moscow: Nauka, 1967.

DIFFERENTIAL EQUATIONS Vol. 59 No. 10 2023



DIRICHLET PROBLEM ON THE HALF-LINE 1371

2. Goldstein, J.A., Semigroups of Linear Operators and Applications, New York: Oxford Univ. Press, 1985.
Translated under the title: Polugruppy lineinykh operatorov i ikh prilozheniya, Киев: Vyshcha Shk., 1989.

3. Vasil’ev, V.V., Krein, S.G., and Piskarev, S.I., Semigroups of operators, cosine operator functions, and
linear differential equations, J. Sov. Math., 1991, vol. 54, no. 4, pp. 1042–1129.

4. Mel’nikova, I.V. and Filinkov, A.I., Integrated semigroups and C-semigroups. Well-posedness and regu-
larization of differential-operator problems, Russ. Math. Surv., 1994, vol. 49, no. 6, pp. 115–155.

5. Glushak, A.V., Bessel operator function, Dokl. Ross. Akad. Nauk , 1997, vol. 352, no. 5, pp. 587–589.
6. Glushak, A.V. and Pokruchin, O.A., Criterion for the solvability of the Cauchy problem for an abstract

Euler–Poisson–Darboux equation, Differ. Equations, 2016, vol. 52, no. 1, pp. 39–57.
7. Glushak, A.V., Family of Bessel operator functions, Geom. Mekh. Itogi Nauki Tekh. Ser.: Sovrem. Mat.

Pril. Temat. Obz., Moscow: VINITI RAN, 2020, vol. 187, pp. 36–43.
8. Levitan, B.M., Expansion in Bessel functions into Fourier series and integrals, Usp. Mat. Nauk , 1951,

vol. 1, no. 2 (42), pp. 102–143.
9. Glushak, A.V., On the relationship between the integrated cosine function and the operator Bessel

function, Differ. Equations, 2006, vol. 42, no. 5, pp. 619–626.
10. Kononenko, V.I. and Shmulevich, S.D., About one abstract parabolic equation, Sov. Math. (Iz. VUZ),

1984, vol. 28, no. 4, pp. 97–101.
11. Vorob’eva, S.A. and Glushak, A.V., An abstract Euler–Poisson–Darboux equation containing powers of

an unbounded operator, Differ. Equations, 2001, vol. 37, no. 5, pp. 743–746.
12. Glushak, A.V., Properties of solutions of equations containing powers of an unbounded operator, Differ.

Equations, 2003, vol. 39, no. 10, pp. 1428–1439.
13. Kipriyanov, I.A., Singulyarnye ellipticheskie kraevye zadachi (Singular Elliptic Boundary Value Prob-

lems), Moscow: Nauka, 1997.
14. Katrakhov, V.V. and Sitnik, S.M., Transformation operator method and boundary value problems for

singular elliptic equations, Sovrem. Mat. Fundam. Napravl., 2018, vol. 64, no. 2, pp. 211–426.
15. Sitnik, S.M. and Shishkina, E.L., Metod operatorov preobrazovaniya dlya differentsial’nykh uravnenii s

operatorami Besselya (Transformation Operator Method for Differential Equations with Bessel Opera-
tors), Moscow: Fizmatlit, 2019.

16. Shishkina, E.L., The general Euler–Poisson–Darboux equation and hyperbolic B-potentials, Sovrem.
Mat. Fundam. Napravl., 2019, vol. 65, no. 2, pp. 157–338.

17. Lyakhov, L.N. and Sanina, E.L., Kipriyanov–Beltrami operator with negative dimension of the Bessel
operators and the singular Dirichlet problem for the B-Harmonic Equation, Differ. Equations, 2020,
vol. 56, no. 12, pp. 1564–1574.

18. Glushak, A.V., On stabilization of the solution to the Dirichlet problem for one elliptic equation in
a Banach space, Differ. Equations, 1997, vol. 33, no. 4, pp. 513–517.

19. Eidel’man, S.D., Parabolicheskie sistemy (Parabolic Systems), Moscow: Nauka, 1964.
20. Yosida, K., Functional Analysis, Berlin–Heidelberg: Springer-Verlag, 1965. Translated under the title:

Funktsional’nyi analiz , Moscow: Mir, 1967.
21. Glushak, A.V. and Shmulevich, S.D., Integral representations of solutions to one singular equation

containing the sum of commuting operators, Differ. Equations, 1992, vol. 28, no. 5, pp. 676–682.
22. Glushak, A.V., A family of singular differential equations, Lobachevskii J. Math., 2020, vol. 41, no. 5,

pp. 763–771.
23. Koh, E.L. and Zemanian, A.N., The complex Hankel and I-transformations of generalized functions,

SIAM J. Appl. Math., 1968, vol. 16, no. 5, pp. 945–957.
24. Brychkov, Yu.A. and Prudnikov, A.P., Integral’nye preobrazovaniya obobshchennykh funktsii (Integral

Transformations of Generalized Functions), Moscow: Nauka, 1977.
25. Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integraly i ryady. Elementarnye funktsii (Inte-

grals and Series. Elementary Functions), Moscow: Nauka, 1981.
26. Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integraly i ryady. Spetsial’nye funktsii (Integrals

and Series. Special Functions), Moscow: Nauka, 1983.
27. Glushak, A.V., On the relationship between the solutions of an abstract Euler–Poisson–Darboux equa-

tion and fractional powers of the operator coefficient in the equation, Differ. Equations, 2022, vol. 58,
no. 5, pp. 577–592.

DIFFERENTIAL EQUATIONS Vol. 59 No. 10 2023


