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SOLVING THE EULER–POISSON–DARBOUX EQUATION
OF FRACTIONAL ORDER

A. V. Dzarakhohov and E. L. Shishkina UDC 517.95

Abstract: Interest in fractional ordinary and partial differential equations has been steadily increasing
in the recent decades. This is due to the necessity of modeling the processes whose current state depends
significantly on the previous ones, i.e., the so-called systems with residual memory. We consider the
Cauchy problem for the one-dimensional, homogeneous Euler–Poisson–Darboux equation with a differ-
ential operator of fractional order in time being the left-sided fractional Bessel operator. At the same
time, we use the ordinary differential operator in the space variable of the second order. We reveal the
connection between the Meyer and Laplace transform which is obtained by the Poisson transform and
presents a special case of the relation with the Obreshkov transformation. We prove the theorem that
yields the conditions of the existence of a solution to the problem by using the Meyer transform. In
this case, a solution to the problem is represented explicitly in terms of the generalized Green’s function
that determines the generalized hypergeometric Fox H-function.
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1. Introduction

The classical Euler–Poisson–Darboux equation (EPD) is of the form

∂2u

∂t2
+

γ

t

∂u

∂t
=

∂2u

∂x2
, u = u(x, t), x ∈ R, t > 0, γ ∈ R. (1)

The operator, acting on the variable t in (1), agrees with the Bessel operator (Bγ)t =
∂2

∂t2
+ γ

t
∂
∂t (see [1]).

Equation (1) serves as a random flight model (see [2–8]). The first contribution to this area was
made by Goldstein in 1951 (see [2]). He considered the simplest random walk along a real line in which
a particle situated at the origin at time 0 moves with two finite speeds ±λ changing its current speed in
accord with the simplest Poisson process with a constant parameter μ. He found out that the distribution
of particles at a position x during a time t is a solution to a telegraph equation of the form

∂2u

∂t2
+ 2μ

∂u

∂t
= λ2 ∂

2u

∂x2
.

Next, this model was studied in details by Kac in [3] and Orsingher in [4, 5]. The articles [6–9] treat
the natural generalizations for a Poisson process with the intensity function λ = λ(t) ∈ C1(R) as well as
for the multidimensional situation. The random walk models with fractional derivatives are considered
in [10, 11].

In [12] there is demonstrated that the Euler–Poisson–Darboux equation

∂2u

∂t2
+

γ

t

∂u

∂t
= λ2∂

2u

∂x2
, u = u(x, t), a > 0, t > 0, x ∈ R, (2)
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determines the probability law of a random walk on R. The explicit distribution u(x, t) of the moving
particle positions appears in solving the initial value problems for (2).

In [8], the fractional diffusion wave equation

(
∂2u

∂t2
+

γ

t

∂u

∂t

)α

u = λ2 ∂
2u

∂x2
, u = u(x, t), x ∈ R, t > 0, 0 < α < 1, (3)

is obtained as a random walk model. If α ∈ (0, 1/2) then a particle moves slowly on the average than in
the case of (2) with α = 1. A particle moves faster on the average if α ∈ (1/2, 1).

In this article we use the operational method for solving (3) with some additional conditions for
0 < α ≤ 1/2.

2. Special Functions

We start with the definitions of some special functions to be used below.
The modified Bessel functions (or hyperbolic Bessel functions) of the first and second kind Iν(x)

and Kν(x) are defined as follows (see [13]):

Iν(x) = i−νJα(ix) =
∞∑

m=0

1

m! Γ(m+ ν + 1)

(x
2

)2m+ν
, (4)

Kν(x) =
π

2

I−ν(x)− Iα(x)

sin(νπ)
, (5)

where ν is a noninteger. To determine these functions for the integer values of α, we need passage to the
limit. Obviously, Kν(x) = K−ν(x). For the small values of the argument 0 < |x| �

√
ν + 1, we have the

asymptotic formula

Kν(x) ∼
{

− log
(
x
2

)
− ϑ, ν = 0,

Γ(ν)
21−ν x−ν , ν > 0,

(6)

where

ϑ = lim
n→∞

(
− logn+

n∑
k=1

1

k

)
=

∞∫
1

(
−1

x
+

1

�x�

)
dx

is the Euler–Macdonald constant [14].
The asymptotic behavior of the Bessel function Kν(z) at infinity is described by the formula

Kν(z) =

√
π

2

e−z

√
z

(
1 +O

(
1

z

))
as |z| → ∞. (7)

Given ν = 1
2 , we infer that

K 1
2
(x) =

√
π

2x
e−x. (8)

The kernel of the left-sided Bessel derivative on the half-axis is the hypergeometric Gauss function
inside the disk |z|<1 as the sum of the hypergeometric series (see [14, formula 15.3.1])

2F1(a, b; c; z) = F (a, b, c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, (9)

and as an analytic continuation of this series for |z| ≥ 1. In (9), the parameters a, b, and c, as well
as the variable z can be complex and c �= 0,−1,−2, . . . . The factor (a)k is the Pochhammer symbol
(z)n = z(z + 1) . . . (z + n− 1), with n = 1, 2, . . . , (z)0 ≡ 1.
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The Mittag-Leffler function Eα,β(z) is an entire function of order 1/α which is defined for Reα > 0
by the series

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, z ∈ C, α, β ∈ C, Reα > 0, Reβ > 0. (10)

Let z, ρ, β ∈ C. The function ϕ(ρ, β; z) is defined by the formula (see [15, formula E.36′] and [16,
formula (7.1.1)])

ϕ(ρ, β; z) =

∞∑
k=0

1

Γ(ρk + β)

zk

k!
. (11)

If ρ > −1 then the series in (11) converges absolutely for all z ∈ C. For ρ = −1, this series converges
absolutely for |z| < 1. If ρ = −1 and |z| = 1 then the series in (11) converges absolutely for Reβ > −1.
Moreover, ϕ(ρ, β; z) is an entire function of z for ρ > −1. For the real values of z, the function of (11) is
considered in [17].

For ρ = 1 and β = ν+1, the function ϕ(α, β;±z2/4) is expressed through the Bessel functions Jν(z)
and Iν(z) as follows:

ϕ

(
1, ν + 1;−z2

4

)
=

(
2

z

)ν

Jν(z), ϕ

(
1, ν + 1;

z2

4

)
=

(
2

z

)ν

Iν(z).

For the integers m, n, p, and q such that 0 ≤ m ≤ q and 0 ≤ n ≤ p, while ai, bj ∈ C and for
αi, βj ∈ R+ (i = 1, 2, . . . , p; j = 1, 2, . . . , q) the H-function Hm,n

p,q (z) is defined through the Mellin–Barnes
integral of the form [18]

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣∣
{

(ai, αi)1,p,

(bj , βj)1,q

]
=

1

2πi

∫
L

H m,n
p,q (s) z−s ds, (12)

where

H m,n
p,q (s) =

m∏
j=1

Γ(bj + βjs)
n∏

i=1
Γ(1− ai − αis)

p∏
i=n+1

Γ(ai + αis)
q∏

j=m+1
Γ(1− bj − βjs)

.

Put

a∗ =
n∑

i=1

αi −
p∑

i=n+1

αi +
m∑
j=1

βj −
q∑

j=m+1

βj ,

Δ =

q∑
j=1

βj −
p∑

i=1

αi,

μ =

q∑
j=1

bj −
p∑

i=1

ai +
p− q

2
.

Here the H-function Hm,n
p,q (z) makes some sense whenever Δ > 0 and z �= 0, while L = L−∞ is a left loop

located on a horizontal strip starting at −∞+ iϕ1 and ending at −∞+ iϕ2, with −∞ < ϕ1 < ϕ2 < +∞.
The other cases of existence of Hm,n

p,q (z) are given in [18, Theorem 1.1].
Between ϕ(ρ, β; z) and Hm,n

p,q (z) we have the following connection (see [17, formula 2]):

ϕ(ρ, β; z) = H1,0
0,2

[
− z

∣∣∣∣ −
(0, 1), (1− β, ρ)

]
. (13)

In [18, p. 33] there is given the formula of differentiation of the H-function(
d

dz

)k {
zωHm,n

p,q

[
czσ

∣∣∣∣ (ai, αi)1,p
(bj , βj)1,q

]}
= zω−kHm,n+1

p+1,q+1

[
czσ

∣∣∣∣ (−ω, σ), (ai, αi)1,p
(bj , βj)1,q, (k − ω, σ)

]
. (14)
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3. Integral Transforms, the Poisson Operator,
and the Fractional Riemann–Liouville Integral

In this section, we describe the Laplace and Meyer transforms and give the formula of their connection
by using the Poisson transform. Also we state some theorem that calculates the fractional Riemann–
Liouville integral of ϕ(ρ, β;−z).

The Laplace transform of ϕ(ρ, β; ktα) is written as (see [19])
(
Lt t

β−1ϕ(ρ, β;−ktα)
)
(τ) = τ−βe−kz−ρ

. (15)

To apply the operational method for solving differential equations with a fractional power of the
Bessel operator, we need a convenient integral transform. In our case we can take the integral transform
with a modified Bessel function (5) in the kernel.

Given a function f : R+ → C, the integral transform with the Bessel function Kν , ν ≥ 0 in the kernel
is the Meyer transform defined by the formula (see [20, p. 93])

Kν [f ](ξ) =

∞∫
0

√
xξ Kν(xξ) f(x) dx. (16)

The condition ν ≥ 0 is not restrictive, since Kν = K−ν .
It is convenient for us to use the modification of the Meyer transform:

Kγ [f ](ξ) =

∞∫
0

x
γ+1
2 K γ−1

2
(xξ) f(x) dx. (17)

Considering (8) and using the fact that Kν = K−ν for γ = 0 and γ = 2, we infer that

K0[f ](ξ) =

√
π

2ξ

∞∫
0

e−xξ f(x) dx =

√
π

2ξ
L [f(x)](ξ),

K2[f ](ξ) =

√
π

2ξ

∞∫
0

xe−xξ f(x) dx =

√
π

2ξ
L [xf(x)](ξ),

where L [f(x)](ξ) is the Laplace transform.
Assume that

f ∈ Lloc
1 (R+) and f(t) = o

(
tβ−

γ
2
)

as t → +0,

where β > γ
2 − 2 if γ > 1 and β > −1 if γ = 1. Moreover, let f(t) = 0(eat) as t → +∞. In this case the

Meyer transform of f exists almost everywhere for Re ξ > a (see [20, p. 94]). The class of these functions
is denoted by Kγ .

If 0 < γ < 2, while F (ξ) is analytic in the half-plane Ha = {p ∈ C : Re p ≥ a}, a ≤ 0, and

s
γ
2
−1F (ξ) → 0, |ξ| → +∞ uniformly on arg s; then, for every real c such that c > a, we have the inverse

transform K −1
γ of the form (see [20, p. 94])

K −1
γ [f̂ ](x) = f(x) =

1

πi

c+i∞∫
c−i∞

f̂(ξ)i γ−1
2
(xξ)ξγ dξ. (18)

Formula (18) is not convenient for calculations due to the constraint 0 < γ < 2. So we present one
more inversion formula by using the Poisson transform.
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To simplify the recover of a function from its Meyer transform, we employ the Poisson operator of
the form

Pγ
xf(x) = (Pγ

t f(t))(x) =
2C(γ)

xγ−1

x∫
0

(
x2 − t2

) γ
2
−1

f(t) dt, C(γ) =
Γ

(
γ+1
2

)
√
π Γ

(γ
2

) . (19)

The left inverse to (19) for γ > 0 and every function H(x) ∈ Cn is defined as

(Pγ
x )

−1H(x) =
2
√
πx

Γ
(
γ+1
2

)
Γ

(
n− γ

2

)
(

d

2xdx

)n
x∫

0

H(z)(x2 − z2)n−
γ
2
−1zγ dz, (20)

where n =
[γ
2

]
+ 1.

The Poisson transform is a particular case of Erdeyi–Kober fractional integration operator and its
inversion is analogous to the case of the Erdeyi–Kober fractional derivative [21].

We will use the representation of Kν in [13, formula (4)] which is of the form

Kν(xξ) =

√
π

Γ
(
ν + 1

2

)
(

ξ

2x

)ν
∞∫
x

e−ξz(z2 − x2)ν−
1
2 dz

and (19) together with

x
γ+1
2 K γ−1

2
(xξ) =

√
π xξ

γ−1
2

2
γ−1
2 Γ

(γ
2

)
∞∫
x

e−ξz(z2 − x2)
γ
2
−1 dz.

We thus obtain the representation of the Meyer transform

Kγ [f ](ξ) =
π ξ

γ−1
2

2
γ+1
2 Γ

(
γ+1
2

) (
L zγ−1Pγ

z zf(z)
)
(ξ).

Finally,

Kγ [f ](ξ) =
π ξ

γ−1
2

2
γ+1
2 Γ

(
γ+1
2

) (
L zγ−1Pγ

z zf(z)
)
(ξ), (21)

where L is the Laplace transform.
Representation (21) is a particular case of a more general one for the Obreshkov transform with

the Poisson–Dimovski operator. The Poisson–Dimovski and Sonin–Dimovski operators generalize the
Poisson operator in the sense of the fractional Kiryakova integro-differentiation (see [15, part 3]).

For θ > 0, the fractional Riemann–Liouville integral is defined as follows (see [21]):

(
Iθ−f

)
(x) =

1

Γ(θ)

∞∫
x

f(t)(t− x)θ−1 dt, x > 0.

Next, we need also the formula of the fractional Riemann–Liouville integral of zωϕ(ρ, β;−zσ) which
results from [18, Theorem 2.7].

Theorem 1. Assume that θ > 0, ω ∈ R, σ > 0, and ρ < 1. If ω + θ < 0, then the fractional
integral Iθ− of zωϕ(ρ, β;−zσ) exists and

(
Iθ−p

ωϕ(ρ, β;−pσ)
)
(w) =

(
Iθ−p

ωH1,0
0,2

[
pσ

∣∣∣∣ −
(0, 1), (1− β, ρ)

])
(w)

= wω+θH2,0
1,3

[
wσ

∣∣∣∣ (−ω, σ)
(−ω − θ, σ), (0, 1), (1− β, ρ)

]
. (22)
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4. Fractional Integrals and Bessel Derivatives

Some explicit definition of the fractional power of the Bessel operator (Bγ)t =
∂2

∂t2
+ γ

t
∂
∂t was given by

Sprinkhuizen-Kuyper in [22]. This definition was obtained in terms of Gauss hypergeometric functions
with various applications to PDEs. McBride in [23] considers the fractional powers of the hyper-Bessel
operator which includes the operators of the present article.

Let α > 0 and γ > 0. The left-sided fractional Bessel integral on the half-axis B−α
γ,0+ for f ∈ L[0,∞)

is defined as

(B−α
γ,0+f)(x) = (IBα

γ,0+ f)(x)

=
1

Γ(2α)

x∫
0

(y

x

)γ
(
x2−y2

2x

)2α−1

2F1

(
α+

γ−1

2
, α; 2α; 1−y2

x2

)
f(y) dy. (23)

The properties of (23) are collected in [24].
Let

n = [α] + 1, f ∈ L[0,∞), and IBn−α
γ,b−f, IB

n−α
γ,b−f ∈ C2n(0,∞).

Define the left-sided fractional Bessel integral on the half-axis as

(Bα
γ,0+f)(x) = (IBn−α

γ,0+B
n
γ f)(x), (24)

where Bn
γ =

(
∂2

∂x2 + γ
x

∂
∂x

)n
is the integrated Bessel operator.

The spaces to use Bα
γ,0+, with α ∈ R, were introduced in [23] as follows:

Fp =

{
ϕ ∈ C∞(0,∞) : xk

dkϕ

dxk
∈ Lp(0,∞), k = 0, 1, 2, . . .

}
, 1 ≤ p < ∞,

F∞ =

{
ϕ ∈ C∞(0,∞) : xk

dkϕ

dxk
→ 0 as x → +, x → ∞, k = 0, 1, 2, . . .

}
,

and

Fp,μ =
{
ϕ : x−μϕ(x) ∈ Fp

}
, 1 ≤ p ≤ ∞, μ ∈ C.

The next theorem is a particular case of that in [23].

Theorem 2. Let α ∈ R. For all p, μ and γ > 0 such that μ �=1
p−2m, γ �=1

p−μ−2m+1,m = 1, 2, . . . ,

the operator Bα
γ,0+ is a continuous linear mapping from Fp, μ to Fp,μ−2α. Moreover, if 2α �= μ− 1

p + 2m

and γ − 2α �= 1
p − μ − 2m + 1, m = 1, 2 . . . ; then Bα

γ,0+ is a homeomorphism from Fp, μ onto Fp,μ−2α,

with the inverse operator B−α
γ,0+.

Operators (23) and (24) were studied, but any convenient tool was absent for solving differential
equations with fractional powers of the Bessel operator. Firstly, some appropriate tool was proposed
in [25] as transform (17). We will recall some results of [25] of use in the sequel. Applying the Meyer
transform, we suppose that it applies to the functions in Kγ .

Theorem 3. Let α > 0. The Meyer transform (17) of B−α
γ,0+ is of the form

Kγ

[(
IBα

γ,0+f
)
(x)

]
(ξ) = ξ−2αKγf(ξ). (25)
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Theorem 4. Assume that n ∈ N and d
dx

[
Bn−k

γ f(x)
]
is bounded. Then the Meyer transform of Bn

γ f
exists and, for γ �= 1, is defined by the formula

Kγ [B
n
γ f ](ξ) = ξ2nKγ [f ](ξ)−

(
2

ξ

) γ−1
2

Γ

(
γ + 1

2

) n∑
k=1

ξ2k−2Bn−k
γ f(0+). (26)

If d
dx

[
Bn−k

γ f(x)
]
∼ xβ and β > 0 as x → 0+ then (26) is true for γ = 1 as well.

The class Cm
ev = Cm

ev(R) comprises the functions in Cm(R) such that ∂2k+1f

∂x2k+1
i

∣∣∣
x=0

= 0 for all nonnegative

integers k ≤ m−1
2 (see [1, p. 21]).

Given γ = 0 and f ∈ C2n
ev , we find that

K0[f(x)](ξ) =

√
π

2ξ

∞∫
0

e−xξ f(x) dx =

√
π

2ξ
L [f(x)](ξ)

and

L

[
d2n

dx2n
f(x)

]
(ξ) = ξ2nL [f ](ξ)−

2n−1∑
k=0

ξkf (2n−k−1)(0+)

= ξ2nL [f ](ξ)− f (2n−1)(0+)− sf (2n−2)(0+)− s2f (2n−3)(0+)

−s3f (2n−4)(0+)− s4f (2n−5)(0+)− s5f (2n−6)(0+)− · · · − ξ2n−2f ′(0+)− ξ2n−1f(0+).

Since f ∈ C2n
ev , we conclude that

f ′(0+) = f ′′′(0+) = · · · = f (2n−5)(0+) = f (2n−3)(0+) = f (2n−1)(0+) = 0

and

L

[
d2n

dx2n
f(x)

]
(ξ) = ξ2nL [f ](ξ)− sf (2n−2)(0+)

−s3f (2n−4)(0+)− s5f (2n−6)(0+)− · · · − ξ2n−1f(0+)

= ξ2nL [f ](ξ)−
n∑

k=1

s2k−1f (2n−2k)(0+) = {m = n− k}

= ξ2nL [f ](ξ)−
n−1∑
m=0

s2(n−m)−1f (2m)(0+).

Hence,

L

[
d2n

dx2n
f(x)

]
(ξ) = ξ2nL [f ](ξ)−

n−1∑
m=0

s2(n−m)−1f (2m)(0+).

On the other hand,
√

2ξ

π
K0[B

n
0 f ](ξ) =

√
2ξ

π

(
ξ2nK0[f ](ξ)−

√
πξ

2

n−1∑
m=0

ξ2(n−m)−2Bm
0 f(0+)

)

=

√
2ξ

π

(
ξ2n

√
π

2ξ
L [f(x)](ξ)−

√
πξ

2

n−1∑
m=0

ξ2(n−m)−2Bm
0 f(0+)

)

= ξ2n L [f(x)](ξ)−
n−1∑
m=0

ξ2(n−m)−1f (2m)(0+).

This confirms that the Meyer transform is a generalization of the Laplace transform.
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Theorem 5. Assume that n = [α] + 1 for α fractional, with n = α for α ∈ N for all k ∈ N, and
d
dx [B

k
γf(x)] is bounded. Then the Meyer transform Bα

γ,0+f exists for γ �= 1 and is representable as

Kγ [B
α
γ,0+f ](ξ) = ξ2αKγ [f ](ξ)−

(
2

ξ

) γ−1
2

Γ

(
γ + 1

2

) n−1∑
m=0

ξ2(α−m)−2Bm
γ f(0+). (27)

If d
dx [B

k
γf(x)] ∼ xβ and β > 0 as x → 0+ then (27) is valid for γ = 1 as well.

Now, we have some tool for solving differential equations with fractional Bessel operator. Proceed
with solving the fractional Euler–Poisson–Darboux equation.

5. The Fractional Euler–Poisson–Darboux Equation

In [26] Gerasimov deduced and solved the partial differential equation for the viscoelasticity problem:

∂2βu

∂t2β
= D

∂2u

∂x2
, u = u(x, t), x ∈ R, t > 0, 0 < β. (28)

Start with considering the simplest one-dimensional case of u = u(x, t), with x ∈ R and t ≥ 0,

(Bα
γ,0+)tu(x, t) = λ2∂

2u

∂x2
, 0 ≤ α <

1

2
, λ > 0, (29)

with the Cauchy data

u(x, 0) = f(x). (30)

Theorem 6. If 0 < α ≤ 1
2 and λ > 0, then a solution to (29)–(30) is of the form

u(x, t) =

∞∫
−∞

Gα
γ (x− ξ, t)f(ξ) dξ, (31)

with

Gα
γ (x, t) =

Γ
(
γ+1
2

)
λ
√
π21−γ

t−αH2,0
1,3

[
|x|
λ
t−α

∣∣∣∣
(
1− α

2 ,
α
2

)
(
1− α−γ

2 , α2
)
, (0, 1), (α− γ,−α)

]
,

under the condition that the integral on the right-hand side of (31) converges.

Proof. Applying (16) in t and using (30), we derive that

τ2α((Kγ)tu(x, t))(τ)− τ2α−1−γf(x) = λ2((Kγ)tuxx(x, t))(τ).

Next, applying the Fourier transform in x to both sides of this equation, we can conclude that

τ2α((Kγ)tFxu(x, t))(τ, ξ)− τ2α−1−γ f̂(ξ) = −ξ2λ2((Kγ)tFxu(x, t))(τ, ξ)

and

((Kγ)tFxu(x, t))(τ, ξ) =
τ2α−1−γ

τ2α + λ2ξ2
f̂(ξ).

From formula 6.2.13 of [18] we obtain that

τ2α−1−γ

τ2α + λ2ξ2
=

τα−γ−1

2λ

(
Fxe

− |x|
λ

τα
)
(ξ),
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and the convolution properties yield

(
(Kγ)tFxu(x, t)

)
(τ, ξ) =

τ2α−1−γ

τ2α + λ2ξ2
f̂(ξ) =

τα−γ−1

2λ

(
Fxe

− |x|
λ

τα
)
(ξ)f̂(ξ)

=
τα−γ−1

2λ

(
Fx

(
e−

|x|
λ

τα ∗x f(x)
))

(ξ).

Applying the inverse Fourier transform, we obtain

(
(Kγ)tu(x, t)

)
(τ) =

τα−γ−1

2λ

(
e−

|x|
λ

τα ∗x f(x)
)
.

Representation (21) yields

π

2γΓ2
(γ+1

2

) (
L tγ−1Pγ

t tu(x, t)
)
(τ) =

τα−γ−1

2λ

(
e−

|x|
λ

τα ∗x f(x)
)

and

tγ−1Pγ
t tu(x, t) =

Γ2
(
γ+1
2

)
π21−γλ

((
L −1

τ τα−γ−1e−
|x|
λ

τα
)
(t) ∗x f(x)

)
.

Using the inverse Laplace transform and (15), we infer

tγ−1Pγ
t tu(x, t) =

Γ2
(
γ+1
2

)
π21−γλ

tγ−α ϕ

(
−α, 1 + γ − α;−|x|

λ
t−α

)
∗x f(x)

and

u(x, t) =
Γ2

(
γ+1
2

)
λπ21−γt

((
Pγ

t

)−1
t1−αϕ

(
−α, 1 + γ − α;−|x|

λ
t−α

)
∗x f(x)

)
.

Find

(
Pγ

t

)−1
t1−αϕ

(
−α, 1 + γ − α;−|x|

λ
t−α

)
=

2
√
πt

Γ
(
γ+1
2

)
Γ

(
n− γ

2

)
(

d

2tdt

)n

Iα,γ(x, t;λ),

where n =
[γ
2

]
+ 1,

Iα,γ(x, t;λ) =

t∫
0

z1+γ−αϕ

(
−α, 1 + γ − α;−|x|

λ
z−α

) (
t2 − z2

)n− γ
2
−1

dz.

For Iα,γ(x, t;λ), we see that

Iα,γ(x, t;λ) =

t∫
0

z1+γ−αϕ

(
−α, 1 + γ − α;−|x|

λ
z−α

)
(t2 − z2)n−

γ
2
−1dz

=
1

2

t2∫
0

y
γ−α
2 ϕ

(
−α, 1 + γ − α;−|x|

λ
y−

α
2

)
(t2 − y)n−

γ
2
−1dy.

Here the change of variables z2 = y was made. Now, put

( |x|
λ

) 2
α 1

y
= p.
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In this case

Iα,γ(x, t;λ) =
1

2

(
|x|
λ

) γ+2
α

−1
∞∫

( |x|
λ

) 2
α 1

t2

p
α−γ
2

−2ϕ
(
−α, 1 + γ − α;−p

α
2

)

×
(
t2 −

(
|x|
λ

) 2
α 1

p

)n− γ
2
−1

dp

=
t2n−γ−2

2

(
|x|
λ

) γ+2
α

−1
∞∫

( |x|
λ

) 2
α 1

t2

p
α
2
−n−1ϕ

(
−α, 1 + γ − α;−p

α
2

)

×
(
p−

(
|x|
λ

) 2
α 1

t2

)n− γ
2
−1

dp.

Putting w =
(
|x|
λ

) 2
α 1

t2
, we obtain the fractional Riemann–Liouville integral of order

(
n− γ

2

)
:

Iα,γ(x, t;λ) =
t2n−γ−2

2

(
|x|
λ

) γ+2
α

−1
∞∫
w

p
α
2
−n−1ϕ

(
−α, 1 + γ − α;−p

α
2

)
(p− w)n−

γ
2
−1 dp

= Γ
(
n− γ

2

) t2n−γ−2

2

(
|x|
λ

) γ+2
α

−1 (
I
n− γ

2
− p

α
2
−n−1ϕ

(
−α, 1 + γ − α;−p

α
2

))
(w).

Using (22), we conclude that

θ = n− γ

2
> 0, σ =

α

2
> 0, ω =

α

2
− n− 1,

ω + θ =
α− γ

2
− 1 < 0, ρ = −α < 1

and

(
I
n− γ

2
− p

α
2
−n−1ϕ

(
−α, 1 + γ − α;−p

α
2

))
(w)

= w
α−γ
2

−1H2,0
1,3

[
w

α
2

∣∣∣∣
(
n+ 1− α

2 ,
α
2

)
(
1− α−γ

2 , α2
)
, (0, 1), (α− γ,−α)

]
.

Therefore,

Iα,γ(x, t;λ) = Γ
(
n− γ

2

) t2n−α

2
H2,0

1,3

[
|x|
λ
t−α

∣∣∣∣
(
n+ 1− α

2 ,
α
2

)
(
1− α−γ

2 , α2
)
, (0, 1), (α− γ,−α)

]
.

Finally,

(Pγ
t )

−1t1−αϕ

(
−α, 1 + γ − α;−|x|

λ
t−α

)
=

2
√
πt

Γ
(
γ+1
2

)
Γ

(
n− γ

2

)
(

d

2tdt

)n

Iα,γ(x, t;λ)

=

√
πt

Γ
(
γ+1
2

)
(

d

2tdt

)n

t2n−αH2,0
1,3

[
|x|
λ
t−α

∣∣∣∣
(
n+ 1− α

2 ,
α
2

)
(
1− α−γ

2 , α2
)
, (0, 1), (α− γ,−α)

]
.
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Now, using the formula (
d

2tdt

)n

t2n+β =
Γ

(
n+ 1 + β

2

)

Γ
(
1 + β

2

) tβ

and the integral of the Mellin–Barnes type (12), we can calculate the derivative

(Pγ
t )

−1t1−αϕ

(
−α, 1 + γ − α;−|x|

λ
t−α

)

in the last representation. We conclude that

(
d

2tdt

)n

t2n−αH2,0
1,3

[
|x|
λ
t−α

∣∣∣∣
(
n+ 1− α

2 ,
α
2

)
(
1− α−γ

2 , α2
)
, (0, 1), (α− γ,−α)

]

=

(
d

2tdt

)n

t2n−α 1

2πi

∫
L

H 2,0
1,3 (s)

(
|x|
λ
t−α

)−s

ds

= t−α 1

2πi

∫
L

H 2,0
1,3 (s)

Γ
(
n+ 1− α

2 + α
2 s

)
Γ

(
1− α

2 + α
2 s

)
(
|x|
λ
t−α

)−s

ds.

Since

H 2,0
1,3 (s)

Γ
(
n+ 1− α

2 + α
2 s

)
Γ

(
1− α

2 + α
2 s

) =
Γ

(
1− α−γ

2 + α
2 s

)
Γ(s)

Γ
(
n+ 1− α

2 + α
2 s

)
Γ(1− α+ γ + αs)

×
Γ

(
n+ 1− α

2 + α
2 s

)
Γ

(
1− α

2 + α
2 s

) =
Γ

(
1− α−γ

2 + α
2 s

)
Γ(s)

Γ
(
1− α

2 + α
2 s

)
Γ(1− α+ γ + αs)

,

we infer (
d

2tdt

)n

t2n−αH2,0
1,3

[
|x|
λ
t−α

∣∣∣∣
(
n+ 1− α

2 ,
α
2

)
(
1− α−γ

2 , α2
)
, (0, 1), (α− γ,−α)

]

= t−αH2,0
1,3

[
|x|
λ
t−α

∣∣∣∣
(
1− α

2 ,
α
2

)
(
1− α−γ

2 , α2
)
, (0, 1), (α− γ,−α)

]

and

u(x, t) =
Γ

(
γ+1
2

)
λ
√
π21−γ

(
t−αH2,0

1,3

[
|x|
λ
t−α

∣∣∣∣
(
1− α

2 ,
α
2

)
(
1− α−γ

2 , α2
)
, (0, 1), (α− γ,−α)

]
∗x f(x)

)
. �

In [27, Corollary 6.5], some solution to the Cauchy problem

(
CD2α

0+u
)
(x, t) = λ2∂

2u

∂x2
, x ∈ R, t > 0, λ > 0, (32)

u(x, 0) = f(x), 0 < α ≤ 1

2
(33)

is given in the form

u(x, t) =

∞∫
−∞

Gα(x− ξ, t)f(ξ) dξ,

where

Gα(x, t) =
1

2λ
t−αϕ

(
−α, 1− α;−|x|

λ
t−α

)
. (34)
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For γ = 0, we obtain (32)–(33) rather than (29)–(30) and a solution (31) for γ = 0 takes the form

u(x, t) =

∞∫
−∞

Gα
0 (x− ξ, t)f(ξ) dξ,

where

Gα
0 (x, t) =

Γ
(
1
2

)
λ
√
π2

t−αH2,0
1,3

[
|x|
λ
t−α

∣∣∣∣
(
1− α

2 ,
α
2

)
(
1− α

2 ,
α
2

)
, (0, 1), (α,−α)

]

=
1

2λ
t−αH1,0

0,2

[
|x|
λ
t−α

∣∣∣∣ −
(0, 1), (α,−α)

]
,

which agrees with (34). Here we applied formula 2.1.2 in [18, p. 31], formula (13), and Γ(1/2) =
√
π.

6. Conclusion

The role of higher transcendental functions in pure mathematics and numerous applications grows
constantly. The striking example of this kind is the theory of integrals and derivatives of non-integer order
(fractional calculus) and its applications. Within this theory, several special cases of higher transcendental
functions including the Mittag-Leffler function and its generalizations, the Fox–Wright function, and the
H-function become extremely important especially for analytic solutions to fractional ODEs and PDEs.
In this article, we represent a solution to fractional differential equations with a fractional Bessel operator
in terms of the H-function.
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