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Abstract. The multipole method is modified such that. it. may be applicable to analysis of 
electric field in the laser of special design. An optimal form of electrodes in the device under 
consideration is found. Main characteristics of the field are obtained in terms of closed formulae. 
Data of numerical study which confirm high effectiveness and accuracy of this method are given.
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Introduction

The multipole method suggested in [1], [2] and developed in [3]- [15] is based on the use 
of functions Qp, p =  1, 2, . . . ,  which satisfy identically a given equation in initial domain g 
(e.g., the Laplace equation), satisfy homogeneous boundary condition at curve 7  С  dg, and 
constitute a complete and minimum system at the complementary arc Г =  dg\y. A solution 
of a boundary value problem is presented as a sequence of linear combinations of functions 
Qp. Those functions are boundary multipoles for an extension G of initial domain g over 
arc Г; the concept of the boundary multipoles is meant in the sense of [3]. It is important 
that these functions can be expressed by the simple formula in the case of boundary value 
problems for the Laplace equation. Thus, if a Diric.hlet problem in g with zero condition at 7  
is considered, then functions Qp will be given as follows: Qp =  l m F p, where F  is a conformal 
mapping of the above extension G onto the upper half-plane.

The multipole method was substantiated and investigated in [3]. The obtained theoretical 
estimates show the method enables to calculate effectively the problem solution and all its 
derivatives both in domain g and at arc 7  even if it has complex shape, contains geometrical 
singularities or infinities. It should be emphasized , that this method, according to the above 
estimates, gives the convergence in С"г-п о гт  with arbitrary n in domain, including a part 
of its boundary, while traditional methods (e.g., finite element method) yield approximation 
only in W f -потт (energy norm), and the error of gradient increases when approaching the 
boundary. The performed numerical experiments confirmed high efficiency of the multipole 
method; e.g., when the Diric.hlet problem was being solved for the Poisson equation in L-type 
domain with rounded re-entrant corner [5], [7], [9], the use of only 40 degrees of freedom (i.e. 
functions Qp) ensured the accuracy 10-8 in C-norm for gradient near the rounded corner.

The present work is devoted to modification of this method and to its application to a 
difficult engineering problem which arises when designing a gas laser of special structure.
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According to the general principle of laser operation, an active medium which would amplify 
electromagnetic waves passing through, must be created in the laser [16].

The most effective process of an active medium creation in a gas laser is implemented 
by a glow electric discharge of sufficient intensity maintained in the gas mixture. Discharge 
conditions, the speed of this process, and, therefore, effectiveness of laser generation are 
characterized by some parameters among which electric field intensity E  plays a vital role 
[16]. The laser operation is highly sensitive to the change of E, so very accurate analysis of 
the field is essentially important.

The laser under consideration is of a complex design what makes this analysis rather 
difficult. The main feature of this device is in the special electrode structure suggested by 
researchers from P.N. Lebedev Physical Institute of the Russian Academy of Sciences (Prof.
A.N. Lobanov and his colleagues). Namely, both the anode and cathode inserted into the 
gas medium are composed of isolated sections provided with a system which enables to vary 
a potential on each of them independently. Thus, a variable distribution of potential can be 
fed at the bottoms of the electrodes; there is a constant potential at their side facings. The 
lasers of such a structure have a supplementary possibility which is that the electric field 
can be tuned for the most efficient laser operation, owing to redistribution of the potential 
and variation of the bottoms form.

The experience of above mentioned researches from P.N.Lebedev Physical Institute of 
the Russian Academy of Sciences showed that application of various numerical methods to 
the evaluation of field in this laser encountered considerable obstacles and did not yield 
satisfying results. And all of their efforts to obtain field intensity E , which is a differential 
characteristic, failed. In the present work we apply the multipole method that enables to get 
all the characteristics required with high accuracy and efficiency.

A boundary value problem which describes the electric potential in the gas mixture under 
consideration is stated in Sect. 1. The solution of the boundary value problem is constructed 
with the help of the multipole method in Sect. 2. Sect. 3 is dedicated to finding such a distance 
between the electrodes and a form of their bottoms that the given maximum constant field 
would be kept at the bottoms for a constant potential preassigned at them. Sect. 4 contains 
general representation of the main field characteristics and data of specific implementation.

The author expresses his gratitude to Prof. A.N. Lobanov from P.N. Lebedev Physical 
Institute of the Russian Academy of Sciences for the statement of the problem.

1. Statement of the problem

1.1. Domains and Boundary Value Problem. The analysis of discharge conditions 
which take place in the laser gas mixture can be reduced to solving a Dirichlet problem for 
the Laplace equation in two-dimensional unbounded domain g. This domain is the upper 
half-plane from that a half-strip with a curved bottom removed.

To describe domain g accurately, we introduce an auxiliary domain G. Let G in complex 
plane w =  и +  iv be half-plane %  =  {w : v >  0}  without two parallel rays:
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G =  1-L\{w : и =  ±a ; v >  b},
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where a and b are positive numbers. The initial points of rays will be denoted by В =  a +  ib 
and B' =  —a +  ib. The domain G boundary contains three infinities A, M  and A' reached 
as \w\ —> o c  with и >  a for A, —a <  и <  a for M  and и <  —a for A ' , see Fig. 1.

Now we join points В  and B' by a Jordan smooth curve Г which lies in G except for the 
endpoints. This curve divides domain G into two subdomains, one of them with boundary 
(ABB'A'A)  will be considered as domain g, see Fig. 2.

Domain g corresponds physically to the half section of a volume with gas mixture while 
the half-strip represents the electrode section. Let a certain potential ф(т) be distributed 
at electrode bottom Г and certain constant potential values ф\ and ф-2 be preset at the 
electrode side facings (B'A') and (A B ), respectively. Besides, zero potential is presumed at 
w-axis (A'A) what follows from antisymmetry of the field with respect to this axis. Then 
sought potential Ф excited in the gas mixture in view of a small density of a volume charge 
throughout the system is described by the following boundary value problem:

АФ(-ш) =  0, w е  д, (1.1)
Ф (w) =  o, W  е {А'А), (1.2)
Ф(ш) =  фъ w е (в'А'), (1.3)
Ф (w) =  Ф-2, w е  (АВ), (1.4)
Ф(ш) =  Ф М , w е  г. (1.5)

Here, boundary function ф is continuous at Г and joins continuously with boundary values 
at sides (B'A') and (AB),  i.e. ф(В') =  ф\, ф{В) =  ф-2. Function Ф(ш) is a bounded solution 
of problem (1.1)-(1.5) that belongs to C 2(g) П С  (g\{A U A')).

Note bottom Г in practice is chosen smoothly joined with the electrode side facings 
(B'A') and (AB).  Otherwise, a field concentration will occur near the junction of the 
electrode bottom with the side facings what can cause the unstable discharge and electron 
breakdown [16].
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Fig. 1. Domain G.



НАУЧНЫЕ ВЕДОМОСТИ Серия: Математика. Физика. 2013. №5(148). Вып. 30 157

Fig. 2. Domain д.

1.2. Conformal Mapping of Auxiliary Domain G. When the boundary value 
problem (1.1)-(1.5) being solved by the multipole method, conformal mapping 2 =  F(w)  of 
domain G  onto the half-plane %  plays a vital part. However, it is difficult to find an effective 
global analytical representation for this mapping what makes us turn to an inverse mapping 
(of %  onto G) denoted by f ( z )  that can be found in this case with reasonable facility. We 
define the following correspondence between three boundary points of one domain and those 
of the other: points A, M , and A' of dG correspond to points 1, 00, and —1 of dH, i.e. in 
terms of mapping /

/ ( 1) =  A, / ( o o )  =  M, / ( - 1 )  =  A .

We remark that mapping /  satisfies relation f ( —z) =  —/ ( - ) ,  z e  H,  following from the 
Schwarz reflection principle [17], [18]. Then points В  =  a +  ib and B' =  —a +  ib will 
correspond respectively to real points 2 =  /с-1 and 2 =  —/с-1 for a certain к e ] 0, 1[ which 
will be determined below.

Function f ( z )  may be expressed by Schwarz-Christoffel integral [17], [18]
z

w =  f ( z )  =  c j (  1 -  C2) - 3/ 2(fc- 2 -  C2)dC. ■1.6)

To find the unknown real к and С , we shall use conditions resulting from the above definition 
of conformed mapping f ( z ) :

Re f ( x )  =  a, x >  1; f ( k  l ) =  a +  ib. :i-7)

Let x  be a real number from interval ] — 1 ,1[. Taking integral (1.6) along real segment 
[О, ж], getting, thus,

j ( x )  =  G I , x  +  arcsm x
л/ 1  — x*>2



158 НАУЧНЫЕ ВЕДОМОСТИ ЩЩ Серия: Математика, Физика, 2013. №5(148). Вып. 30

and analytically continuing this function from real interval ] — 1, 1[ to upper half-plane Ti, 
we obtain the explicit formula for the required mapping

f ( z )  =  C i  2 +  In(z +  V z 2 -  1)^ +
7rC_ 
" 2" ’

we consider the main branch of logarithm: Im ln 2 G] — 7Г,7т[, z G %. This expression in 
accordance with conditions (1.7) follows С  =  2а//к and parameter k =  k(a/b) is a root of 
transcendental equation

л/l — k2 1 +  y/ 1  — k2 7Г b
~ ^  +  Ы  k =  2 Z-

A graph of k as a function of dimensionless parameter a/6  is drawn in Fig. 3.
Now we can write out final expression for mapping f ( z ) :

w =  f ( z )  =  —  (  k 1 2 +  in (2 +  -  1 ) ]  +  a;
7Г V v -  — 1 J

Thus, inverse mapping f ( z )  is completely defined, and the required mapping F(w)  can 
be obtained by inversion of it. A very convenient local inversing procedure will be presented 
in Subsect. 2.4.

Fig. 3. Parameter k versus ratio a/b.

2. Solution of boundary value problem

2.1. Reduction of Problem. We introduce function U0(w) via conformal mapping 
F(w)  defined at the end of the previous section

U0(w) =  — Im (<̂ 1 In [1 +  F(w)} — ф2 In [1 — F ( w ) } ) .
7Г

(2 .1)
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Function Uo(w) is obviously a bounded harmonic in G and continuous in G\(A  U M  U A!) 
one, and satisfies the following boundary conditions at dG:

Uo(w) =  0, w E {A! A),
U0(w) =  0i, w E [M B 'A ! ) ,
U0(w) =  02, w E ( A B M ) .

Let us present solution Ф(«>) of original problem (1.1) -  (1-5) in the form

Ф(ги) =  Uq(w ) +  U(w). (2.2)

Taking into account the above properties of function U0 and the inclusion Ф G 
С  (g\(A U A ')) , we find U(w) is a classical solution of the Diric.hlet problem

A U{w) =  0, w G g,
U{w) =  0, w E 7 =  дд\Г,
U{w) =  0(w) — Uo(w), w E T .

Function U(w) will be constructed with the help of the multipole method.

2.2. Multipole M ethod for Solving Problem. The multipole method which is an 
analytical-numerical one for solving elliptic boundary value problems in complex-shaped 
domains was theoretically studied, advanced and generalized in [3]- [15] and some other 
works, and was successfully used for solving a number of theoretical and applied problems. 

The basis of the method is an application of functions Qp(w) expressed by the formula

flp(w) =  Im [F(w)]p, p E N.

One can interprets function Qp(w) for every natural p in the electrostatic sense [3]: it 
represents electric potential excited in domain G by pth order boundary multipole which 
is located in point M.  These are harmonic in g functions, which satisfy zero boundary 
condition at arc 7 =  (В 1 A! A B)  and constitute complete and minimum system in Ьг(Г). 
The required solution of problem (2.3) -  (2.5) can be obtained as the limit

U ( w ) =  lim UK [w) (2.6)
K —too

of sequence of functions UK (w) which are Qp(w) linear combinations

к
UK (w) =  f tp M ,

p= 1

where coefficients a„ are defined by the condition that / ■ i [ j- 11■.rrг of difference of U (w) 
and boundary function <fi(w) — Uq(w ) should be minimum

(2.3)
(2.4)
(2.5)
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Sequence UK (w) converges uniformly to solution U(w) of problem (2.3) -  (2.5) 
everywhere in every compact lying into set g U7 and, moreover, admits differentiation of any 
order in set д и 7 \ (Д и Д ;); the differentiated sequence converges uniformly in every compact 
lying into the latter set [3].

Besides, an expansion in the multipole system

U ( w ) = y  ap Qp(w), ap =  lim cipK^oo p 
n =  1

is an analog of Taylor series in the sense that it can be differentiated any times and it 
converges with exponential speed everywhere in its convergence set

{w =  f ( z ); \z\ <  R, Im с > 0 } ,  R =  min |F(w)|.
w €Г

We remark that the set represents the union of a certain subdomain of g and a part of arc 
(В1 A! A B)  adjacent to it.

Condition (2.7) results in linear algebraic system

к
^ 2 Cpgaf  =  Hq, q = l , 2 , . . . , K ,  (2.8)
p = 1

where Gpq are elements of Gram’s matrix for system {^ P(« ’)}^ li) ап^ Hp is a projection of 
boundary function ф — Uo onto Qp:

Gpq =  J  Qp(w)Qq(w)\dw\, Hp =  J  Qp(w)[(f)(w) — U0(w)]\dw\.

By virtue of the fact that function system is complete and minimum in Ьг(Г)
as it has been said, algebraic system (2.8) is uniquely solvable.

Thus, summing up the preceding, we can write out the expression for the approximate 
solution of problem (1.1) -  (1.5)

1 K
ФА (w) =  -  Im (0i In [1 +  F(w)] -  02 hi [1 -  F(w)])  +  a,pVLp{w)

7Г L '
p =  1

converging to Ф(гу) in the closed domain g as К  —> oo.

2.3. Expansion of Solution in Orthonormal System. It may be convenient to use 
a representation for Ф(«>) in the form of series in an orthonormal system. Following [3], we 
introduce orthonormal function system {и;р(гу)} which can be obtained from system Qp(w) 
by the Schmidt orthogonalization process, see e.g. [19]

1 p 
wp(w) =  , A npQn(w) ,

v 'DetpDetp_i “
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where Detp is determinant of matrix {C mn} pmn=l while Anp is the algebraic complement of 
element Cnp in this matrix. Then exact solution Ф(«>) is presented as follows

Ф(«>) =  -  Im (0i In [1 +  F{w)] -  02 hi [1 -  F(w)])  +  hpUjpiw), (2.9)
'ТГ •

where

p = l

hp =  J  u}p(w)[(f)(w) — Uo(w)]\dw\.

According to [3], series (2.9) converges everywhere in g and admits any order differentiation 
in g U 7 \(A U A').

2.4. Constructing of Mapping л =  F(w).  As we have already said, conformal mapping 
z =  F{w)  of the extended domain G onto half-plane H  is an important, apparatus for the 
multipole method. However, the problem of constructive representation for this mapping in 
the general case is difficult. Therefore, when the multipole method being implemented, one 
has to use the inverse of F(w)  denoted by f ( z )  which can usually be found easier. If f ( z )  
is determined, then the required mapping could be constructed by inversing f ( z ) .  It can 
be done with the help of the method of successive approximations which is based on the 
Newton’s method and gives local inversing procedure [20]. Here we formulate this method 
for a conformal mapping in the general case.

Let function w =  V’ (~) accomplish a conformal mapping of domain G i onto domain G2, 
and the inverse image c0 G G 1 for a certain w0 G G 2 is known,

f ( z 0) =  w0.

Now we introduce some objects required for the formulation and proof of the method. 
The distance of point Co to the domain G 1 boundary will be denoted by Rz0; the disk

V z0{r) =  { z : \ z -  c0| <  r }

for every r g ]0, Rz0] lies obviously into domain G\. Let us define the function

which is holomorphic in G 1 with respect to the both variables by virtue of the fact that 4 ’ (z) 
is holomorphic in G 1 and 4’' (zo) Ф 0. A maximum absolute value of W  with respect to z\ 
and Z2 from the closed disk V z0(r), r g ] 0 ,  Rz0] will be denoted by Q(r),

Q (r ) =  max \ W(z\, c2)|, zu z2 G T>z0(r);

and maximum absolute value of \W\ of z\ from the same disk, when z2 =  zo, will be denoted 
by q{r)

q{r) =  max \W{zx, c 0 )|, Z\ G T>zo(r).

It is clear that Q(0) =  q(0) =  0. Now we will state some other properties of the intoduced 
functions.

Lemma 2.1. If  function 'tl’(z) is not linear, then for every r g ] 0 ,  Rz0]
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1. The following inequality takes place

0 <  q{r) <  Q(r);  (2.10)

2 . Functions Q(r) and q(r) increase strictly;

3. Functions Q(r) and q(r) are majorized by convergent series

Q ( r )  <  '  f ;  <  „ о ;  ( 2 . П )
\Ф'Ы\ ^  n\

q ( r )  <  — У  r "  <  CO. ( 2 . 1 2 )
“  IV''(-o)l ^  (n+1) !

□  Using the principle of maximum for holomorphic function [17], [18], it is not difficult 
to verify that function \W(z\,zq)\ over the disk V z0(r) reaches its maximum value at the 
disk boundary, while the maximum of \W(zi, c2)| is reached when both points Zi, z2 belongs 
to the disk boundary. In other words, the relations take place

Q(r)  =  |W ( z 0 +  re*"1, cO +  re*"2)|, q{r) =  |W ( z 0 +  re*"3, c0)|

for certain aj  =  Q'j(r) G [0, 27r[, j  =  1,2, 3. This follows the validity of inequality (2.10) and 
the strict monotony of the functions Q(r)  and q(r). Further, expanding function W ( z i , z 2)

w , ч =  1 \  ̂ 4 )[n){zo) (zi -  z0)n -  (z2 -  z0)n
V’^ o )  ^  n\ (Zl -  Zo) -  (z2 -  Zo) '

placing Zj =  c0 +  retaj into this expression and estimating its modulus, we obtain the
inequality

Q ( r )  <  _ J _  у
Ы’’ Ы \  ^

Taking into account

П— 1

gгах   £%ol2 rn~1

giot,i   gia2 n,
m—0

we obtain the required estimate (2.11). To get (2.12), one can operate analogously. The 
lemma is proved. ■

Note if function 4’(z ) is linear, then Q(r) =  q(r) =  0 for every r.
Let us define numbers Rl0 and rz0 as follows. If Q(r)  <  1 for all r from [0,ДгО], then 

Rl0 =  Rzo, otherwise, by Rl0 will be denoted the point at which function Q takes value 1. 
Then rzо G [0, i?]0] is a point at which function r [1 — q(r)] reaches its maximum,

rzo[l -  q(rzo)] =  max (r[l -  q(r)]) , r G [0, Rl0].
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P ro p o s itio n  2.1. The function sequence

ФО(«0 =  Со, Ф,г+1( »  =  ф ,г ( »  -
У>(фn(w)) -  W

Ф ' Ы
п =  0 , 1 , 2 , :2 . i3 )

converges to function с =  Ф(«>), the inverse o f  4 ’ (z), uniformly inside disk Т>и,0(ги,о), where

rw0 =  rzo[l -  q(rzo)] W’\z0)\.

If  |w — w01 =  d <  rw0, then the convergence rate o f successive approximations (2.13) is 
estimated as follows

Qo d

for

| Ф Н - Ф „ Н 1 <  

Qo =  Q{d*) <  1, d*

1 -  Q o  | ^ ' Ы Г  

d

[1 -  Q(rzо Ш ’' Ы Г

2.14

:2.15)

□  Let d be an arbitrary number from the interval ]0, r„,o[- We define quantity d* by 
relation (2.15); it is clear that 0 <  d* <  rzo. Now we will prove that for w such that 
|w — wo| =  d, all the approximations Фга(и>) belong to disk V z0(d*). As to Фо(«>) =  zo, it 
belongs obviously to this disk; let Ф,г(«>) be known for a certain n to lie into this disk, we 
show that Ф,г+1(и)) is from V z0(d*) too. Indeed, denoting с =  Ф„(и>), we write

|Фга+1(гу) -  c0| с —
4 ’ (z) — w v>(c) -  V’(-o) Wo — w

Ф ' Ы
-  z0 <

~ ~u 4’’ Ы
+

Ф 'Ы

the former summand is, by definition of q, not greater than q(d*)\z co| and, thus, it is less 
than q(d*)d*, the latter summand equals to d/\^'(zo)\ =  [1 — q(rzo)\d*, that follows

|Ф»+1(«0 -  ~o| <  q(d*)d* +  [1 -  q(rz0)]d* <  d*.

By virtue of the principle of mathematical induction, we obtain that Ф,г(гу) G V z0(d*), 
/г =  0 , 1 , 2 . . .

Further, according to the definition of function Q(r),  the following inequality takes place

V’(ci) -  4>( z 2 )
<  Q(d*)\z1 -  c2|, Q(d*) <  1,

for every ci, c2 from V z0(d*). We can place z\ =  Фn(w), c2 =  Ф „_1(и>) in this formula, what, 
taking into account (2.13), follows

|Ф,г+1(«0 -  Ф/г(«01 <  Q(d* )|Ф„(ги) -  Ф „_1(гу)|,

and for every N  >  n

N
У  |Фт +1(«0 -  Фт («0| <

[<?(<**)]"
1 -  Q(d*)

4’ (z0) -  W

4’’ Ы



This means sequence Фга(и>) converges uniformly in every closed disk V w0(d), cl <  rwо to 
function Ф(«>), with ф о Ф(u>) =  w. Tending the upper limit N  in the last inequality to the 
infinity we obtain estimate (2.14). According to Weierstrass’ theorem [18], Ф(«>) constructed 
in this manner is a holomorphic function in the open disk T>w0(rwo). The proposition is 
proved. ■

3. Optimum Electrode Shape

3.1. Formulation of Problem. We remind domain g from the class under consideration 
is uniquely defined by arc Г (the electrode bottom shape) and parameters a (the electrode 
half-width) and b (the altitude of electrode sides over (A 'A)-axis).

We will consider the following statement: let a certain constant potential ф0 >  0 be 
preset at the whole electrode surface {А В В' A1) with the electrode width 2a being given. It 
is required to find bottom Г and parameter b that provide a constant magnitude of electric 
intensity along the whole bottom, equal to the preset value E0.

The arc Г shape satisfying this statement is an optimum one in the sense that any other 
arc with the same endpoints contains a some place where the magnitude of electric intensity 
exceeds E0.

To be specific, we shall solve the following boundary value problem in domain g with free 
boundary arc Г

ДФ(«>) =  0,
Ф(«>) =  0,
Ф(«0 =  фо,

Igrad Ф(гб?) | =  Е0,

quantities а, ф0 and Е0 are assumed to be preset.
An explicit analytical expression for Г as a complex-valued parametrical function Г(£) =  

=  Ti(t) +  ?T2(i) will be found below in Subsect. 3.3. The corresponding potential Ф(«>) can 
be obtained by means of the method presented in Sect. 2.

3.2. Preliminary Notes. The problem (3.1)-(3.4) of constructing an optimal rounding 
curve Г is solved below by the hodograph method [21]- [24].

Problem (3.1)-(3.4) is reduced to the question of the existence of such a conformal 
mapping (  =  Ф (w) of domain g onto strip

{ (  : 0 <  Im ( <  фо}

that points A  and A' would be mapped into the right and left infinities of the strip, 
respectively, and

|Ф'Н| =  E0
for every point w of the unknown arc Г. Then function Ф(«>) which corresponds to statement
(3.1)-(3.4) will be expressed as follows

164 НАУЧНЫЕ ВЕДОМОСТИ Е д  Серия: Математика. Физика. 2013. №5(148). Вып. 30

w G g, 
w G (A ' A ) , 
w G ( A B B ' A ' ) ,  
w G Г =  (BB') ,

(3.1)
(3.2)
(3.3)
(3.4)

Ф(«>) =  1тФ(«>).



Function Ф(«>) is called complex potential; its derivative is well known to be related to field 
intensity E{w)  by the formula

E(w) =  i Ф'(w),

where E{w)  is the complex conjugate of E{w).  A general representation of function Ф(w) 
for problem (1.1)-(1.5) will be given in Subsect. 4.1.

Existence and uniqueness of arc Г which would bring into being the mapping, can be 
proved with the help of the general variation principle [21], [25]. Note arc Г and, therefore, 
the whole domain g are, in our case, symmetrical with respect to w-axis. The segment of 
this axis joining the middle point O' of Г and the origin of coordinates О divides g into two
symmetrical subdomains g+ =  {w  G g : и >  0} and g~ =  {w  G g : и <  0}, see Fig. 2.

Note conformal mapping (  =  Ф(w) has one degree of freedom that we will fix with 
condition Ф(О) =  0. It is not difficult to demonstrate, using the reflection principle already 
mentioned, that this unique mapping transforms domain g+ into half-strip

: 0 <  R e (; 0 <  Im ( <  ф0}  (3.5)

with the correspondence of boundary points

Ф (0) =  0, Ф(Д) =  оо, Ч>(О') =  гф0. (3.6)

It is obvious that [ A B B 1 A1) is mapped into line Im ( =  ф0, and real axis {A! A)  is 
mapped into real axis Im ( =  0. The image of point Б  is a certain point /3 +  гф0-, positive 
quantity /3 which depends on the problem parameters will be determined below. Along with 
normalization (3.6) for Ф we shall use another correspondence which follows from (3.6):

Ф (A) =  oo, Ф (B) =  /3 +  ?,ф0, Ф (O') =  гфо (3.7)

with unknown /3.
Let us consider now a conformal mapping conditioned by the derivative of function Ф(w). 

The domain g+ image under the mapping W  =  Ф'(u>) is readily verified to be a sector

{ W  : \W\ <  E0; —7Г/2  <  argW  <  0} (3.8)

in the complex plane W (so-called hodograph plane); boundary points are transformed as 
follows:

Ф'(Д) =  0 , Ф '(В) =  -гД о, Ф '(0 ') =  £о, (3.9)
and Ф'(0) is a real number from interval ]0, E0[.

We introduce now function W =  П(£) which accomplishes a conformal mapping of half­
strip (3.5) from complex potential plane (  onto sector (3.8) in the hodograph plane with the 
following normalization

£!(oo) =  0, П(/5 +  гфо) =  —iE0, П(г0о) =  E0. (3.10)

Then, from definition of Ф(«>) and П(£), and in view of correspondences (3.7), (3.9), (3.10), 
we get Ф'(гу) =  O o Ф(«>), whence it follows, owing to (  =  Ф(«>), the equality
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(3.11)
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Integrating right-hand side of (3.11) along straight segment [t +  гфо, Р +  гфо], when 0 <  t <  /3, 
in the complex potential plane and the left-hand side along the corresponding part of arc Г 
in initial plane w, we obtain the expression for the required arc in terms of parametrical 
function

T(t) =  a +  ib —
dx

Q(x  +  i(p0)
t G [0, /5], (3.12)

where the parameter values t =  0 and t =  [3 correspond to points O' and В  of arc Г.
Therefore, the mapping which satisfies relations (3.10) remains to be found, then everyone 

can determine the arc sought, applying formula (3.12). Unknown parameters b and /3 will be 
found in Subsect. 3.3.

3.3. Representation of Optimum Bottom . Mapping П(£) is obtained effortlessly

(

f ! « )  =  Bo

\

cosh
1 +

К
20o

cosh
ъ С \
20o

sinh
7Г \3 
20o

sinh
7Г f3 
20o у

(3.13)

Replacing (  by х  +  гфо in this relation and substituting the result into (3.12), we find the 
following formula

Г (t) =  a +  i b -  - j -  
Eq

/3 / sinh2
7ГХ

sinh
7ГХ \

J
t

v\

1 -
sinh2

20o
7Г [3 
20o

+  i
sinh

20o
7Г [3 
20o /

dx. (3.14)

The imaginary part of (3.14) can be written via elemental functions while the real part, 
by means of substitution of integration variable x  =  (20o/ 7г) arsinh^', can be reduced to 
expression in terms of the incomplete elliptic integrals [26]:

Г(£) =  a +  ib — 20o
T lE 0 T

Ei(9 , r) -  E2{9, r ) +  i ( V l  -  r 2 cosh — ------ 1
20o
7Г t

(3.15)

The following designations are accepted in the last formula
в
f  dx

Ег{е,т)
\ / l  — t 2 sin2 x

Е 2(0,т) =  /  \ /l  — r 2 sin2 xdx
о v о

are the first and second type incomplete elliptic integrals (since letters F  and E  which are 
their commonly accepted designations are already engaged in our paper, we have to use 
unconventional designations), and

Tit
sinh

9 =  в it) =  arccos ■
sinh

Щ ,  t  =  t a n h ^ .
200

20o

(3.16)
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Note 0 <  0 <  7г /2, 0 <  т <  1, and expression Е\{9, т) — Е 2(9 , т) can be represented in the
form of series

w .  r )  -  Ы * .  r )  =  f )  T 7 % f  / ” < 9 ) t 2 ’ “ '  ( З Л 7 )

ra= 1 ' '

here and below (a)m denotes the Pochhammer’s symbol [27]; for values

в

In(9) =  [  sin2” xclx
t

a recurrence formula is valid

m  = e, m  = + { (ЗЛ8)
Series (3.17) converges for every 9, owing to the fact that r  is always less than 1 and quantities 
In{9) can be estimated as follows

1п{0 ) <  In{7t / 2) =  ^  =  о  (n~1/2) , n ->■ oo.
— Tl.

Thus, we have found function (3.15) which describes sought arc Г, and it remains 
only to determine quantities /3 and b in this expression. For this purpose we consider two 
representations for the middle point O' of arc Г. On the one hand, as it has been remarked, 
O' =  Г(0), hence, placing t =  0 in (3.12), we find

O' =  a +  ib —

/3
f  dx

Q(x  +  гф0) ’

On the other hand, O' can be got by integrating the left-hand side of (3.11) along the straight 
segment [O, O'] of и-axis (while the right-hand side is integrated along the corresponding 
straight segment [0, гфо\),

Фо
q , i Г dx

E0 J Q(ix)
о

Inserting already known function Q defined by formula (3.13) into the two last relations, 
separating real and imaginary parts and equating them, we obtain two equations which 
define the required quantities completely:
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and

1
Eq

Фо

[

J
0

l \

cos
1 -

7ГХ

20о
cos

7ГХ \  

200
2 тг/5sinh^ sinh

20o 20o /

dx =  b -  ^  tanh
7Г £/o 400

(3.201

Equation (3.19) is an implicit expression for /3 which is modified in terms of hypergeometrical 
function F  =2 Fi, see e.g. [26], [27], as follows:

^ ( l / 2 . 3 / 2 ; 2 ; r 2) =  ^ .  
2 0o

(3.21)

where r  has been defined in formula (3.16).
In view of equation (3.21) we can draw a conclusion that auxiliary parameter r  G (0,1) 

depends only on dimensionless quantity Л =  аЕ0/фо that can be varied in the range (0, oo), 
and the required parameter /3 depends on Л and 0O.

We remark that for great values of Л =  аЕ0/фо it would be convenient for finding 
parameter /3 to use the following equation, equivalent to (3.21),

n—0
( / ? . ! ) 5 00

(3.22)

here small parameter t is related to /3 as follows

6 = 1  — r cosh -2 7Г/3
20o

(3.23)

and the recurrence formula for coefficients is valid 

^o =  2(ln 4 - 1 ) ,  //,„ =  / / , „_ ! -
??.(2/?, — 1) (2/г +  1) ’

Using expressions (3.21) and (3.22), we find asymptotic behavior of parameter /3 in the 
limiting cases Л —> 0 and Л —> oo for every fixed фо-

/3 =  ^ Л  +  0(Л 2),
7Г

and

/3 =  0ОЛ -  ^  +  О (Ае_7гЛ
7Г

Л —у со.

Besides, it is not difficult to demonstrate that /3 as a function of Л (for a fixed фо) increases 
monotonically while its derivative will decrease monotonically from 40o /7r when Л =  0 , 
down to фо when Л —> oo. The graph of /3 as a function of аЕ0/фо for different values of 
potential 0O is presented in Fig. 4.
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Finally, we are coming to a determination of parameter b. We return to equation (3.20) 
where all the quantities, except for 6, have already been found. Inserting (3.13) with f  =  ix 
into (3.20), we obtain

1

Er

(

I n

cos
1 -

7ГХ
2фо

cos

sinh
+

7ГХ \

2фо

2ф0
sinh 7Т(3

2фо J

dx =  b - ^ ~  tanli W'3
irEr 4ф0

We rearrange the last formula and have finally a sought expression for b

b =  ^  И - 1/ 2, 1/ 2, 1; 1 -  r 2) +  tt/2) .

Thus, all the sought parameters of domain g which satisfy the statement (3.1)-(3.4) are 
determined completely. The next subsection deals with a study of characteristics of the 
obtained optimum bottom. As to solution Ф(ш) of problem (3.1)-(3.4), it can be constructed 
according to the method outlined above, in Sect. 2. A graphical representation of this solution 
will be given below for a certain set of the domain g parameters, see Subsect. 4.2, Example 3.

Fig. 4. Parameter (3 versus аЕо/фо for different фо.

3.4. Electrode Curvature and Field Distribution. It is of interest to find such 
characteristics of the optimum electrode form as its bottom curvature and electric field 
distribution at side facings (the field magnitude is constant at the electrode bottom, 
according to condition (3.4)).

We will search for curvature К  and field magnitude \E\ =  ^ 1̂ Ф |  as functions of 
coordinate s G (—oo, oo), which is the arc length measured from point O' along electrode 
contour with values s =  —oo , s =  0, s =  oo corresponding to points A', O' and A. We will 
find first a relation between parameter t used in representation of arc Г (see the previous 
subsection) and new coordinate s. To do this, we will use equality (3.11): integrating absolute 
value of its left- and right-hand sides along the corresponding straight segments [0, s] and
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[i(f>o,t +  гфо], we obtain just the are length. Further, taking into account expression (3.12), 
we find

s(t )
dx

|П(;г +  гф0)\
(3.24)

where
\Q(x +  гф о) |

|П(;г +  '1ф0)\

1

Eo

1

Eo

sinh
7ГХ

2фо
sinh

sinh2 ТГ/5
- 1  +

7Г Х  \

2фо

2ф0
sinh

7Г /3 
2JoJ

if |;r| <  /3, 

if |;r| >  f3.

Taking integral (3.24), we come to the final expression for s(t): if \t\ <  /3,

/ \ t 
Ф )  =  Ё Г ,Ь/q

(3.25)

while if \t\ >  /3,

s(t) =  A  +  ^  
Eo 7Г

/

6 7r f

cosh —— 1 +— 6 2 0 o

. I  \

_-l
1 -

- 1

sinh
Tit

20o У

1 +  E2(9(t), y/e)
(3.26)

Note values \t\ <  /3 and, therefore, |s| <  f3/E0 correspond to points at the electrode 
bottom Г; values t <  —f3 (i.e. s <  —p/E0) and t >  [3 (i.e. s >  /3/E0) correspond to the left 
(Bf A f) and right ( A B )  electrode side facings. We remind that quantity e <  1, the solution 
of equation (3.22), is related to /3 by formula (3.23), parameter 9(t) has been introduced by 
equality (3.16). Besides, the second type elliptic integral Е 2(в, у/ё), see Subsect. 3.3., can be 
expanded into a Taylor series in terms of powers of small parameter c.

E2(D, Л  =  ±
»г=0

where factors In(0) are subject to recurrence formula (3.18).
We remark also that expression (3.25) for arc coordinate s follows, in particular, the 

whole length of the electrode bottom Г equals to 2/3/E0.
Now we start finding curvature K (s )  and field magnitude l^l at the electrode contour. 

The curvature of the electrode side facings is obviously equal to zero, i.e. K (s )  =  0 for 
|s| >  [3/E0. Curvature K(t )  of an arc Г set parametrically T(t) =  Ti(t) +  ?T2(i) is expressed 
by the well-known formula

I<(t) K ( t ) r m  -  т ш ) \
| F ( t )|3
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Curvature of the same are parametrized with the coordinate s will be found by the relation

K (s )  =  К  о t(s),

where, in our case, t(s) =  E0s for |s| <  f3/E0. Using formula (3.14) for Г(£), we obtain

K ^  = c o s h ( s i n h 2 ~~sinh2 1 Is! < E °' 3̂'27̂2ф0 2ф0 \ 2ф0 2ф0 J

Here we observe the singular behavior of the bottom curvature at the points of the junction 
with side facings. Namely, it is not difficult to verify that when coordinate s approaches 
/3/Eq from the left (i.e. w —> В  as w G Г), the following asymptotic relation is valid

( ^ _ s )  + о й ^ )  • s ^ , 3 / E ° ■ 0;

and a similar relation takes place for s —>■ —/3/E0 +  0 (i.e. w —>■ B' as w G Г).

To obtain an expression for field intensity magnitude along the electrode contour at
a point corresponding to a certain value of parameter t, we observe first that this magnitude 
coincides with the modulus of mapping П(£) when (  =  t +  гфо, according to Subsect. 3.2. 
Using expression (3.13) for П, we find

\E(t)\ =  E0, if \t\ <  /3; f 3.28)

\E(t)\ =  E 0

(  Tit
smh ——
 2 0 o

sinh
7Г/3

20o \

sinh

sinh"

7Г t
20o 
7Г [3 
20o

- 1 if \t\ >  /5. f 3.29)

One can determine field magnitude at a point which lies in the electrode contour at distance 
s (measured along the contour) from point O'. For this purpose, parameter t in formula 
(3.29) should be substituted by arc coordinate s in accordance with relation (3.26).

Figures 5 and 6 give the graphs of the electrode curvature (3.27) and field magnitude 
(3.28), (3.29) at the electrode contour versus arc coordinate s.
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Fig. 5. Curvature К  of optimum electrode contour versus arc coordinate s.

Fig. 6. Field magnitude \E\ at the contour versus arc coordinate s.

4. Main Field Characteristics

4.1. Analytical Representations. The multipole method enables also to obtain 
analytical representations for any derivative of the boundary value problem (1.1)-(1.5) 
solution Ф(ш) as well as for the harmonic conjugate of this solution. Thus, function Ф(w), 
such that function Ф(ш) =  Ф(ш) +  ?’Ф(ш) is holomorphic and Ф(0) =  0 (this function is 
unique in view of simple connectivity of domain g [2, 3]), can be expressed similarly as (2.1):

&(w) =  U0(w) +  U(w), 

here the formulae for Uq and U{w), analogous to (2.2) and (2.6), take place

U0{w) =  -  In |1 +  F ( w )I -  Ф2 In |1 -  F ( w ) I ) ,
7Г
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к
U ( w ) =  lim a „ Q p(w), &P(w) =  Re [F(w)]p;

К —too —/p= 1

the last limit exists for every w G g. Summing the functions Ф(«>) and гФ(ги), we find 
expression for complex potential

1 K
Ф(w) =  — (0i ln[l +  -F(w)] — ф-2 ln[l — F{w)])  +  lim a,  ̂[F(w)]p. (4.1)

7Г К - t o o  ^ — /  1p= 1

Furthermore, the derivative of holomorphic function Ф(w) with respect to complex 
variable w can be readily obtained because the multipole method admits differentiation 
of any order. Differentiating (4.1), we get

Ф'(ги) =  F'{w)  I -
7Г

01 . Ф-2
1 +  F(w)  1 — F(w)

к

Modulus of the last function coincides with the field intensity magnitude ^ (w ) !  =  |Ф'(гу)|.

4.2. Specific Implementation. The specific implementation for the obtained solution 
was performed for various sets of domain g parameters (quantities a, b and forms of arc Г) 
and various distributions 0(w) of boundary potential. For range of ratio a/b from 0.2 to 
5, for sufficiently smooth arcs Г and distributions 0(w) chosen in accordance with physical 
reasons, it was sufficient to use 20 multipoles Qp in order to reach global relative error for 
field intensity E  less than 10-3 everywhere in closed domain g.

Figures 7-9 demonstrate numerical results for Examples 1-3, respectively. For these three 
examples are presented:

a) equipotentials {w : Ф(«>) =  const},
b) lines of force {w : Ф(«>) =  const},
c) lines of equal intensity magnitude {w : ^ (w )! =  const}.
Example 1. The solution of problem (1.1)-(1.5) with the following input parameters is 

considered: a =  1, b =  0.9; arc Г is specified as a graph of dependence

v{u) =  0.9 -  0.2(1 -  и2) 1/2.

Potential distribution at arc Г was prescribed as function of u-coordinate

0(w) =  0.75(w +  0.2)2 +  0.62;

note the continuity condition for the potential along the electrode contour follows: 0 i =  1.1, 
02 =  1.7.
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Fig. 7. Illustrations for Example 1.

Example 2. The solution of problem (1 .1 )-(1 .5 ) with the following input parameters is 
under consideration: a =  1, b =  1; arc Г is specified as a graph

v(u) =  1 — 0.4(1 — u2) 1/ 4 +  0.15(1 — и2) exp(—5u/6 ).

Potential distribution at arc Г was prescribed as follows

ф(и) =  -0 .1 75и3 +  0.525и +  0.35 +  1.35 cos4
Zj

and Ф1 =  0.8, ф2 =  1.5.

Example 3. The solution of optimum problem (3.1)-(3.4) with parameters a =  0.8, ф0 =  1, 
E0 =  1.3 is under consideration.
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b) lines of force

с) lines of equal intensity magnitude

Fig. 8. Illustrations for Example 2. Fig. 9. Illustrations for Example 3.
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ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ЛАЗЕРЕ  
С ПОМОЩ ЬЮ  МЕТОДА МУЛЬТИПОЛЕЙ

А.Б. Пальцев
Учреждение Российской академии наук Вычислительный центр им. А.А.Дородницына РАН, 

ул. Вавилова, 40, Москва, 119991, Россия, e-mail: vlasov@ccas.ru

Аннотация. Работа посвящена модификации метода мультиполей и его применению к 
исследованию электрического поля в лазере специальной конструкции. Найдена оптимальная 
форма электродов в этом приборе. Для основных характеристик поля найдены явные фор­
мулы. Полученные численные результаты подтверждают высокую эффективность и точность 
используемого метода.

Ключевые слова: краевые задачи, метод мультиполей, расчет электрического поля в 
лазере.
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