

MSC 58A35

РАЗРЕШИМОСТЬ ЗАДАЧИ ДИРИХЛЕ НА СТРАТИФИЦИРОВАННОМ МНОЖЕСТВЕ

Л.А. Ковалева

Белгородский государственный университет, ул. Студенческая, 14, Белгород, 308015, Россия, e-mail: kovaleva I@bsu.edu.ru

Аннотация. Исследуется фредгольмова разрешимость задачи Дирихле на двумерном стратифицированном множестве методом сведения исходной задачи к нелокальной задаче Римана.

Ключевые слова: задача Дирихле, фредгольмова разрешимость, индекс, стратифицированное множество.

1. Постановка задачи. Рассмотрим в \mathbb{R}^3 попарно непересекающиеся открытые отрезки $\Omega^1_j,\ 1\leq j\leq l$ и открытые плоские выпуклые многоугольники $\Omega^2_j,\ 1\leq j\leq n$. Граница каждого многоугольника составлена из попарно непересекающихся сторон (открытых отрезков) и вершин. Предполагается, что эти границы попарно могут пересекаться только по сторонам или вершинам, причем семейство (Ω^1_j) составлено из различных сторон. Множество всех вершин обозначим F. Полученный двумерный комплекс

$$\overline{\Omega} = F \cup \Omega^1 \cup \Omega^2 \,, \quad \Omega^k = \bigcup_j \Omega^k_j \,,$$

называется стратифицированным компактом, а составляющие его элементы Ω_k^1 и Ω_s^2 — стратами соответствующих размерностей. Под стратифицированным множеством Ω здесь понимается $\Omega^2 \cup \Omega_H^1$, где Ω_H^1 — объединение некоторого числа l_H одномерных страт. Объединение Ω_D^1 оставшихся одномерных страт, число которых обозначим l_D , будет играть роль границы этого множества. Случай, когда одно из множеств Ω_D^1 , Ω_H^1 является пустым, не исключается. К каждому одномерному страту сходится один или несколько многоугольников Ω_s^2 , в первом случае его называем стороной, во втором случае — ребром. Предполагается, что все ребра входят только в Ω_H^1 . Ниже на Ω естественным образом вводится понятие гармонической функции, для которой Ω_D^1 будет являться носителем данных Дирихле. Конечно, в случае $l_D=0$ говорим просто о гармонической функции на всем множестве $\Omega=\overline{\Omega}\setminus F$.

Пусть m_s есть число сторон, составляющих границу $\partial \Omega_s^2$ и $m=m_1^2+\ldots+m_n^2$. Все эти стороны занумеруем единым образом в виде L_1,\ldots,L_m и рассмотрим разбиение $I^2=\{I_s^2,1\leq s\leq n\}$ множества $\{1,\ldots,m\}$, для которого стороны $L_j,j\in I_s^2$, составляют границу $\partial \Omega_s^2$. С каждым одномерным стратом Ω_k^1 можно также связать некоторое множество I_k^1 номеров j, для которых L_j совпадает с Ω_k^1 , число элементов этого множества

Работа выполнена в рамках Φ ЦП «Научные и научно-педагогические кадры инновационной России» на 2009 - 2013 годы (госконтракт №14.А18.21.0357)

обозначим m_k^1 . В результате получаем другое разбиение $I^1=\{I_k^1, 1\leq k\leq l\}$ множества

Функция φ , определенная на Ω^2 , называется кусочно-непрерывной, если ее сужения

$$\varphi_s = \varphi|_{\Omega_s^2} \in C(\overline{\Omega_s^2} \setminus F), \ 1 \le s \le n.$$

Граничные значения этой функции можно описать в форме семейства функций $\varphi_i^+ \in$ $C(L_j), 1 \leq j \leq m$, которые определяются равенством

$$\varphi_j^+(y) = \lim_{x \in \Omega_s^2, x \to y} \varphi(x), \quad y \in L_j, \quad j \in I_s^2.$$

Рассмотрим далее семейство единичных векторов $\nu_j \in \mathbb{R}^3, \ 1 \leq j \leq m$, таких, что для $j \in I_s^2$ вектор ν_j лежит в плоскости многоугольника Ω_s^2 и но отношению к нему является внутренней нормалью к стороне L_j . Тогда если функция $\varphi_s \in C^1(\overline{\Omega_s^2} \setminus F)$, то можно ввести односторонние нормальные производные

$$\left(\frac{\partial \varphi}{\partial \nu}\right)_{j}^{+} = \frac{\partial \varphi_{s}}{\partial \nu_{j}}, \quad j \in I_{s}^{2}.$$

По определению функция $u \in C(\Omega)$ называется гармонической на Ω , если для каждого s ее сужения u_s гармоничны (но отношению к некоторой, а значит, и любой прямоугольной декартовой системы координат) на двумерном страте Ω_s^2 , непрерывно дифференцируемы вплоть до $\partial \Omega^2_s \cap \Omega^1_H$ и ее нормальные производные на одномерных стратах этого множества подчинены условию

$$\sum_{j \in I_k^1} \left(\frac{\partial u}{\partial \nu} \right)_j^+ = 0 \,, \quad \Omega_k^1 \subseteq \Omega_H^1 \,. \tag{1}$$

Напомним, что в Ω^1_H входят все ребра и условие непрерывности функции u на них равносильно соотношениям $u_j^+ = u_i^+, i, j \in I_k^1$. Если элементы I_k^1 занумеровать, то из этих соотношений достаточно выделить $m_k^1 - 1$ независимых, например,

$$u_{i_r}^+ = u_{i_{r+1}}^+, \ 1 \le r \le m_k^1 - 1, \quad I_k^1 = \{i_1, i_2, \dots, i_{m_k^1}\}.$$
 (2)

Как обычно, задача Дирихле состоит в отыскании гармонической па Ω функции $u \in C(\Omega \setminus F)$, принимающей па Ω^1_D заданные значения:

$$u_j^+ = f_j, \quad L_j = \Omega_k^1 \subseteq \Omega_D^1.$$
 (3)

Напомним, что в определение гармоничности функции входило требование непрерывной дифференцируемости сужений u_s вплоть до $\partial \Omega_s^2 \cap \Omega_H^1$. Это требование можно ослабить путем введения сопряженных к u_s гармонических функций v_s , определение которых зависит от выбора прямоугольной декартовой системы координат в плоскости страта Ω^2 .

Чтобы зафиксировать этот выбор, на каждом контуре $\partial\Omega_s^2$ зададим направление обхода и пусть система координат такова, что при этом обходе область Ω_s^2 остается слева. Кроме того, каждую сторону L_j ориентируем единичным вектором e_j , считая $e_i=e_j$ для $i,j\in I_k^1$. Тогда можно ввести сигнатуру ориентации – семейство $(\sigma_j=\pm 1)_1^m$, где для $j\in I_s^2$ число $\sigma_j=1$, если сторона L_j ориентирована положительно но отношению к области Ω_s^2 (т.е. эта область остается слева), и $\sigma_j=-1$ в противном случае.

Исходя из выбранной прямоугольной системы координат на Ω_s^2 , рассмотрим сопряженную к u_s гармоническую функцию v_s . Тогда на каждой стороне $L_j \subseteq \partial \Omega_s^2$ выполняется соотношение Коши-Римана

$$\frac{\partial v_s}{\partial e_j} = -\sigma_j \frac{\partial u_s}{\partial \nu_j} = -\sigma_j \left(\frac{\partial u}{\partial \nu}\right)_j^+.$$

Следовательно, условие (1) можно переписать в виде

$$\sum_{j \in I_k^1} \sigma_j v_j^+ = c_k \,, \quad \Omega_k^1 \subseteq \Omega_H^1 \,, \tag{4}$$

с некоторыми постоянными $c_k \in \mathbb{R}$. В соответствии с этим вместо требования непрерывной дифференцируемости сужений u_s функции u вплоть до соответствующих сторон многоугольника Ω_s^2 и выполнения (1) достаточно потребовать, чтобы функция v была кусочно-непрерывной и удовлетворяла условию (4). Поскольку функция v_s определена на Ω_s^2 с точностью до аддитивной постоянной, ее выбор фиксируем условием

$$v(x_s) = 0, \quad 1 \le s \le n \,, \tag{5}$$

в наперед заданных точках $x_s \in \Omega^2_s$.

Таким образом, в этой постановке задача Дирихле определяется краевыми условиями (2)-(5).

2. Основные обозначения. Выберем $\varepsilon > 0$ столь малым, что при каждом $1 \le s \le n$ шары $\{|x-\tau| \le \varepsilon\}$, $\tau \in F$, попарпо пе пересекаются. Их пересечение с многоугольником Ω_s^2 дает m_s секторов, которые перенумеруем в виде $\Omega_{(j)}^2$, $j \in I_s^2$. В результате получим m секторов $\Omega_{(j)}^2$, $1 \le j \le m$. Боковые стороны сектора $\Omega_{(j)}^2$ составляют боковую границу этого сектора, которую обозначим $\partial' \Omega_{(j)}^2$. Всего имеем, таким образом, семейство 2m отрезков, их можно также разбить на пары L_j^0 и L_j^1 , которые служат пересечением указанных выше шаров с центрами, соответственно, в левом и правом концах стороны L_j .

Для фиксированной точки $\tau \in F$ все сектора $\Omega^2_{(j)}$ с вершиной τ занумеруем единым образом в виде $\Omega^2_{\tau,s},\ 1 \leq s \leq m_{\tau}$, и аналогично введем единую нумерации $L_{\tau,j},\ 1 \leq j \leq 2m_{\tau}$, их боковых сторон и $\Omega^1_{\tau,k},\ 1 \leq k \leq l_{\tau}$, одномерных страт с концом τ . Очевидно, объединение одномерных страт совпадает с $\Omega^1_{\tau} = \Omega^1 \cap \{|x-\tau| \leq \varepsilon\}$. Пусть $l_{\tau,H}$, есть число отрезков $\Omega^1_{\tau,k}$, составляющих $\Omega^1_{\tau,H} = \Omega^1_H \cap \{|x-\tau| \leq \varepsilon\}$ и аналогичный смысл имеет $l_{\tau,D}$.

С каждым одномерным стратом $\Omega^1_{ au,k}$ можем связать множество $I_{ au,k}$ номеров j, для которых $L_{\tau,j} \subseteq \Omega^1_{\tau,k}$. В результате имеем разбиение $I_{\tau} = (I_{\tau,k}, 1 \le k \le l_{\tau})$ множества $\{1,\ldots,2m_{\tau}\}$. Число элементов множества $I_{\tau,k}$ обозначим $m_{\tau,k}$. Таким образом,

$$\sum_{1}^{l_{\tau}} m_{\tau,k} = 2m_{\tau} , \quad \sum_{\tau \in F} 2m_{\tau} = 2m , \tag{6}$$

где учтено, что каждая сторона имеет два конца из F. Поскольку боковая сторона $L_{\tau,j}$ совпадает с односторонней окрестностью L^p_i для некоторых p=0,1 и $1\leq i\leq m$, можем ввести сигнатуры ориентации

$$\sigma_{\tau,j} = \sigma_i \,, \quad L_{\tau,j} = L_i^p \,. \tag{7}$$

Введем $2m_{\tau} \times 2m_{\tau}$ — матрицы $V_{\tau}(\zeta)$, $\zeta \in \mathbb{C}$ и U_{τ} с элементами

$$V_{ au,ij}(\zeta) = \left\{ egin{array}{ll} e^{i heta_{ au,s}\zeta}, & L_{ au,i} \cup L_{ au,j} = \partial'\Omega^2_{ au,s}, \ 0 & ext{в противном случае}, \end{array}
ight.$$

$$U_{\tau,ij}(\zeta) = \begin{cases} 1 - 2/m_{\tau,k}, & i = j \in I_{\tau,k}, & m_{\tau,k} > 1, \\ -2/m_{\tau,k}, & i, j \in I_{\tau,k}, i \neq j, & m_{\tau,k} > 1, \\ 1, & i = j \in I_{\tau,k}, & m_{\tau,k} = 1, \Omega^1_{\tau,k} \subseteq \Omega^1_D, \\ -1, & i = j \in I_{\tau,k}, & m_{\tau,k} = 1, \Omega^1_{\tau,k} \subseteq \Omega^1_H, \\ 0, & \text{в противном случае,} \end{cases}$$
(8)

где $\theta_{ au,s}$ означает внутренний угол области $\Omega^2_{ au,s}$ в точке au. Очевидно, эти матрицы блочнодиагональны относительно разбиений множества $\{1,\dots,2m\}$ на, соответственно, m_{τ} пар (i,j), определяемых условием $L_{\tau,i} \cup L_{\tau,j} = \partial' \Omega^2_{\tau,s}, \ 1 \leq s \leq m_{\tau}$, и подмножества $I_{\tau,k}$, $1 \leq k \leq l_{\tau}$.

Прямая проверка показывает, что

$$U_{\tau}^2 = 1, \quad V_{\tau}(\zeta)V_{\tau}(-\zeta) = 1.$$
 (9)

Легко видеть, что при фиксированном вещественном λ матрица $V_{\tau}^{\pm 1}(\lambda+it) \to 0$ при $t \to \pm \infty$. Следовательно, скалярная мероморфная функция

$$h_{\tau}(\zeta) = \frac{\det[U_{\tau} + V_{\tau}(\zeta)]}{\det[1 + V_{\tau}(\zeta)]}$$

имеет пределы при $t \to \pm \infty$. В частности, проекция нулей аналитической функции $\det(U_{\tau}+V_{\tau}(\zeta))$ на действительную ось является дискретным множеством. Если на прямой $\operatorname{Re} \zeta = \lambda$ отсутствуют нули функций $\det[U_{\tau} + V_{\tau}(\zeta)]$ и $\det[1 + V_{\tau}(\zeta)]$, то можно рассмотреть приращение непрерывной ветви $\ln h_{\tau}(\zeta)$ на этой прямой, деленное на $2\pi i$, и ввести число

$$\chi(\lambda) = \sum_{\tau \in F} \frac{1}{2\pi i} [(\ln h_{\tau})(\lambda + i\infty) - (\ln h_{\tau})(\lambda - i\infty)], \qquad (10)$$

которое в силу (9) вещественно. Очевидно, это число как функция от λ сохраняет постоянное значение па каждом интервале J, для которого в полосе $\text{Re }\zeta\in J$ отсутствуют пули функций $\det[U_{\tau}+V_{\tau}(\zeta)]$ и $\det[1+V_{\tau}(\zeta)]$. В частности, можно говорить о значении $\chi(-0)=\lim \chi(\lambda)$ при $\lambda\to 0,\ \lambda<0$.

Лемма 1. (a) *При каждом* τ *величина*

$$\sum_{\tau \in F} \frac{1}{2\pi i} \ln[\det U_{\tau}] \tag{11}$$

есть целое число так, что функция $\chi(\lambda)$ целочисленна.

- (b) Число $s_{\tau}(0)$ нулей функции $\det(U_{\tau}+V_{\tau})(\zeta)$ на прямой $\operatorname{Re}\zeta=0$, взятое c учетом их кратности, имеет ту же четность, что и $m_{\tau}+l_{\tau,H}$.
 - \square (a) Рассмотрим числовые $n \times n$ -матрицы $P = P_n$ и $Q = Q_n$ с элементами

$$P_{ij} = \begin{cases} p, & i = j, \\ q, & i \neq j, \end{cases}, \quad Q_{ij} = \begin{cases} p, & i + 1 = j, \\ q, & i + 1 \neq j. \end{cases}$$
 (12)

Нетрудно видеть, что для определителей этих матриц справедливы рекуррентные соотношения

$$\det P_n = (p-q)[\det P_{n-1} + (-1)^n \det Q_{n-1}], \quad \det Q_n = (q-p)Q_{n-1},$$

которые приводят к формуле

$$\det P = (p-q)^{n-1}[p + (n-1)q]. \tag{13}$$

Согласно (8) диагональный блок матрицы U_{τ} , отвечающий $I_{\tau,k}$ при $m_{\tau,k} > 1$, совпадает с матрицей P_n порядка $n = m_{\tau,k}$, для которой $p = 1 - 2/m_{\tau,k}$, $q = -2/m_{\tau,k}$, и формула (13) дает значение $\det P = -1$.

Таким образом, $\det U_{\tau} = (-1)^{s_{\tau}}$, где $s_{\tau} \leq l_{\tau}$ означает число всех одномерных страт, имеющих своим концом τ и содержащихся в Ω_H^1 , что согласуется с первым равенством (9). Следовательно, с точностью до целого числа величина (11) равна половине суммы s_{τ} по $\tau \in F$. Остается заметить, что эта сумма равна удвоенному числу l_H всех одномерных страт, составляющих Ω_H^1 .

(b) В силу (9) и равенства $U_{\tau} + V_{\tau}(\zeta) = U_{\tau}[U_{\tau}^{-1} + V_{\tau}^{-1}(\zeta)]V_{\tau}(\zeta)$ имеем соотношение

$$\det[U_{\tau} + V_{\tau}(-\zeta)] = (-1)^{m_{\tau}} e^{i\theta\zeta} \det[U_{\tau} + V_{\tau}(\zeta)]$$

с некоторым $\theta \in \mathbb{R}$. Вспоминая, что $\det U_{\tau} = (-1)^{s_{\tau}}$, $s_{\tau} = l_{\tau H}$, для функции $f(\zeta) = \det(U_{\tau} + V_{\tau})(\zeta)$ имеем равенство

$$f(-\zeta) = (-1)^{m_{\tau} + s_{\tau}} e^{i\theta\zeta} f(\zeta).$$

Поэтому число нулей функции f на прямой $\text{Re }\zeta=0$, отличных от $\zeta=0$, четно, а порядок пуля этой функции в точке $\zeta=0$ имеет ту же четность, что и $m_{\tau}+s_{\tau}$.

Опишем пространства, в которых будет рассматриваться задача. Пусть $C^{\mu}(K)$ означает пространство функций, удовлетворяющих па множестве $K\subseteq\mathbb{R}^3$ условию Гельдера с показателем $0 < \mu < 1$, относительно соответствующей нормы оно банахово. Заметим, что элементы $\varphi \in C^{\mu}(K)$ продолжаются по непрерывности па замыкание \overline{K} и продолженные функции $\tilde{\varphi}$ удовлетворяют условию Гельдера с тем же показателем. В этом смысле классы $C^{\mu}(K)$ и $C^{\mu}(\overline{K})$ совпадают (с равенством норм). Исходя из конечного подмножества $F \subset \overline{K}$ и весовой функции

$$\rho(x) = \prod_{\tau \in F} |x - \tau|,$$

введем класс $C_0^{\mu}(K,F)$ всех ограниченных функций φ , для которых $\psi=\rho^{\mu}\varphi\in C^{\mu}(K)$. Можно показать, что относительно нормы

$$|\varphi| = \sup_{x \in K \setminus F} |\varphi(x)| + |\rho^{\mu}\varphi|_{C^{\mu}}$$

это пространство является банаховой алгеброй но умножению. Весовое пространство C^{μ}_{λ} порядка $\lambda \in \mathbb{R}$ определим равенством $\{\varphi, \rho^{-\lambda}\varphi \in C^{\mu}_{0}\}$, относительно соответствующей нормы это пространство банахово и но каждому из параметров μ, λ монотонно убывает но вложению. При $\lambda=\mu$ оно совпадает с подпространством $C^\mu(K)$ функций, обращающихся в нуль на K.

В дальнейшем, основную роль будут играть классы Гельдера $H(K) = \bigcup_{\mu} C^{\mu}(K)$ и весовые классы

$$\overset{\circ}{H}(K,F) = \bigcup_{0 < \mu < 1} \bigcup_{\lambda > 0} C^{\mu}_{\lambda}(K,F) , \quad \dot{H}(K,F) = \bigcup_{0 < \mu < 1} \bigcap_{\lambda < 0} C^{\mu}_{\lambda}(K,F) .$$

Очевидно, первый из этих весовых классов состоит из всех функций $\varphi \in H(K)$, которые обращаются в нуль на F, а $\varphi \in \dot{H}(K,F)$ равносильно тому, что произведение $\varphi \varphi_0 \in \overset{\circ}{H}(K,F)$ для любой $\varphi_0 \in \overset{\circ}{H}(K,F)$. Таким образом, элементы $\varphi \in \dot{H}$ допускают в точках $au \in F$ особенности логарифмического тина. Для единообразия удобно обозначение этих пространств использовать и в случае, когда конечное множество F не целиком содержится в \overline{K} , как это имеет место, например, в случае $K=\Omega_D^1$. Заметим, что в этом случае функция $\rho^{-1}f$ интегрируема на K для любой $f \in \overset{\circ}{H}(K,F)$.

- **3. Разрешимость задачи в классе** $\hat{H}(\Omega, F)$. Задачу Дирихле сначала рассмотрим в классе функций $H(\Omega, F)$, удовлетворяющих условию Гельдера на стратифицированном множестве Ω вне любой окрестности вершин, а в вершинах $au \in F$ допускающих особенности логарифмического порядка. Соответственно ее правая часть $f \in H(\Omega_D^1, F)$. По определению, задача Дирихле (1)-(3) фредгольмова в классе $\dot{H}(\Omega, F)$, если
- 1) однородная задача в этом классе имеет конечное число p линейно независимых решений;
- 2) существует конечное число линейно независимых функций $g_i \in H$ (Ω_D^1, F) , $1 \le j \le q$, таких, что условия ортогональности

$$\int_{\Omega_D^1} \rho^{-1}(t) f(t) g_j(t) dt = 0$$

необходимы и достаточны для разрешимости неоднородной задачи.

При этом разность æ = p - q называется индексом этой задачи.

Теорема 1. Задача Дирихле (1)-(3) фредгольмова в классе $\hat{H}(\Omega, F)$ и ее индекс $\hat{\mathbf{z}}$ дается формулой

$$\dot{\mathbf{e}} = l_H - \chi(-0) \,. \tag{14}$$

Если правая часть $f \in \dot{H}(\Omega, F)$ задачи непрерывно дифференцируема на Ω_D^1 (по параметру длины дуги) и $\rho f' \in \dot{H}(\Omega_D^1, F)$, то любое решение $u \in \dot{H}(\Omega, F)$ обладает аналогичным свойством иа каждом двумерном страте, т.е. $\rho u' \in \dot{H}(\Omega_s^2, F)$, где штрих означает любую из частных производных первого порядка.

 \square Каждый одномерный страт Ω^1_k снабжен ориентацией, так что можно рассмотреть его левый и правый концы. Эти же точки служат аналогичными концами для $L_j,\ j\in I^1_k$, которые обозначим x^0_j и x^1_j . Таким образом, $x^p_j=x^i_k,\ j\in I^1_k,\ p=0,1$.

Напомним, что в каждом двумерном страте Ω_s^2 выбрана прямоугольная декартова система координат, но отношению к которой этот страт можно рассматривать как область D_s комплексной плоскости. Аналогично стороны $L_j,\ j\in I_s^2$, преобразуются в стороны многоугольника D_s , которые обозначим $\Gamma_j,\ j\in I_s^2$. Заметим, что полученные области $D_s,\ 1\leq s\leq n$, между собой никак не связаны. Аналогичный смысл имеют обозначения секторов $D_{(j)}$, в которые переходят $\Omega_{(j)}^2$, и семейство их боковых сторон $\Gamma_j^p,\ j\in I_s^2,\ p=0,1$. Очевидно, отрезоки $\Gamma_j^p,\ j\in I_s^2$, представляют собой пересечение Γ_j с кругом радиуса ε с центром в точке $z_j^p,\$ которая преобразована из соответствующей точки $x_j^p\in\mathbb{R}^3$ в выбранной системе координат. При этом сигнатура ориентации σ_j имеет тот же смысл, что и ранее, т.е. $\sigma_j=1$, если отрезок $\Gamma_j,\ j\in I_s^2$, ориентирован положительно по отношению к $D_s,\$ и $\sigma_j=-1$ в противном случае.

В этом же смысле сужение $u_s = u|_{\Omega_s^2}$ можно рассматривать как гармоническую функцию в области D_s , соответственно, функция $\phi_s = u_s + iv_s$ аналитична в этой области. Рассмотрим афинные параметризации

$$\gamma_j(t) = z_j^0 + t(z_j^1 - z_j^0), \quad 0 \le t \le 1,$$

отрезков Γ_j . Заметим, что для $j \in I_k^1$ точкам $\gamma_j(t)$, $j \in I_k^1$, отвечает одна и та же точка $x_i^0 + t(x_i^1 - x_i^0)$ на одномерном страте Ω_k^1 . Положим для краткости

$$\phi_{\gamma,j}^+(t) = \phi_s^+[\gamma_j(t)], \quad j \in I_s^2, \ 0 < t < 1.$$

Тогда краевые условия (2)-(4) задачи Дирихле но отношению к семейству аналитических функций (ϕ_s) перепишутся следующим образом. Для $\Omega_k^1 \subseteq \Omega_H^1$ имеем m_k^1 линейных соотношений

$$\operatorname{Re}\left[\phi_{\gamma,j_r}^+(t) - \phi_{\gamma,j_{r+1}}^+(t)\right] = 0, \ 1 \le r \le m_k^1 - 1, \quad I_k^1 = \{j_1, \dots, j_{m_k^1}\}, \tag{15}$$

$$\operatorname{Im}\left[\sum_{j\in I_k^1} \sigma_j \phi_{\gamma,j}^+(t)\right] - c_k = 0, \qquad (16)$$

а для $L_j \subseteq \Omega^1_D$ имеем неоднородное соотношение

$$\operatorname{Re}[\phi_{\gamma,j}^+(t)] = f_j[\gamma_j(t)], \ 0 < t < 1.$$
 (17)

Конечно, при $m_k^1=1$ краевое условие (15) опускается. Постоянные c_k в этой задаче подлежат определению вместе с семейством (ϕ_s) .

Полученные $m=l_H+l_D$ линейных нелокальных соотношений можно записать в векторной форме. С этой целью введем $m \times m$ -матрицу A, блочно диагональную относительно разбиения I^1 . Элементы $A_{ij}(I_k^1) = A_{ij}, i, j \in I_k^1$, диагонального блока $A(I_k^1)$ этой матрицы определяется следующим образом:

$$A_{ij}(I_k^1) = \begin{cases} 1, & i = i_r, & j = i_r, & 1 \le r \le m_k^1 - 1; \\ -1, & i = i_r, & j = i_{r+1}, & 1 \le r \le m_k^1 - 1; \\ \sigma_j \mathbf{i}, & i = i_{m_k^1}, & 1 \le j \le m_k^1; \\ 0, & \text{в остальных случаях}; \end{cases}$$
 где $m_k^1 > 1;$ (18)

$$A_{ii}(I_k^1) = \left\{ egin{array}{ll} 1, & \Gamma_i = \Omega_k^1 \subseteq \Omega_D^1; \ \sigma_i \mathbf{i}, & \Gamma_i = \Omega_k^1 \subseteq \Omega_H^1; \end{array}
ight.$$
 где $m_k^1 = 1$,

і означает мнимую единицу. Тогда краевые условия (15)-(17) можно записать в краткой векторной форме

Re
$$A\phi_{\gamma}^{+} + \tilde{c} = \tilde{f}$$
,
Im $\phi(z_s) = 0$, $1 \le s \le n$, (19)

где точка $z_s \in D_s$ отвечает $x_s \in \Omega^2_s$ в системе координат плоскости страта Ω^2_s и mвекторы \bar{f} , \bar{c} определяются равенствами

$$ilde{f}_j(t) = \left\{ egin{array}{ll} f_j[\gamma_j(t)], & L_j \subseteq \Omega^1_D; \\ 0, & ext{в противном случае}; \end{array}
ight.$$

$$ilde{c}_j = \left\{ egin{array}{ll} c_k, & j=i_n,\, \{i_1,\ldots,i_n\} = I_k^1,\, \Omega_k^1 \subseteq \Omega_H^1; \\ 0, & ext{в противном случае}. \end{array}
ight.$$

В результате имеем так называемую нелокальную краевую задачу Римана, изученную в [8], [9] (относительно обозначений см. также [7]).

 $C m \times m$ -матрицей A свяжем матрицу A^{σ} с элементами

$$(A^{\sigma})_{ij} = \begin{cases} \frac{A_{ij}, & \sigma_j = 1; \\ \overline{A}_{ij}, & \sigma_j = -1. \end{cases}$$

Другими словами, элементы j-го столбца матриц A и A^{σ} совпадают, если $\sigma_j=1$, и комплексно сопряжены, если $\sigma_j = -1$. Очевидно, матрица A^{σ} определяется той же формулой (18), где все $\sigma_i = 1$. Нетрудно видеть, что

$$\det A^{\sigma}(I_k^1) = \begin{cases} m_k^1 \mathbf{i}, & m_k^1 > 1; \\ 1, & m_k^1 = 1, & \Gamma_i = \Omega_k^1 \subseteq \Omega_D^1; \\ \mathbf{i}, & m_k^1 = 1, & \Gamma_i = \Omega_k^1 \subseteq \Omega_H^1, \end{cases}$$

а следовательно $\det A^{\sigma} \neq 0$, так что но терминологии [8] задача

$$\operatorname{Re} A\phi_{\gamma}^{+} = f \tag{20}$$

относится к нормальному тину. В дальнейшем основную роль будет играть матрица

$$B = (A^{\sigma})^{-1} \overline{A}^{\sigma} ,$$

которую в соответствии с (18) легко вычислить явно. Именно, диагональные блоки этой матрицы определяются элементами

$$B_{ij}(I_k^1) = \begin{cases} 1 - 2/m_k^1, & i = j; \\ -2/m_k^1, & i \neq j, \end{cases}$$
 где $m_k^1 > 1,$

$$B_{ii}(I_k^1) = \begin{cases} 1, & \Gamma_i = \Omega_k^1 \subseteq \Omega_D^1; \\ -1, & \Gamma_i = \Omega_k^1 \subseteq \Omega_H^1, \end{cases}$$
 где $m_k^1 = 1.$ (21)

С задачей Римана естественным образом связано понятие концевого символа — аналитической на всей плоскости матрицы-функции $X(\zeta) = U + V(\zeta)$, где матрица U зависит только от A^{σ} , а матрица $V(\zeta)$ — от геометрии области. При построении этого символа будем следовать обозначениям [7]. С этой целью выберем единую нумерацию $\Gamma_{(k)}$, $1 \le k \le 2m$ отрезков Γ_j^p , $1 \le j \le m$, p = 0, 1, и введем две $2m \times 2m$ -матрицы U и $V(\zeta)$, $\zeta \in \mathbb{C}$, с элементами

$$U_{kr} = B_{ij}$$
 при $\Gamma_{(k)} = \Gamma_i^p$, $\Gamma_{(r)} = \Gamma_j^p$, $U_{kr} = 0$ в остальных случаях,
$$V_{kr}(\zeta) = V_{rk}(\zeta) = e^{i\theta_j \zeta}$$
 при $\Gamma_{(k)} \cup \Gamma_{(r)} = \partial' D_{(j)}$, $V_{kr}(\zeta) = 0$ в остальных случаях,

где θ_j означает раствор сектора $D_{(j)}$.

Единой нумерации отрезков $\Gamma_{(k)}$ отвечает аналогичная нумерация отрезков $L_{(k)},\ 1 \le k \le 2m$, на сторонах L_j^p . Рассмотрим разбиение E множества номеров $\{1,\dots,2m\}$ на подмножества $E_{\tau}=\{k\,|\,L_{(k)}\subseteq\Omega_{\tau}^1\},\ \tau\in F.$ Очевидно, число элементов E_{τ} совпадает с $2m_{\tau}$ и можно ввести перенумерацию

$$k \in E_{\tau} \to i \in \{1, \dots, 2m_{\tau}\}, \quad L_{(k)} = L_{\tau, i},$$
 (23)

этого подмножества. В результате получаем нумерацию $\Gamma_{\tau,i}$ соответствующих отрезков, отвечающих нумерации $L_{\tau,i},\ 1\leq i\leq 2m_{\tau}.$

Напомним, что согласно (6) сумма всех m_{τ} совпадает с m. Утверждается, что матрицы U, V блочно-диагональны относительно разбиения множества $\{1,\ldots,2m\}$ на подмножества E_{τ} и их диагональные блоки $U(E_{\tau}), \ V(E_{\tau})$ относительно указанной перенумерации множества E_{τ} совпадают с $U_{\tau}, \ V_{\tau}$ соответственно. В самом деле, при отображении (23) подмножество $E_{\tau,k} = \{j \in E_{\tau} \mid L_{(j)} = \Omega^1_{\tau,k}\}$ переходит на $I_{\tau,k}$ и целиком содержится в одном из двух множеств $E^p = \{k \mid L_{(k)} = L^p_i\}, \ p = 0, 1$. Поэтому справедливость утверждения но отношению к U и U_{τ} непосредственно следует из сравнения (8) с (21), (22). Заметим, что диагональный блок матрицы U_{τ} , отвечающий $I_{\tau,k}$ при $m_{\tau,k} > 1$

не зависит от перенумерации его элементов. Точно также при отображении (23) номера k_1 и k_2 , для которых $\Gamma_{(k_1)} \cup \Gamma_{(k_2)} = \partial' D_{\tau,j}$ переходят, в соответственно номера i_1 и i_2 , для которых L_{τ,i_1} и L_{τ,i_2} составляют боковую границу соответствующего сектора $\Omega^2_{\tau,j}$. Отсюда следует и справедливость утверждения для матриц V и V_{τ} .

Таким образом,

$$\det[U + V(\zeta)] = \prod_{\tau \in F} \det[U_{\tau} + V_{\tau}(\zeta)],$$

величину $\chi(\lambda)$ в (10) можно определять но отношению к концевому символу $U+V(\zeta)$ этой задачи.

Предположим, что для некоторого $\lambda \in \mathbb{R}$ выполнено условие

$$\det[U + V(\zeta)] \neq 0, \quad \operatorname{Re} \zeta = \lambda. \tag{24}$$

Тогда согласно результатам [9], примененным к задаче (20), имеют место следующие утверждения.

(i) Задача (20) фредгольмова в классе $C^{\mu}_{\lambda}(D,F)$ и ее индекс как $\mathbb{R}-$ линейного оператора, действующего из пространства $C^{\mu}_{\lambda}(D,F)=\prod_{1}^{m}C^{\mu}_{\lambda}(\Omega,F)$ аналитических функций в пространство $C^{\mu}_{\lambda}([0,1];0,1)$ вещественных m- вектор-функций, дается формулой

$$\mathfrak{E}(\lambda) = n - \chi(\lambda) - (\operatorname{sgn} \lambda) s\{0, \lambda\}, \qquad (25)$$

где $s\{0,\lambda\}$ означает число нулей (с учетом их кратности) функции $\det[U+V(\zeta)]$ в открытой полосе, заключенной между прямыми $\operatorname{Re}\zeta=0$ и $\operatorname{Re}\zeta=\lambda$.

(ii) Если условие (24) выполнено для всех $\lambda^0 \leq \lambda \leq \lambda^1$, то решения однородной задачи принадлежат классу $\bigcap_{\lambda>\lambda^0} C^\mu_\lambda$, а разрешимость неоднородной задачи с правой частью $f\in\bigcap_{\lambda>\lambda^0} C^\mu_\lambda$ определяется условиями ортогональности вида

$$\int_0^1 f(t)g(t)\frac{dt}{t(1-t)} = 0, \quad g \in \bigcap_{\lambda > -\lambda^1} C_\lambda^\mu.$$

(iii) Если в дополнение к условиям (ii) функция $tf'(t) \in \bigcap_{\lambda > \lambda^0} C^\mu_\lambda$, то и любое решение $\phi \in \bigcap_{\lambda > \lambda^0} C^\mu_\lambda$ обладает аналогичным свойством, т.е. $\rho(z)\phi'(z) \in \bigcap_{\lambda > \lambda^0} C^\mu_\lambda$.

Вспоминая определения классов \mathring{H} и \mathring{H} , на основании этих утверждений приходим к следующему заключению. Однородная задача (20) в классе \mathring{H} имеет конечное число линейно независимых решений, а разрешимость неоднородной задачи определяется условиями ортогональности указанного вида к конечному числу функций из \mathring{H} . При этом индекс задачи как разность этих чисел согласно (25) равен $n-\chi(-0)$.

Поскольку размерность пространства векторов \tilde{c} в (19) равна l_H , оператор задачи (19), рассматриваемый на парах (ϕ, \tilde{c}) , является сначала расширением оператора задачи (20) на l_H измерений (над полем \mathbb{R}), а потом сужением на n измерений. В силу соответствующего свойства фредгольмовых операторов [10] отсюда следует фредгольмовость исходной задачи в классе \dot{H} и формула ее индекса (14).

Вторая часть теоремы является следствием (iii), нужно только принять во внимание, что условие $\rho f' \in \dot{H}(\Omega_D^1, F)$ влечет аналогичное условие

$$t(1-t)(\tilde{f}-\tilde{c})'(t) \in \dot{H}([0,1]; 0,1)$$

но отношению к правой части (19).

В качестве примера рассмотрим стратифицированное множество, представляющее собой правильную пирамиду без одной грани. Двумерные страты $\Omega_s^2, 1 \le s \le 3$ — грани пирамиды, одномерные страты $\Omega_j^1 \subset \Omega_H^1, 1 \le j \le 3$ - ребра пирамиды, оставшиеся стороны $\Omega_j^1, 4 \le j \le 6$ входят в границу стратифицированного множества, на которой заданы данные Дирихле. Вершины пирамиды будем обозначать $\tau_l, 1 \le l \le 4$, причем $F_D = \{\tau_2, \tau_3, \tau_4\}$.

Пусть

стороны L_1, L_2 отвечают ребру Ω_1^1 с вершинами τ_1, τ_2 ,

стороны L_3, L_4 отвечают ребру Ω_2^1 с вершинами τ_1, τ_3 ,

стороны L_5, L_6 отвечают ребру Ω_3^1 с вершинами $\tau_1, \tau_4,$

сторона L_7 отвечают ребру Ω_4^1 с вершинами τ_1, τ_2 ,

сторона L_8 отвечают ребру Ω_5^1 с вершинами $\tau_2, \tau_3,$

сторона L_9 отвечают ребру Ω_6^1 с вершинами τ_3, τ_1 .

Множество номеров сторон, составляющих границу каждого двумерного страта определим следующим образом: $I_1^2 = \{1, 3, 7\}, I_2^2 = \{4, 5, 8\}, I_3^2 = \{2, 6, 9\}.$

Таким образом,

$$m_{\tau} = \begin{cases} 3, & \tau = \tau_1; \\ 2, & \tau = \tau_l, l = 2, \dots, 4, \end{cases}$$
 при $m = 9;$
$$l_{\tau,D} = \begin{cases} 2, & \tau = \tau_1; \\ 0, & \tau = \tau_l, l = 2, \dots, 4, \end{cases}$$
 при $l_H = 3.$ (26)

Рассмотрим 2×2 -матрицу B с элементами

$$B_{ij} = \left\{ \begin{array}{ll} 0, & i = j, \\ -1, & i \neq j. \end{array} \right.$$

Нумерацию $L_{\tau,j}$ выберем так, что формулы (8) приводили к блочно-диагональным матрицам, U_{τ} и V_{τ}

$$U_{\tau} = \begin{pmatrix} B & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & B \end{pmatrix}, \quad V_{\tau} = \begin{pmatrix} 0 & 0 & 0 & 0 & e^{i\theta\zeta} \\ 0 & 0 & e^{i\theta\zeta} & 0 & 0 & 0 \\ 0 & e^{i\theta\zeta} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & e^{i\theta\zeta} & 0 & 0 \\ 0 & 0 & 0 & e^{i\theta\zeta} & 0 & 0 \\ e^{i\theta\zeta} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad \tau = \tau_{1};$$

научные ведомости 🄣

$$U_{\tau} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad V_{\tau} = \begin{pmatrix} 0 & 0 & e^{i\theta\zeta} & 0 \\ 0 & 0 & 0 & e^{i\theta\zeta} \\ e^{i\theta\zeta} & 0 & 0 & 0 \\ 0 & e^{i\theta\zeta} & 0 & 0 \end{pmatrix}, \quad \tau = \tau_l , \quad l = 2, \dots, 4.$$

Вычислим определитель матрицы $(U_{\tau}+V_{\tau})$, обозначив $t=e^{i\theta\zeta}$

$$\det(U_{\tau} + V_{\tau}) = \begin{cases} -(t-1)^2(t^2 + t + 1)^2, & \tau = \tau_1, \\ (t^2 - 1)(t^2 + 1), & \tau = \tau_l, \ l = 2, \dots, 4. \end{cases}$$

Очевидно, что

$$s_{\tau}(0) = \begin{cases} 2, & \tau = \tau_1, \\ 1, & \tau = \tau_l, \ l = 2, \dots, 4. \end{cases}$$
 (27)

Для матриц $(U_{\tau} + V_{\tau})^{-1}$ имеем следующие выражения:

$$(U_{\tau} + V_{\tau})^{-1} = \frac{1}{t - 1} \begin{pmatrix} 0 & 1 & 0 & t & 0 & t^2 \\ 1 & 0 & t^2 & 0 & t & 0 \\ 0 & t^2 & 0 & 1 & 0 & t \\ t & 0 & 1 & 0 & t^2 & 0 \\ 0 & t & 0 & t^2 & 0 & 1 \\ t^2 & 0 & t & 0 & 1 & 0 \end{pmatrix}, \quad \tau = \tau_1,$$

$$(U_{\tau} + V_{\tau})^{-1} = \frac{1}{t^4 - 1} \begin{pmatrix} -t^2 & 1 & t^3 & -t \\ 1 & -t^2 & -t & t^3 \\ t^3 & -t & -1 & t^2 \\ -t & t^3 & t^2 & -1 \end{pmatrix}, \quad \tau = \tau_l, l = 2, \dots, 4.$$

Очевидно, что при любом ζ все элементы матриц справа не обращаются в нуль, следовательно,

$$r_{\tau} = 1, \quad \tau = \tau_{l}, \quad l = 1, \dots, 8.$$
 (28)

Вычислим определитель матрицы $(1 + V_{\tau})$

$$\det(1+V_{\tau}) = \begin{cases} -(t-1)^3(t+1)^3, & \tau = \tau_1, \\ -(t^2-1)^2, & \tau = \tau_l, \ l = 2, \dots, 4. \end{cases}$$

Тогда

$$\frac{\det(U_{\tau} + V_{\tau})}{\det(1 + V_{\tau})} = \begin{cases} (t^2 + t + 1)^2 (1 + t)^{-3} (t - 1)^{-1}, & \tau = \tau_1, \\ (t^2 + 1)(t^2 - 1)^{-1}, & \tau = \tau_l, l = 2, \dots, 4. \end{cases}$$

Приращение непрерывной ветви логарифма при достаточно малом $\varepsilon > 0$

$$\frac{1}{2\pi i} \ln \left[\frac{1+t^2}{1-t^2} \right] \Big|_{\operatorname{Re} \zeta = -\varepsilon} = \frac{1}{2} ,$$

для точек $\tau = \tau_l, l = 2, \dots, 4$.

Заметим, что функция $h_{\tau}(\zeta)$ нечетная, так что

$$\frac{1}{2\pi i} \ln h_{\tau}(\zeta) \bigg|_{-\alpha - i\infty}^{-\alpha + i\infty} = -\frac{1}{2\pi i} \ln h_{\tau}(\zeta) \bigg|_{\alpha - i\infty}^{\alpha + i\infty}.$$

С другой стороны, по принципу аргумента для аналитических функций, разность

$$\frac{1}{2\pi i} \ln h_{\tau}(\zeta) \Big|_{\alpha - i\infty}^{\alpha + i\infty} - \frac{1}{2\pi i} \ln h_{\tau}(\zeta) \Big|_{-\alpha - i\infty}^{-\alpha + i\infty} = m,$$

где m означает разность между числом пулей и числом полюсов функции $h_{\tau}(\zeta)$ в полосе $-\alpha < \text{Re } \zeta < \alpha$, считая кратности. Из этих двух равенств следует, что приращение непрерывной ветви $\ln h_{\tau}(\zeta)$, деленное на $2\pi i$ равно -m/2.

Согласно (27), (28) m=-1, тогда по формуле (10)

$$\chi(-0) = 4 * 1/2 = 2. \tag{29}$$

В результате с учетом (26), (29) для индекса $\dot{\mathbf{g}}$ в классе \dot{H} формула (14) дает значение

$$\dot{x} = 3 - 2 = 1$$
.

Литература

- 1. Lumer G. Espases ramifes et diffusion sur les reseaux topologiques // C.R. Acad. Sc. Paris. 1980. A291. P.219-234.
- 2. Nicaise S., Penkin O. Poincare-Perron's method for the Dirichlet problem on stratified sets // J. Math. Anal. Appl. − 2004. − 296; №2. − P.504-520.
- Penkin O. About a geometrical approach to multistructures and some qualitative properties of solution // in F. Ali Mehmeti, J.von Below, S.Nicaise. Lect. Notes Pure Appl. Math. 2001. 219. P.183-192.
 Penkin O.M. Second-order elliptic equations on a stratified set. Differential equations on
- 4. Penkin O.M. Second-order elliptic equations on a stratified set. Differential equations or networks // J. Math. Sci. (N.Y.). − 2004. − 119;№6. − P.836-867.
- 5. Penkin O.M., Gavrilov A.A., Nicaise S. Poincare's inequality on stratified sets and applications // Prog.Nonlinear Differential Equations Appl. 2003. 55.– P.195-213.
- 6. Покорный Ю.В., Пенкин О.М., Прядиев В.Л., и др. Дифференциальные уравнения на геометрических графах / М.: Физматлит, 2004. 272 с.
- 7. Солдатов А.П. Нелокальная краевая задача Римана // Научные ведомости БелГУ. Математика. Физика. -2011 5;22. -C.122-132.
- 8. Солдатов А.П. Общая краевая задача теории функций // Докл.АН СССР. 1988. 299; №4. — С.825-828.
- 9. Солдатов А.П. Краевые задачи теории функций в областях с кусочно-гладкой границей / Тбилиси: Изд-во ТГУ, Ин-т прикл. матем. им. И.Н.Векуа, II, 1991.
- 10. Пале Р. Семинар но теореме Атьи-Зингера об индексе / М.: Мир, 1970.

SOLVABILITY OF DIRICHLET'S PROBLEM ON STRATIFIED SET

L.A. Kovaleva

Belgorod State University,
Pobedy St., 85, Belgorod, Russia, e-mail: Kovaleva_l@bsu.edu.ru

Abstract. Solvability of Dirichlet's problem on stratified two-dimensional set is investigated. It is done by reduction of the original problem to the non-local Riemann's problem.

Key words: Dirichlet's problem, solvability, index, stratify set.