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1. INTRODUCTION

Let E be a Banach space and A be a closed linear operator in E whose domain D(A) ⊂ E is not
necessarily dense in E. Consider the problem of defining the function

u(t) ∈ C([0, 1], E)
⋂

C2((0, 1], E)
⋂

C((0, 1),D(A)),

satisfying the abstract Euler–Poisson–Darboux equation

u′′(t) +
k

t
u′(t) = Au(t), 0 < t < 1, (1)

as well as some boundary conditions. The statement of boundary conditions for the Euler–Poisson–
Darboux equation, due to the singularity of the equation at the point t = 0, depends on the parameter
k ∈ R. Various types of boundary conditions at the points t = 0 and t = 1, as well as the corre-
sponding criteria for the uniqueness of the solution boundary and nonlocal problems were established
in [1, 2].

Problems of solvability of boundary value problems for a nonsingular second-order equation (the
case k = 0 in the equation (1)) with various assumptions on the operator A can be found in ([3], Ch. 3,
Sect. 2; [4]; [5], Ch. 2; [6]). Results on the solvability of boundary value problems in a half-space
for the Euler–Poisson–Darboux equation in partial derivatives are given in [7, Sect. 41], and the
boundary value problems on the semiaxis for abstract singular equations were studied in [8, 9]. Historical
information and a detailed range of questions for equations containing the Bessel operator can be found
in the introduction of monographs [10, 11].

In this paper, we present sufficient conditions for the unique solvability of the Dirichlet and Neumann
boundary value problems for an abstract Euler–Poisson–Darboux equation (1) and also for a number of
degenerate differential equations on a finite interval [0, 1].
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2. THE k < 1 CASE FOR THE EULER–POISSON–DARBOUX EQUATION. DIRICHLET
CONDITION FOR t = 0

For the Dirichlet problem of the form

u(0) = u0, u(1) = u1 (2)

in [1], the following criterion for the uniqueness of a solution was proved.
Theorem 1. Let k < 1 and A be a linear closed operator in E. We assume that the boundary

problem (1) and (2) has a solution u(t). For this solution to be unique, necessary and sufficient,
that none of the λn, n ∈ N zeros of the function

Υ2−k(λ) = Y2−k(1;λ), (3)

where

Y2−k(t;λ) = Γ(3/2 − k/2)
(
t
√
λ/2

)k/2−1/2
I1/2−k/2

(
t
√
λ
)
,

Γ(·) is Euler gamma function, Iν(·) is modified Bessel function, would not be an eigenvalue of the
operator A, i.e., λn /∈ σp(A).

Theorem 1 is established under very general conditions on the operator A, which do not ensure the
solvability of the Dirichlet problem. In the following theorem, we give sufficient conditions for its unique
solvability.

Theorem 2. Let k < 1, A be a linear closed operator in E, u1 ∈ D(A2), and also for all n ∈ N

the zeros of λn defined by the equality (3) of the function Υ2−k(λ), belong to the resolvent set
ρ(A), and the estimate

sup
n∈N

|λn| ||(λnI −A)−1|| < M0 < ∞. (4)

Then, the problem

u′′(t) +
k

t
u′(t) = Au(t), u(0) = 0, u(1) = u1 (5)

is uniquely solvable and its solution has the form

u(t) = −2t1−k
∞∑

n=1

Y2−k(t;λn)

Y ′
2−k(1;λn)

λn(λnI −A)−1u1. (6)

Proof. As is known ([12], points 15.33–15.35), zeros λn of the function Υ2−k(λ) simple and
negative, and lim

n→∞
λn
n2 = −π2.

Arrange them in descending order and using the equality

λn(λnI −A)−1u1 = I +A(λnI −A)−1u1, (7)

let us write (for now formally) the series (6) in the form

u(t) = ψk(t)u1 − 2t1−k
∞∑

n=1

Y2−k(t;λn)

Y ′
2−k(1;λn)

A(λnI −A)−1u1, (8)

where

ψk(t) = −2t1−k
∞∑

n=1

Y2−k(t;λn)

Y ′
2−k(1;λn)

. (9)

In particular, it follows from the equality (7) that the multiplication of the resolvent (λn I −A)−1 u1
by a λn corresponds to the application of the operator A.

Denoting
√
λn = iμn, defined by the equality (9), the function ψk(t) in terms of Bessel functions of

the first kind Jν(·) can be rewritten in the form

ψk(t) = −2t1−k
∞∑

n=1

Y2−k(t;λn)

Y ′
2−k(1;λn)

= −2t1/2−k/2
∞∑

n=1

I1/2−k/2(t
√
λn)√

λnI ′1/2−k/2(
√
λn)
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= −2t1/2−k/2
∞∑

n=1

J1/2−k/2(tμn)

μnJ ′
1/2−k/2(μn)

= 2t1/2−k/2
∞∑

n=1

J1/2−k/2(tμn)

μnJ3/2−k/2(μn)
= t1−k; (10)

the well-known relation zJ ′
ν(z) = νJν(z)− zJν+1(z) for the derivative Bessel functions of the first kind,

as well as the Fourier–Bessel expansion of a power function (see [13, 5.7.33.1])
∞∑

n=1

J1/2−k/2(tμn)

μnJ3/2−k/2(μn)
=

1

2
t1/2−k/2, 0 ≤ t < 1. (11)

Thus, ψk(t)u1 = t1−ku1, t ∈ [0, 1] and, as is easy to see, this function is a solution to the problem (5) for
A = 0.

Next, we study the convergence of the series in the formula (8). Same as in formulas (10) let’s write
it in the form

∞∑

n=1

J1/2−k/2(tμn)

μnJ3/2−k/2(μn)
A(λnI −A)−1u1, λn = −μ2

n, u1 ∈ D(A). (12)

Using the Abel transform, one establishes (see [14, p. 306]) simultaneous convergence, moreover, to
the same the sum of the next series

∞∑

n=1

anbn,

∞∑

n=1

(a1 + a2 + · · ·+ an)(bn − bn+1)

provided that

lim
n→∞

(a1 + a2 + · · ·+ an)bn = 0. (13)

Let’s put

an =
J1/2−k/2(tμn)

μnJ3/2−k/2(μn)
, bn = A(λnI −A)−1u1.

Then, due to (11)

|a1 + a2 + · · ·+ an| ≤ M1t
1/2−k/2, M1 > 0, (14)

and the difference bn − bn+1 is estimated using the inequality (4). Get

||bn − bn+1|| ≤ M0

(
1

|λn|
+

1

|λn+1|

)
||Au1|| ≤

M2||Au1||
n2

. (15)

The condition (13) is obviously satisfied, and taking into account (14), (15), we have
∣∣∣∣∣

∣∣∣∣∣

∞∑

n=1

(a1 + a2 + · · ·+ an)(bn − bn+1)

∣∣∣∣∣

∣∣∣∣∣ ≤ M3t
1/2−k/2

∞∑

n=1

1

n2
||Au1||,

therefore, the series (12) converges absolutely and uniformly in t ∈ [0, 1] and, consequently, also the
series in the formulas (6), (8) also converge.

It is easy to see that the representation (8) implies the validity of the boundary conditions u(0) = 0,
u(1) = u1 of problem (5).

Let us show that the series in the formula (8) can be term by term differentiated as u1 ∈ D(A2).
Consider a series of derivatives

∞∑

n=1

Y ′
2−k(t;λn)

Y ′
2−k(1;λn)

A(λnI −A)−1u1

and transform it using the equality

Y ′
2−k(t;λn) =

λnt

3− k
Y4−k(t;λn),
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and the shift formula with respect to the parameter (see [15]). As a result (up to a power factor) we will
have the series

1

3− k

∞∑

n=1

λnY4−k(t;λn)

Y ′
2−k(1;λn)

A(λnI −A)−1u1

=

∞∑

n=1

λn

Y ′
2−k(1;λn)

1∫

0

(1− s2)s2−kY2−k(ts;λn) ds A(λnI −A)−1u1

=

1∫

0

(1− s2)s2−k

( ∞∑

n=1

Y2−k(ts;λn)

Y ′
2−k(1;λn)

λn(λnI −A)−1Au1

)
ds.

Using the equality (7), we obtain the sum of two series whose uniform convergence has already been
proven earlier and which can be integrated term by term by s. Thus, it is established that the series in
the formula (8) can be differentiated term by term as u1 ∈ D(A).

Since by the condition u1 ∈ D(A2), the possibility of one more differentiation of the series in the
formula (8) installed in the same way.

We verify by direct differentiation that the function u(t) defined by the equality (8) satisfies task (5).
To do this, we calculate its derivatives. We have

u′(t) = ψ′(t)u1 − 2
∞∑

n=1

(1− k)t−kY2−k(t;λn) + t1−kY ′
2−k(t;λn)

Y ′
2−k(1;λn)

A(λnI −A)−1u1, (16)

u′′(t) = ψ′′(t)u1

− 2

∞∑

n=1

(1− k)(−k)t−k−1Y2−k(t;λn) + 2(1 − k)t−kY ′
2−k(t;λn) + t1−kY ′′

2−k(t;λn)

Y ′
2−k(1;λn)

×A(λnI −A)−1u1. (17)

Substituting (16), (17) into the left side of the equation (1), we get

u′′(t) +
k

t
u′(t) = −2

∞∑

n=1

t1−k
(
Y ′′
2−k(t;λn) + (2− k)t−1Y ′

2−k(t;λn)
)

Y ′
2−k(1;λn)

A(λnI −A)−1u1

= −2
∞∑

n=1

t1−kY2−k(t;λn)

Y ′
2−k(1;λn)

λnA(λnI −A)−1u1 = Au(t), 0 < t < 1.

Thus, the function u(t) defined by the equality (6) is a solution to the problem (5), and thus the theorem
is proved.

To conclude this section, we note that, in the language of control theory, Theorem 2 means
controllability from the zero position of the system described by the conditions (5).

3. THE k ≥ 0 CASE FOR THE EULER–POISSON–DARBOUX EQUATION.
NEUMANN’S WEIGHT CONDITION AT t = 0

For the Euler–Poisson–Darboux equation (1), consider a boundary value problem of the form

lim
t→0+

tku′(t) = u0, u(1) = u1. (18)

In [1], the following criterion for the uniqueness of a solution was proved.
Theorem 3. Let k ≥ 0 and A be a linear closed operator in E. We assume that the boundary

problem (1), (18) has a solution u(t). For this solution to be unique, necessary and sufficient, that
none of the λ̂n, n ∈ N zeros of the function

Υk(λ) = Yk(1;λ), (19)
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where Yk(t;λ) = Γ(k/2 + 1/2)
(
t
√
λ/2

)1/2−k/2
Ik/2−1/2

(
t
√
λ
)

, would not be an eigenvalue of the

operator A.

Theorem 4. Let k ≥ 0, A be a linear closed operator in E, u1 ∈ D(A2), and also for all n ∈ N

the zeros of λ̂n defined by the equality (19) of the function Υk(λ), belong to the resolvent set ρ(A),
and the estimate

sup
n∈N

|λ̂n| ||(λ̂nI −A)−1|| < M0 < ∞.

Then, the problem

u′′(t) +
k

t
u′(t) = Au(t), lim

t→0+
tku′(t) = 0, u(1) = u1 (20)

is uniquely solvable and its solution has the form

u(t) = −2
∞∑

n=1

Yk(t; λ̂n)

Y ′
k(1; λ̂n)

λ̂n(λ̂nI −A)−1u1.

The proof of Theorem 4 is basically similar to the proof of Theorem 2.

4. BOUNDARY VALUE PROBLEMS FOR DEGENERATE DIFFERENTIAL EQUATIONS
WITH POWER DEGENERACY

As applications of Theorems 2 and 4 in the Banach space E, consider the equation that degenerates
with respect to the variable t

tγv′′(t) + btγ−1v′(t) = Av(t), 0 < t < T. (21)

Let 0 < γ < 2, b ∈ R. The value of the parameter γ, 0 < γ < 2 means a weak degeneration of the
equation (21), in contrast to the case of strong degeneracy γ > 2, which will also be considered further
in the paper. For γ = 2, the Euler equation is obtained, which, as is well known, reduces to a non-
degenerate equation.

The setting of boundary conditions at the degeneracy point t = 0 depends on the coefficients b and
γ > 0 of the equation and these boundary conditions will be given below.

For b < 1, consider the problem of determining the function v(t) ∈ C([0, T ], E)
⋂

C2((0, T ], E),
belonging to D(A) for t ∈ (0, T ), satisfying the equation (21) and the Dirichlet conditions

v(0) = 0, v(T ) = v1. (22)

Change of independent variable and unknown function

t =
(τ

δ

)δ
, δ =

2

2− γ
, v(t) = v

((τ
δ

)δ
)

= w(τ),

taking into account the equalities

v′(t) =
(τ
δ

)1−δ
w′(τ), v′′(t) =

(τ

δ

)2(1−δ)
(
w′′(τ) +

1− δ

τ
w′(τ)

)
,

reduces the weakly degenerate equation (21) to the Euler–Poisson–Darboux equation of the form

w′′(τ) +
k

τ
w′(τ) = Aw(τ), τ ∈ [0, l], (23)

where k = bδ − δ + 1, δ =
2

2− γ
, l = δT 1/δ . To simplify the notation, we will further assume that T is

chosen so that l = 1. At the same time, the conditions (22) are converted into conditions respectively

w(0) = 0, w(1) = v1. (24)
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The resulting problem (23) and (24) has already been studied by us in paragraph 2. Returning to
the original Dirichlet problem (21) and (22) for a weakly degenerate equation, using Theorem 2, we
formulate the following conditions unambiguous resolution.

Theorem 5. Let 0 < γ < 2, b < 1, k = 2(b−1)
2−γ + 1, δ = 2

2−γ , T = 1
δδ

, A is a linear closed operator

in E, v1 ∈ D(A2), and also for all n ∈ N the zeros of λn defined by the equality (3) of the function
Υ2−k(λ), belong to the resolvent set ρ(A), and the estimate

sup
n∈N

|λn| ||(λnI −A)−1|| < M0 < ∞.

Then, the Dirichlet problem (21), (22) for the weakly degenerate equation is uniquely solvable
and its solution has the form

v(t) = −2(δt1/δ)1−k
∞∑

n=1

Y2−k(δt
1/δ ;λn)

Y ′
2−k(1;λn)

λn(λnI −A)−1v1.

As mentioned earlier, the setting of the boundary condition at the degeneracy point t = 0 depends
on the coefficient b. Let now the coefficient b > γ/2 in the equation (23). In this case, instead of the
Dirichlet conditions (22) the following conditions should be set

lim
t→0+

tbv′(t) = 0, v(1) = v1. (25)

Similar to Theorem 5, but using Theorem 4 instead of Theorem 2, and in this case we formulate the
conditions for unique solvability corresponding boundary value problem.

Theorem 6. Let 0 < γ < 2, b > γ/2, k = 2(b−1)
2−γ +1, δ = 2

2−γ T = 1
δδ

, A is a linear closed operator

in E, v1 ∈ D(A2), and also for all n ∈ N the zeros of λ̂n defined by the equality (19) of the function
Υk(λ), belong to the resolvent set ρ(A), and the estimate

sup
n∈N

|λ̂n| ||(λ̂nI −A)−1|| < M0 < ∞.

Then, the problem (21) and (25) is uniquely solvable and its solution has the form

v(t) = −2

∞∑

n=1

Yk(δt
1/δ ; λ̂n)

Y ′
k(1; λ̂n)

λ̂n(λ̂nI −A)−1v1.

Let us further consider the equation (21) in the case of strong degeneracy, when the parameter γ > 2.
Change of independent variable and unknown function

t =
(
−τ

δ

)−δ
, δ =

2

2− γ
v(t) = v

((
−τ

δ

)−δ
)

= ŵ(τ)

reduces the strongly degenerate equation (21) to the Euler–Poisson–Darboux equation of the form

ŵ′′(τ) +
p

τ
ŵ′(τ) = Aŵ(τ), 0 < τ < l, (26)

where p =
2(b− 1)

γ − 2
+ 1, l = −δT−1/δ . To simplify notation, in what follows, as before, we will assume

that T is chosen so that l = 1.

In the case of strong degeneracy, the setting of the boundary conditions at the degeneracy point
t = 0 also depends on the coefficient b. Sufficient conditions for the unique solvability of boundary
value problems for the Euler–Poisson–Darboux equation (26), which reduce considered boundary value
problems for strongly degenerate equations are contained in Theorems 2 and 4; therefore, similarly
Theorems 5 and 6 establish the following assertions.
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Theorem 7. Let γ > 2, b < 1, p = 2(b−1)
2−γ +1, δ = 2

2−γ , T =
(

1
−δ

)−δ
, A is a linear closed operator

in E, v1 ∈ D(A2), and also for all n ∈ N the zeros of λn defined by the equality (3) of the function
Υ2−p(λ), belong to the resolvent set ρ(A), and the estimate

sup
n∈N

|λn| ||(λnI −A)−1|| < M0 < ∞.

Then, the Dirichlet problem (21), (22) for a strongly degenerate equation is uniquely solvable
and its solution has the form

v(t) = −2(−δt−1/δ)1−p
∞∑

n=1

Y2−p(−δt−1/δ ;λn)

Y ′
2−p(1;λn)

λn(λnI −A)−1v1.

Theorem 8. Let γ > 2, b > 2− γ/2, p = 2(b−1)
2−γ + 1, δ = 2

2−γ , T =
(

1
−δ

)−δ
, A is a linear closed

operator in E, v1 ∈ D(A2), and also for all n ∈ N the zeros of λ̂n defined by the equality (19) of
the function Υp(λ), belong to the resolvent set ρ(A), and the estimate

sup
n∈N

|λ̂n| ||(λ̂nI −A)−1|| < M0 < ∞.

Then, the problem

tγv′′(t) + btγ−1v′(t) = Av(t), lim
t→0+

t2−bv′(t) = 0, v(1) = v1

is uniquely solvable and its solution has the form

v(t) = −2

∞∑

n=1

Yp(−δt−1/δ ; λ̂n)

Y ′
p(1; λ̂n)

λ̂n(λ̂nI −A)−1v1.

Finally, we formulate a theorem for the abstract analogue of the degenerate in space variable
differential equation with a power character of degeneracy. For ω > 0, consider the equation

v′′(t) = tωAv(t), 0 < t < T (27)

and boundary conditions

v(0) = 0, v(T ) = v1. (28)

If A is the differentiation operator with respect to the spatial variable x, for example, Av(t, x) =
v′′xx(t, x), then the equation (27) is a degenerate hyperbolic generalization of the Tricomi equation, but
has a different character degeneracy compared to the previous degenerate equations. Therefore, the
abstract equation (27) is also natural call degenerate.

Change of variable and unknown function

t =
( τ

σ

)σ
, σ =

2

ω + 2
, v(t) =

(τ

σ

)σ
w̃(τ)

for T =
1

σσ
reduces the problem (27) and (28) to a boundary value problem for Euler–Poisson–Darboux

equations

w̃′′(τ) +
σ + 1

τ
w̃′(τ) = Aw̃(τ) (0 < τ < 1), lim

τ→0
τσ+1w̃′(0) = 0, w̃(1) = σσv1.

Since the parameter of the Euler–Poisson–Darboux equation (1) satisfies the inequality k = σ+1 >
1, then by virtue of Theorem 4, the following assertion is true.

Theorem 9. Let ω > 0, σ = 2
ω+2 , k = ω+4

ω+2 , T = 1
σσ , A is a linear closed operator in E, v1 ∈

D(A2), and also for all n ∈ N the zeros of λ̂n defined by the equality (19) of the function Υk(λ),
belong to the resolvent set ρ(A), and the estimate

sup
n∈N

|λ̂n| ||(λ̂nI −A)−1|| < M0 < ∞
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Then, the problem (27) and (28) is uniquely solvable and its solution has the form

v(t) = −2σσt

∞∑

n=1

Yk(σt
1/σ; λ̂n)

Y ′
k(1; λ̂n)

λ̂n(λ̂nI −A)−1v1. (29)

5. EXAMPLES OF SOLVING BOUNDARY PROBLEMS

Let us give several examples of problems whose solutions can be expressed in integral form.
Example 1. Let k = 0 and the operator−A be the generator of the operator cosine functionC(t;−A),

which satisfies the estimate
||C(t;−A)|| ≤ Meωt, M > 1, ω ≥ 0. (30)

Then, as is known, the resolvent of the operator −A satisfies the representation

ξ(ξ2I +A)−1 =

∞∫

0

e−ξtC(t;−A) dt, ξ > ω. (31)

Consider the problem

u′′(t) = Au(t), u(0) = 0, u(1) = u1 ∈ D(A2). (32)

If in the inequality (30) ω < π, then given the representation (31), according to Theorem 2, we write
the solution of the problem (32) in the form

u(t) = −2t

∞∑

n=1

Y2(t;λn)

Y ′
2(1;λn)

λn(λnI −A)−1u1 = 2
√
t

∞∑

n=1

J1/2(t;μn)

μnJ3/2(1;μn)
λn(λnI −A)−1u1

= 2
√
t

∞∑

n=1

J1/2(t;μn)

J3/2(1;μn)
πn((πn)2I +A)−1u1 = 2

∞∑

n=1

(−1)n+1 sin(πnt) πn((πn)2I +A)−1u1

= 2

∞∑

n=1

(−1)n+1 sin(πnt)

∞∫

0

e−πnsC(s;−A)u1 ds, ω < π, (33)

where λn = −(πn)2, μn = πn are the zeros of the function J1/2(μ) =

√
2

πμ
sinμ.

Using series ([16], 5.4.12.1), after summing under the integral sign in the formula (33), we obtain the
representation integral solutions

u(t) = sinπt

∞∫

0

C(s;−A)u1 ds

ch πs+ cos πt
, ω < π. (34)

In particular, if the number A < 0, then C(s;−A) = ch
(
s
√
−A

)
, and calculating the integral (see

[16], 2.4.6.7) in the formula (34), we obtain the solution of the Dirichlet problem in the scalar case

u(t) =
sin

(
t
√
−A

)
u1

sin
(√

−A
) .

Condition ω =
√
−A < π required for integral representation (34) in the last equality is no longer

required.
Note also that in the case A < 0 the sum of the series in the representation (6) of the solution of the

Dirichlet problem for k < 1 can be found directly, using formula ([13], 5.7.33.4), and we arrive at the
expression

u(t) =
t1/2−k/2J1/2−k/2(t

√
−A)

J1/2−k/2(
√
−A)

u1.
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Example 2. Let k = 2 the operator −A be the generator of the operator cosine function C(t;−A),
which satisfies the estimate (30). Taking into account Theorem 4, similarly to Example 1 for solving the
problem

u′′(t) +
2

t
u′(t) = Au(t), lim

t→0+
t2u′(t) = 0, u(1) = u1 ∈ D(A2)

the integral representation is set

u(t) =
sinπt

t

∞∫

0

C(s;−A)u1 ds

ch πs+ cos πt
, ω < π.

In particular, if the number A < 0, then using formula ([13], 5.7.33.4), we obtain the solution of the
problem (20) for k ≥ 0 in the form

u(t) =
t1/2−k/2Jk/2−1/2(t

√
−A)

Jk/2−1/2(
√
−A)

u1, (35)

which for k = 2 has the form

u(t) =
sin

(
t
√
−A

)
u1

t sin
(√

−A
) .

Example 3. Let k = 0 and, as before, the operator −A is the generator of the operator cosine function
C(t;−A) which satisfies the estimate (30). Consider the problem

u′′(t) = Au(t), lim
t→0+

u′(t) = 0, u(1) = u1 ∈ D(A2). (36)

If in the inequality (30) ω <
π

2
, then given the representation (31), according to Theorem 4, we write

the solution of the problem (36) in the form

u(t) = −2

∞∑

n=0

C(t; λ̂n)

C ′(1; λ̂n)
λ̂n(λ̂nI −A)−1u1 = 2

∞∑

n=0

cos (tμ̂n)

μ̂n sin μ̂n
λ̂n(λ̂nI −A)−1u1

= 2

∞∑

n=0

(−1)n cos

(
πt

2
+ πnt

) ∞∫

0

e−(π/2+πn)sC(s;−A)u1 ds, ω <
π

2
, (37)

where λ̂n = −
(π
2
+ πn

)2
, μ̂n =

π

2
+ πn are zeros of the cosμ function.

Using series ([16], 5.4.12.4), after summing under the integral sign in the formula (37), we obtain the
representation integral solutions

u(t) = 2 cos
πt

2

∞∫

0

cosh
πs

2
C(s;−A)u1 ds

coshπs+ cos πt
, ω <

π

2
. (38)

In particular, if the number A < 0, then C(s;−A) = cosh
(
s
√
−A

)
, and calculating the integral (see

[16], 2.4.6.14) in the formula (38), we obtain the solution of the problem (36) in the scalar case

u(t) =
2 cos

πt

2
sinπt

cos
π(1− t)

2
cos

(√
−A(t+ 1)

)
− cos

π(1 + t)

2
cos

(√
−A(1− t)

)

1 + cos
(
2
√
−A

)

=
2cos

πt

2
sinπt

sin
πt

2
cos

(√
−A(t+ 1)

)
+ sin

πt

2
cos

(√
−A(1− t)

)

1 + cos
(
2
√
−A

)
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=
cos

(√
−A(t+ 1)

)
+ cos

(√
−A(1− t)

)

1 + cos
(
2
√
−A

) =
cos

(
t
√
−A

)
u1

cos
(√

−A
) ,

which agrees with the representation (35) for k = 0. Condition ω =
√
−A <

π

2
required for integral

representation (38) in the last equality is no longer required.

Example 4. Let γ = 1, b = 1
2 and operator −A be the generator operator cosine function C(t;−A)

that satisfies the estimate (30). Using Theorem 5, we define the parameters used in it are k = 0, δ = 2,
T = 1

4 , and similarly example 1 to solve the problem

tγv′′(t) + btγ−1v′(t) = Av(t), v(0) = 0, v(T ) = v1

set the view

v(t) = sin(2π
√
t)

∞∫

0

C(s;−A)v1 ds

ch πs+ cos(2π
√
t)
, ω < π.

In particular, if the number A < 0, then by calculating the integral (see [13], 5.7.33.4), we obtain the
solution of the Dirichlet problem in the scalar case

v(t) =
sin

(
2
√
−At

)
v1

sin
(√

−A
) .

Example 5. If the number is A < 0 and σ =
2

ω + 2
, k =

ω + 4

ω + 2
, then in this scalar case the sum

of the series in the representation (29) of the solution to the problem (27), (28) is found directly, using
formula ([13], 5.7.33.4), and we arrive at the expression

v(t) =
σσ/2

√
tJk/2−1/2(σ

√
−At1/σ)

Jk/2−1/2(
√
−A)

v1. (39)

The form of the solution is consistent with formula ([17], 2.162(10)). In particular, the solution of the
boundary value problem for the Airy equation we get from (39) with ω = 1.

6. SOBOLEV TYPE SINGULAR EQUATION

The results of the previous subsections are generalized to the case of a singular equation of Sobolev
type

B

(
u′′(t) +

k

t
u′(t)

)
= Au(t), 0 < t < 1,

where, like A, the operator B is a closed linear operator operator in E whose domain D(B) ⊂ E is not
necessarily dense in E. Information about the uniqueness criterion for the solution of the corresponding
boundary value problems is given in [1].

The scheme of proof of the statements is similar to the proof of Theorems 2 and 4. A distinctive
feature is the change of equality Ah = λh, which determines the eigenvalues of the operator A, onto the
operator equation Ah = λBh, as well as replacing the point spectrum σp(A) with the spectrum σp(B,A)
operator A with respect to B and the resolvent set ρ(A) on resolvent set ρ(B,A) of the operator A with
respect to B.

Theorem 10. Let k < 1, A, B be linear closed commuting operators in E, u1 ∈ D(A2)
⋂

D(B),
and also for all n ∈ N the zeros of λn defined by the equality (3) functions Υ2−k(λ), belong to the
resolvent set ρ(B,A), and the estimate

sup
n∈N

|λn|||(λnB −A)−1|| < M0 < ∞.
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Then, the task

B

(
u′′(t) +

k

t
u′(t)

)
= Au(t), u(0) = 0, u(1) = u1

is uniquely solvable and its solution has the form

u(t) = −2t1−k
∞∑

n=1

Y2−k(t;λn)

Y ′
2−k(1;λn)

λnB(λnB −A)−1u1.

Theorem 11. Let k ≥ 0, A, B be linear closed commuting operators in E, u1 ∈ D(A2)
⋂

D(B),
and also for all n ∈ N the zeros of λ̂n defined by the equality (19) functions Υk(λ), belong to the
resolvent set ρ(B,A), and the estimate

sup
n∈N

|λ̂n|||(λ̂nB −A)−1|| < M0 < ∞.

Then, the task

B

(
u′′(t) +

k

t
u′(t)

)
= Au(t), lim

t→0+
tku′(t) = 0, u(1) = u1

is uniquely solvable and its solution has the form

u(t) = −2

∞∑

n=1

Yk(t; λ̂n)

Y ′
k(1; λ̂n)

λ̂nB(λ̂nB −A)−1u1.
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