MSC 35S99

РАЗРЕШИМОСТЬ НЕЛОКАЛЬНОЙ ЗАДАЧИ ДЛЯ ЭВОЛЮЦИОННЫХ УРАВНЕНИЙ ТИПА ФРАКТАЛЬНОЙ ДИФФУЗИИ В ПРОСТРАНСТВЕ ОБОБЩЕННЫХ ФУНКЦИЙ

Я.М. Дринь

Буковинский государственный финансово-экономический университет, ул. Штерна, 1, Черновцы, Украина, e-mail: drin jaroslav@i.ua

Аннотация. Доказана разрешимость нелокальной многоточечной по времени задачи для эволюционных уравнений с оператором дробного дифференцирования по временной переменной в случае, когда краевая функция является ультрараспределением Жевре.

Ключевые слова: фрактальная среда, дробная производная, нелокальная задача, фундаментальное решение, разрешимость задачи, обобщённые функции.

Понятие фрактала становится одной из парадигм современной фундаментальной и экспериментальной физики, радиофизики и радиолокации, а дробное исчисление – математической основой физики фракталов, геотермии и космической электродинамики. Хотя математический аппарат дробного исчисления в настоящее время хорошо разработан, широкое применение дробных интегралов (ДИ) и дробных производных сдерживается из-за отсутствия у них ясной физической интерпретации. В работе [1] показано наличие прямой связи между ДИ и фрактальным множеством Кантора. Если полное число оставшихся состояний на каждой этапе разбиения этого множества нормировать на единицу, то доля сохранившихся состояний ν , входящая в показатель ДИ в точности совпадает с фрактальной размерностью множества Кантора ν , причем $0 < \nu < 1$.

В монографии [2] исследованы качественно новые математические модели различных процессов переноса субстанций в пористых средах, обладающих фрактальной структурой: движение грунтовых вод, почвенной влаги и соли; эволюция малых возмущений в каналах с фрактальными стенками; динамика микрометеорологического режима при орошении больших территорий. В [3] приведены исследования автора по аналитической теории тепломассопереноса, имеющие целью разработку расчётных методов определения потоков вещества и теплоты на границе раздела сред, в том числе при наличии химических превращений.

Применение дробного исчисления в математическом моделировании нелокальных процессов посвящены работы А.М. Нахушева [4,5], В.А. Нахушевой [6], Ү.Z. Povstenko [7–10]. В работе [5] отмечено, что дробное дифференциальное и интегральное исчисление в теории фракталов и систем с памятью приобретают такое же важное значения, как и классический анализ в физике (механике) сплошных сред. Таким образом, проведение фундаментальных исследований по нелокальным задачам для псевдодифференциальных уравнений является актуальным.

В работах [11–13] проведено исследование задачи Коши для уравнений типа фрактальной диффузии, содержащих регуляризированную дробною производную по временной переменной и производные второго порядка по пространственным переменным.

В [11] доказана теорема о существовании и единственности решения абстрактной задачи Коши для уравнения $D_t^{\alpha}u(t)=Au(t)$, где A – замкнутый линейный оператор в банаховом пространстве, D_t^{α} – регуляризированная дробная производная Римана-Лиувилля порядка $\alpha \in (0,1)$. На основании этого в [12] доказана единственность решения задачи Коши для уравнения $D_t^{\alpha}u(t,x)=Lu(t,x)$ в классе ограниченных и экспоненциально возрастающих с порядком роста $2/(2-\alpha)$ функций (L – эллиптический дифференциальный оператор 2-го порядка с непрерывными и ограниченными действительными коэффициентами). В работе [13] с помощью метода параметрикса установлена разрешимость задачи Коши для уравнения $D_t^{\alpha}u(t,x)=Lu(t,x)$ в классе возрастающих как $\exp\{c|x|^{2/(2-\alpha)}\}$ функций. Рядом авторов исследовалась также задача типа Коши для обыкновенных дифференциальных уравнений с дробными производными Римана-Лиувилля (см. [14]).

Обобщением задачи Коши является нелокальная многоточечная по времени задача, когда начальное условие $u(t,\cdot)|_{t=0}=f$ заменяется условием $\sum_{k=0}^m \alpha_k u(t,\cdot)|_{t=t_k}=f$, где $t_0=0,\ \{t_1,\ldots,t_m\}\subset (0,T],\ \{\alpha_0,\alpha_1,\ldots,\alpha_m\}\subset \mathbb{R},\ m\in\mathbb{N}$ — фиксированные числа (если $\alpha_0=1,\ \alpha_1=\alpha_2=\cdots=\alpha_m=0$, то имеем, очевидно, задачу Коши). Такая задача относится к нелокальным граничным задачам для уравнений с частными производынми. Нелокальные граничные задачи в разных аспектах изучали многие математики, используя при этом разные методы и подходы (О.О. Дезин, В.К. Романко, А.М. Нахушев, С.Г. Крейн, О.А. Самарский, Б.Й. Пташник, М.И. Юрчук, В.И. Чесалин, О.Л. Скубачевский и др.). Получены важные результаты относительно постановки, корректной разрешимости и построения решений, исследованы вопросы зависимости характера разрешимости задач от поведения символов операций, сформулированы условия регулярности и нерегулярности граничных задач для важных случаев дифференциально-операторных уравнений (детальное описание работ, в которых исследовались нелокальные краевые задачи, см. в монографии [15]).

Двухточечная по времени задача для уравнения диффузии с оператором D_t^{α} исследована в [16]. Решение такой задачи найдено с помощью преобразования Фурье функции Миттаг-Леффлера с краевыми функциями из класса Дини. Нелокальные многоточечные (m-точечные) по времени задачи для эволюционных уравнений с оператором дробного дифференцирования по временной переменной и оператором дифференцирования произвольного порядка до сих пор не изучались.

Целью этой работы является построение и исследование свойств фундаментального решения указанной задачи, установление разрешимости задачи в случае, когда краевая функция – обобщенная функция типа ультрараспределений (постановка многоточечной задачи в разных классах обобщенных функций является естественной, так как к ультрараспределениям относятся и регуляризации функций, имеющих в одной или нескольких точках особенности, порядок которых больше, чем степенной [17]). Здесь найден класс X' обобщенных краевых функций, для которых решение u(t,x) многоточечной задачи изображается в виде свертки краевой функции с фундаментальным решением этой задачи (которое является элементом пространства X основных функций); при этом решение имеет такие же свойства, что и фундаментальное решение, $u(t,\cdot) \in X$ при каждом $t \in (0,T]$, а соответствующему краевому условию $u(t,\cdot)$ удовлетворяет в

пространстве X'.

1. Пространства основных и обобщенных функций. И.М. Гельфанд и Г.Е. Шилов ввели в [18] серию пространств, названных ими пространствами типа S. Они состоят из бесконечно дифференцируемых функций, заданных на \mathbb{R} , на которые накладываются определенные условия убывания на бесконечности и возрастания производных. Эти условия задаются с помощью неравенств $|x^k\varphi^{(m)}(x)| \leq c_{km}, x \in \mathbb{R}, \{k,m\} \subset \mathbb{Z}_+$, где $\{c_{km}\}$ — некоторая двойная последовательность положительных чисел. Если на элементы последовательности $\{c_{km}\}$ не накладывается никаких ограничений (т.е c_{km} могут меняться произвольно вместе с функцией φ), то имеем, очевидно, пространство $S \equiv S(\mathbb{R})$ Л. Шварца быстро растущих на бесконечности функций. Если же числа c_{km} удовлетворяют определенным условиям, то соответствующие конкретные пространства содержатся в S и называются пространствами типа S. В частности, для произвольно фиксированных α , $\beta > 0$

$$S_{\alpha}^{\beta}(\mathbb{R}) \equiv S_{\alpha}^{\beta} := \{ \varphi \in S \ \Big| \exists c > 0 \ \exists A > 0 \ \exists B > 0 \ \forall \{k, m\} \subset \mathbb{Z}_{+} \ \forall x \in \mathbb{R} :$$
$$|x^{k} \varphi^{(m)}(x)| \le cA^{k} B^{m} k^{k\alpha} m^{m\beta} \}.$$

Пространство S^{β}_{α} можно охарактеризовать еще и так [18]: S^{β}_{α} состоит из тех и только тех бесконечно дифференцируемых на $\mathbb R$ функций, которые удовлетворяют неравенствам

$$|\varphi^{(m)}(x)| \le c_1 B_1^m m^{m\beta} \exp\{-c_2 |x|^{1/\alpha}\}, \qquad m \in \mathbb{Z}_+, \ x \in \mathbb{R},$$

с некоторыми положительными постоянными c_1, B_1, c_2 , зависящими от функции φ .

Если $0<\beta<1$ и $\alpha\geq 1-\beta,$ то S^{β}_{α} состоит из тех и только тех функций $\varphi,$ которые допускают аналитическое продолжение в комплексную плоскость и удовлетворяют неравенству

$$|\varphi(x+iy)| \le c_3 \exp\{-a|x|^{1/\alpha} + b|y|^{1/(1-\beta)}\}, \quad c_3, a, b > 0, \ \{x, y\} \subset \mathbb{R}.$$

Топологическая структура в пространствах S^{β}_{α} определяется следующим образом. Символом $S^{\beta,B}_{\alpha,A}$ обозначим совокупность функций $\varphi\in S^{\beta}_{\alpha}$, удовлетворяющих условию:

$$\forall \bar{A} > A \quad \bar{B} > B : \quad |x^k \varphi^{(m)}(x)| \le c \bar{A}^k \bar{B}^m k^{k\alpha} m^{m\beta}, \quad \{k, m\} \subset \mathbb{Z}_+.$$

Это множество превращается в полное счётно нормированное пространство, если нормы в нём ввести с помощью соотношений

$$\|\varphi\|_{\delta\rho} = \sup_{x,k,m} \frac{|x^k \varphi^{(m)}(x)|}{(A+\delta)^k (B+\rho)^m k^{k\alpha} m^{m\beta}}, \qquad \{\delta,\rho\} \subset \left\{1,\frac{1}{2},\dots\right\}.$$

Если $A_1 < A_2, B_1 < B_2,$ то $S_{\alpha,A_1}^{\beta,B_1}$ непрерывно вкладывается в $S_{\alpha,A_2}^{\beta,B_2}$ и $S_{\alpha}^{\beta} = \bigcup_{A,B>0} S_{\alpha,A}^{\beta,B}$. Та-

ким образом, в S_{α}^{β} можно ввести топологию индуктивного предела пространств $S_{\alpha,A}^{\beta,B}$ [18].

В пространствах S^{β}_{α} определена и непрерывна операция сдвига аргумента T_x : $\varphi(\xi) \to \varphi(\xi+x)$. Эта операция является и дифференцируемой (даже бесконечно дифференцируемой [18]) в том смысле, что предельные соотношения вида $(\varphi(x+h)-\varphi(x))h^{-1} \to \varphi'(x)$,

 $h \to 0$ выполняются для каждой функции $\varphi \in S_{\alpha}^{\beta}$ в смысле сходимости по топологии пространства S_{α}^{β} . В S_{α}^{β} определена и непрерывна операция дифференцирования. Пространства типа S являются совершенными [18] (т.е. пространствами, все ограниченные множества которых компактны), они тесно связаны между собой преобразованием Фурье, а именно, верны следующие формулы: $F[S_{\alpha}^{\beta}] = S_{\beta}^{\alpha}$, где

$$F[S_{lpha}^{eta}] := \left\{ \psi \, \middle| \, \psi(\sigma) = \int\limits_{\mathbb{D}} \varphi(x) e^{i\sigma x} dx, \,\, arphi \in S_{lpha}^{eta}
ight\}.$$

Символом $(S_{\alpha}^{\beta})'$ обозначим пространство всех линейных непрерывных функционалов на S_{α}^{β} со слабой сходимостью. Так как в основном пространстве S_{α}^{β} определена операция сдвига аргумента T_x , то свертку обобщённой функции $f \in (S_{\alpha}^{\beta})'$ с основной функцией φ зададим формулой

$$(f * \varphi)(x) = \langle f, T_{-x}\bar{\varphi}(\cdot) \rangle, \quad \check{\varphi}(\xi) := \varphi(-\xi).$$

Из свойства бесконечной дифференцируемости операции сдвига аргумента в пространстве S^{β}_{α} следует, что свертка $f*\varphi$ является обычной бесконечно дифференцируемой на $\mathbb R$ функцией.

Поскольку $F^{-1}[S^{\alpha}_{\beta}] = S^{\beta}_{\alpha}$ и $F[S^{\alpha}_{\beta}] = S^{\beta}_{\alpha}$, так как каждое пространство типа S вместе с функцией $\varphi(x)$ содержит и функцию $\varphi(-x)$, то преобразование Фурье обобщённой функции $f \in (S^{\beta}_{\alpha})'$ определим с помощью соотношения $\langle F[f], \varphi \rangle = \langle f, F[\varphi] \rangle$, $\varphi \in S^{\alpha}_{\beta}$. Отсюда следует, что $F[f] \in (S^{\alpha}_{\beta})'$, если $f \in (S^{\beta}_{\alpha})'$.

Пусть $f \in (S_{\alpha}^{\beta})'$. Если $f * \varphi \in S_{\alpha}^{\beta}$, $\forall \varphi \in S_{\alpha}^{\beta}$ и из соотношения $\varphi_{\nu} \to 0$ при $\nu \to +\infty$ в топологии пространства S_{α}^{β} следует, что $f * \varphi_{\nu} \to 0$ при $\nu \to +\infty$ в топологии пространства S_{α}^{β} , то функционал f называется свёртывателем в пространстве S_{α}^{β} . Символом $(S_{\alpha,*}^{\beta})'$ будем обозначать совокупность всех свёртывателей в пространстве S_{α}^{β} . Если $f \in (S_{\alpha,*}^{\beta})'$, то (см. [18]), для произвольной функции $\varphi \in S_{\alpha}^{\beta}$ правильной является формула $F[f * \varphi] = F[f] \cdot F[\varphi]$.

2. Нелокальная многоточечная по времени задача для линейного эволюционного уравнения.

Рассмотрим эволюционное уравнение

$$D_t^{\alpha} u(t,x) = P(D)u(t,x), \qquad (t,x) \in (0,T] \times \mathbb{R} \equiv \Omega, \qquad (1)$$

где $D=id/dx,\,P(x),\,x\in\mathbb{R},$ – полином степени $2b,\,b\in\mathbb{N}$ над полем комплексных чисел, удовлетворяющий условию

$$\exists c > 0 \ \forall x \in \mathbb{R} : \ \operatorname{Re} P(x) \le -c|x|^{2b},$$

 D_t^{α} — оператор дробного дифференцирования Римана-Лиувилля порядка $\alpha \in (0,1),$ $\alpha = p/q, \, p, \, q$ — нечетные натуральные числа:

$$D_t^{\alpha} u(t,x) = \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \int_0^t \frac{u(\tau,x)}{(t-\tau)^{\alpha}} d\tau.$$

Для уравнения (1) зададим многоточечную нелокальную по времени задачу

$$\mu u(t,\cdot)|_{t=0} - \mu_1 u(t,\cdot)|_{t=t_1} - \mu_m u(t,\cdot)|_{t=t_m} = f, \tag{2}$$

где $f \in L_1(\mathbb{R}), m \in \mathbb{N}, \{\mu, \mu_1, \dots, \mu_m\} \subset (0, \infty), \{t_1, \dots, t_m\} \subset (0, T]$ – фиксированные числа, причём $\mu > \sum_k \mu_k$.

Под решением задачи (1), (2) понимаем функцию u(t,x), $(t,x) \in \Omega$, которая:

- 1) 2b-раз непрерывно дифференцируема по x при каждом $t \in (0, T]$;
- 2) при каждом $x \in \mathbb{R}$ непрерывна по t на (0,T] и имеет непрерывно дифференцируемый при t > 0 дробный интеграл

$$J_t^{1-\alpha}u(t,x) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{u(\tau,x)}{(t-\tau)^\alpha} d\tau;$$

3) удовлетворяет уравнению (1) и условию (2).

Классическое решение задачи (1), (2) ищем с помощью преобразования Фурье в виде $u(t,x) = F[v(t,\sigma)](x)$. Для функции $v: \Omega \to \mathbb{R}$ получаем следующую задачу с параметром σ :

$$D_t^{\alpha} v(t, \sigma) = P(\sigma) v(t, \sigma), \quad (t, \sigma) \in \Omega,$$
 (3)

$$\mu v(t,\sigma)|_{t=0} - \sum_{k=1}^{m} \mu_k v(t,\sigma) \Big|_{t=t_k} = \tilde{f}(\sigma), \qquad \sigma \in \mathbb{R},$$
(4)

где $\tilde{f}(\sigma) = F^{-1}[f](\sigma)$.

Рассмотрим функцию Миттаг-Леффлера

$$E_{\alpha}(\omega) = \sum_{n=0}^{\infty} \frac{\tilde{\omega}^n}{\Gamma(n\alpha+1)}, \quad \alpha > 0, \quad \tilde{\omega} \in \mathbb{R}.$$

Отметим, что функция $E_{\alpha}(\gamma t^{\alpha}), t \in (0,T], \gamma \in \mathbb{R}$ – параметр является решением уравнения

$$D_t^{\alpha} E_{\alpha}(\gamma t^{\alpha}) = \gamma E_{\alpha}(\gamma t^{\alpha}), \quad E_{\alpha}(0) = 1.$$

Для доказательства этого свойства воспользуемся известной формулой (см. [19]):

$$\int_{0}^{t} \tau^{x-1} (t-\tau)^{y-1} d\tau = t^{x+y-1} B(x,y), \quad \text{Re } x > 0, \quad \text{Re } y > 0$$

(B(x,y) – бета-функция), из которой следует, что

$$\int_{0}^{t} \tau^{n\alpha} (t-\tau)^{-\alpha} d\tau = t^{n\alpha-\alpha+1} B(n\alpha+1, 1-\alpha) = t^{n\alpha-\alpha+1} \frac{\Gamma(n\alpha+1)\Gamma(1-\alpha)}{\Gamma(n\alpha-\alpha+2)} .$$

Тогда

$$\int_{0}^{t} \left(\frac{1}{\Gamma(1-\alpha)} \sum_{n=0}^{\infty} \frac{\gamma^{n} \tau^{n\alpha}}{\Gamma(n\alpha+1)}\right) (t-\tau)^{-\alpha} d\tau = \frac{1}{\Gamma(1-\alpha)} \sum_{n=0}^{\infty} \frac{\gamma^{n}}{\Gamma(n\alpha+1)} \right) \times$$

$$\times \int_{0}^{t} \tau^{n\alpha} (t-\tau)^{-\alpha} d\tau = \frac{1}{\Gamma(1-\alpha)} \sum_{n=0}^{\infty} \frac{\gamma^{n}}{\Gamma(n\alpha+1)} \frac{\Gamma(n\alpha+1)\Gamma(1-\alpha)}{\Gamma(n\alpha-\alpha+2)} t^{n\alpha-\alpha+1} =$$

$$= \sum_{n=0}^{\infty} \frac{\gamma^{n} t^{n\alpha-\alpha+1}}{(n\alpha-\alpha+1)\Gamma(n\alpha-\alpha+1)} ;$$

$$D_{t}^{\alpha} E_{\alpha}(\gamma t^{\alpha}) = \frac{d}{dt} \left(\sum_{n=0}^{\infty} \frac{\gamma^{n} t^{n\alpha-\alpha+1}}{(n\alpha-\alpha+1)\Gamma(n\alpha-\alpha+1)} \right) = \sum_{n=0}^{\infty} \frac{\gamma^{n} t^{n\alpha-\alpha}}{\Gamma((n-1)\alpha+1)} =$$

$$= \sum_{n=0}^{\infty} \frac{\gamma^{n+1} t^{(n+1)\alpha-\alpha}}{\Gamma(n\alpha+1)} = \gamma \sum_{n=0}^{\infty} \frac{\gamma^{n} t^{n\alpha}}{\Gamma(n\alpha+1)} = \gamma E_{\alpha}(\gamma t^{\alpha}) ,$$

что и требовалось доказать.

Приняв $\gamma = P(\sigma)$ найдем, что общее решение уравнения (3) имеет вид

$$v(t,\sigma) = cQ_1(t,\sigma), \quad Q_1(t,\sigma) = E_{\alpha}(P(\sigma)t^{\alpha}), \quad (t,\sigma) \in \Omega,$$
 (5)

где $c = c(\sigma)$ определяется из условия (4). Подставив (5) в (4) найдем, что

$$c = \tilde{f}(\sigma)Q_2(\sigma), \ Q_2(\sigma) = \left(\mu - \sum_{k=1}^m \mu_k E_\alpha(P(\sigma)t_k^\alpha)\right)^{-1} \equiv$$
$$\equiv \left(\mu - \sum_{k=1}^m \mu_k Q_1(t_k, \sigma)\right)^{-1}.$$

Таким образом, формальным решением задачи (1), (2) является функция

$$u(t,x) = (2\pi)^{-1} \int_{\mathbb{R}} v(t,\sigma)e^{-ix\sigma}d\sigma.$$

Введем обозначения: $G(t,x)=F^{-1}[Q(t,\sigma)](x),$ где $Q(t,\sigma)=Q_1(t,\sigma)Q_2(\sigma).$ Тогда, рассуждая формально, найдем, что

$$u(t,x) = \int\limits_{\mathbb{R}} G(t,x-\xi)f(\xi)d\xi = G(t,x)*f(x), \quad (t,x) \in \Omega.$$

Действительно,

$$u(t,x) = (2\pi)^{-1} \int_{\mathbb{R}} Q(t,\sigma) \left(\int_{\mathbb{R}} f(\xi) e^{-i\sigma\xi} d\xi \right) e^{i\sigma x} d\sigma =$$

$$= \int_{\mathbb{R}} \left((2\pi)^{-1} \int_{\mathbb{R}} Q(t,\sigma) e^{i\sigma(x-\xi)} d\sigma \right) f(\xi) d\xi =$$

$$= \int_{\mathbb{R}} G(t,x-\xi) f(\xi) d\xi = G(t,x) * f(x), \quad (t,x) \in \Omega.$$
(6)

Корректность проведённых здесь преобразований и сходимость соответствующих интегралов, а значит, и правильность формул (6), следует из свойств функции G, которые мы представим ниже. Свойства функции G связаны со свойствами функции Q, т.к. $G = F^{-1}[Q]$. Итак, сначала исследуем свойства функции $Q(t,\sigma)$ как функции аргумента σ .

Известно [20], что при $\alpha>0$ функция $E_{\alpha}(z),\ z\in\mathbb{C}$, является целой функцией порядка $1/\alpha$ конечного типа, т.е. для всех $z\in\mathbb{C}$ она удовлетворяет неравенству $|E_{\alpha}(z)|\leq c\exp\{b|z|^{1/\alpha}\},\ c,\ b>0$. Таким образом,

$$|Q_1(t,z)| \le c \exp\{b_1 t |z|^{2b/\alpha}\}, \quad z \in \mathbb{C}, \quad t \in (0,T].$$

Кроме того, функция $E_{\alpha}(\gamma t^{\alpha})$ монотонно возрастает по t. Тогда

$$\forall t \in (0, T]: E_{\alpha}(\gamma t^{\alpha}) \le E_{\alpha}(\gamma T^{\alpha}). \tag{7}$$

Из асимптотического равенства

$$E_{\alpha}(z) = \frac{1}{\alpha} e^{z^{1/\alpha}} + O(|z|^{-1}), \quad 0 < \alpha < 2, \quad |\arg z| \le \frac{\pi \alpha}{2}, \quad z \to \infty,$$

приведённого в [20], определения полинома P и неравенства (7) следует, что для $z=\sigma\in\mathbb{R}$ и заданного $\alpha\in(0,1),$ $\alpha=p/q$ (p,q) нечётные натуральные числа) выполняется неравенство

$$|Q_1(t,\sigma)| = |E_{\alpha}(P(\sigma)t^{\alpha})| \le c_1 \exp\{-c_0t|\sigma|^{2b/\alpha}\}, \quad \sigma \in \mathbb{R},$$

где постоянная $c_1>0$ и зависит от T. Отсюда и из теорем 1, 2, доказанных в [18, с. 252–258] следует, что функция $Q_1(t,\sigma+i\tau)$ удовлетворяет при всех $z=\sigma+i\tau\in\mathbb{C}$ неравенству

$$|Q_1(t, \sigma + i\tau)| \le c_3 \exp\{-c_4 t |\sigma|^{2b/\alpha} + c_4' t |\tau|^{2b/\alpha}\},$$

где постоянные c_4 , $c_4'>0$ не зависят от t, $c_3>0$ зависит от T. Проанализировав доказательство теоремы 3 из [18, с. 259–260], непосредственно убеждаемся в том, что для функции $Q(t,\sigma)$ и её производных (по $\sigma\in\mathbb{R}$) выполняются оценки:

$$|D_{\sigma}^{k}Q_{1}(t,\sigma)| \leq cA^{k}t^{k\omega}k^{k(1-\omega)}\exp\{-\tilde{c}_{0}t|\sigma|^{1/\omega}\}, \quad k \in \mathbb{Z}_{+}, \quad \omega = \frac{\alpha}{2b},$$
 (8)

где постоянные $c, A, \tilde{c}_0 > 0$ не зависят от t. Отсюда следует, что $Q_1(t, \cdot) \in S^{1-\omega}_{\omega}$ при каждом $t \in (0, T]$.

Лемма 1. Функция Q_2 является элементом пространства S^2_{ω} , $\omega = \alpha/(2b)$.

 \square Для доказательства утверждения оценим производные функции Q_2 . Для этого используем формулу Фаа де Бруно дифференцирования сложной функции

$$D_x^s F(g(\xi)) = \sum_{p=1}^s \frac{d^p}{dg^p} F(g) \sum \frac{s!}{p_1! \dots p_l!} \left(\frac{d}{d\xi} g(x) \right)^{p_1} \dots \left(\frac{1}{l!} \frac{d^l}{d\xi^l} g(x) \right)^{p_l}$$

(знак суммы распространяется на все решения в целых неотрицательных числах уравнения $p_1 + 2p_2 + \cdots + lp_l = s$, $p_1 + \cdots + p_l = p$), в которой положим $F = g^{-1}$, g = R,

$$R(x) = \mu - \sum_{k=1}^{m} \mu_k Q_1(t_k, \xi), \qquad x \in \mathbb{R}.$$

Тогда $Q_2(x) = F(R(x))$ и

$$\frac{d^p}{dq^p}F(R) = \frac{d^p}{dR^p}R^{-1} = (-1)^p p! R^{-(p+1)}.$$

Учитывая неравенства (8) найдем, что

$$\left| \frac{1}{l!} \frac{d^{l}}{dx^{l}} R(x) \right| \leq \frac{1}{l!} \sum_{k=1}^{m} \mu_{k} \left| \frac{d^{l}}{dx^{l}} Q_{1}(t, x) \right| \leq \frac{c}{l!} \sum_{k=1}^{m} \mu_{k} A^{l} t^{l\omega} l^{l(1-\omega)} \exp\{-\tilde{c}_{0} t_{k} |x|^{1/\omega}\} \leq \tilde{c} \tilde{A}^{l} t^{l\omega} \exp\{-\tilde{c}_{0} t_{k} |x|^{1/\omega}\}.$$

где $\tilde{A}=Ae,\, \tilde{c}=c\sum_{k=1}^m \mu_k$ (Здесь учтено, что $1/l!\leq e^l/l^l$). Тогда

$$\left| \left(\frac{d}{dx} R(x) \right)^{p_1} \right| \dots \left| \left(\frac{1}{l!} \frac{d^l}{dx^l} R(x) \right)^{p_l} \right| \le$$

 $\leq \tilde{c}^{p_1} \tilde{A}^{p_1} \tilde{T}^{p_1 \omega} \exp\{-\tilde{c}_0 t_1 p_1 |x|^{1/\omega}\} \dots \tilde{c}^{p_l} \tilde{A}^{m_l} \tilde{T}^{p_l \omega} \exp\{-\tilde{c}_0 t_1 p_l |x|^{1/\omega}\} \leq \tilde{c}^{p_1 + \dots + p_l} \tilde{A}^{p_1 + 2p_2 + \dots + lp_l},$

$$\tilde{T}^{(p_1+\cdots+p_l)\omega} \exp\{-(p_1+\cdots+p_l)t_1|x|^{1/\omega}\} \le \tilde{c}^p \tilde{A}^s \tilde{T}^{p\omega} \exp\{-t_1 p|x|^{1/\omega}\} \le \tilde{c}^p \tilde{T}^{p\omega} \exp\{-t_1 p|x|^{1/\omega}\}$$

$$\leq c'^{s} \exp\{-t_{1}|x|^{1/\omega}\}, \qquad \tilde{c}' = \max\{1, \tilde{c}\tilde{A}\tilde{T}^{\omega}\}, \quad \tilde{T} = \max\{1, T\}, t \in (0, T].$$

Из условия на полином P следует, что $P(x)t_k^{\alpha} < 0$, $x \in \mathbb{R}$, $t_k \in (0,T]$, $k \in \{1,\ldots,m\}$. Используя то, что при $\alpha \in (0,1]$ функция $Q_1(t_k,x) = E_{\alpha}(P(x)t_k^{\alpha})$ является полностью монотонной [20] получим, что $Q_1(t_k,x) \geq 0$. Тогда, учитывая (8) имеем неравенства

$$Q_1(t_k, x) \le c_0 \exp\{-\tilde{c}_0 t_k |x|^{1/\omega}\} \le c_0, \quad k \in \{1, \dots, m\}, x \in \mathbb{R}.$$

Таким образом,

$$R(x) = \mu - \sum_{k=1}^{m} \mu_k Q_1(t_k, x) \ge \mu - c_0 \sum_{k=1}^{m} \mu_k = \mu_0, \quad x \in \mathbb{R}.$$

В дальнейшем будем считать, что $\mu > c_0 \sum_{k=1}^m \mu_k$. Таким образом, $\mu_0 > 0$ и

$$|R^{-(p+1)}(x)| \le \mu_0^{-(p+1)}, \quad x \in \mathbb{R}.$$

Суммируя, находим, что

$$|D_x^s Q_2(x)| = |D_x^s F(R(x))| \le b_0 B_0^s (s!)^2 \exp\{-t_1 |x|^{1/\omega}\} \le$$

$$\le b B^s s^{2s} \exp\{-t_1 |x|^{1/\omega}\}, \quad s \in \mathbb{Z}_+, \quad x \in \mathbb{R}.$$

Из последнего неравенства и характеристики пространств S^{β}_{α} следует, что Q_2 является элементом пространства S^2_{ω} , $\omega=\alpha(2b)$.

Следствие 1. При фиксированном $t \in (0,T]$ функция $Q(t,x) = Q_1(t,x)Q_2(x), x \in \mathbb{R}$, является элементом пространства S^2_{ω} , при этом выполняются оценки

$$|D_x^s Q(t,x)| \le cB^s s^{2s} \exp^{-\tilde{c}_0 t|x|^{1/\omega}}, \qquad \omega = \frac{\alpha}{2b}, \quad s \in \mathbb{Z}_+,$$
(9)

где постоянные c_1 , B, $\tilde{c}_0 > 0$ не зависят от t.

Учитывая свойства преобразования Фурье (прямого и обратного) и соотношения $F^{-1}[S_{\omega}^2] = S_2^{\omega}$ найдем, что $G(t,\cdot) = F^{-1}[Q(t,\cdot)] \in S_2^{\omega}$ при каждом $t \in (0,T]$. Выделим в оценках функции G и её производных (по x) зависимость от параметра t.

Сначала отметим, что из (9) следуют неравенства

$$|\sigma^{k}D_{\sigma}^{s}Q(t,\sigma)| \leq cB^{s}s^{2s}|\sigma|^{k}\exp\left\{-\frac{\tilde{c}_{0}}{2}t|\sigma|^{1/\omega}\right\} \cdot \exp\left\{-\frac{\tilde{c}_{0}}{2}t|\sigma|^{1/\omega}\right\} \leq$$

$$\leq cB^{s}s^{2s}\sup_{|\sigma|}\left(|\sigma|^{k}\exp\left\{-\frac{\tilde{c}_{0}}{2}t|\sigma|^{1/\omega}\right\}\right)\exp\left\{-\frac{\tilde{c}_{0}}{2}t|\sigma|^{1/\omega}\right\} \leq$$

$$\tilde{c}A^{k}B^{s}k^{k\omega}s^{2s}t^{-k\omega}\exp\left\{-\frac{\tilde{c}_{0}}{2}t|\sigma|^{1/\omega}\right\}, \quad \{k,s\} \subset \mathbb{Z}_{+}, \quad (10)$$

где \tilde{c} , \tilde{c}_0 , A, B > 0.

Потом воспользуемся соотношениями

$$\begin{split} x^k D_x^s F[\varphi](x) &= i^{k+s} F[(\sigma^s \varphi(\sigma))^{(k)}] = \\ &= i^{k+s} \int_{\mathbb{R}} (\sigma^s \varphi(\sigma))^{(k)} e^{ix\sigma} d\sigma \,, \quad \{k,s\} \subset \mathbb{Z}_+ \,, \quad \varphi \in S^2_\omega \,. \end{split}$$

Таким образом,

$$x^k D_x^s G(t,x) = (2\pi)^{-1} (-1)^s i^{k+s} \int_{\mathbb{R}} (\sigma^s Q(t,-\sigma))^{(k)} e^{ix\sigma} d\sigma.$$

Отметим, что для последовательности $m_{ks}=k^{k\omega}s^{2s}$, как следует из полученных в [18, с. 237-243] результатов, выполняется неравенство

$$ks \frac{m_{k-1,s-1}}{m_{ks}} \le \gamma(k+s)$$
, $\gamma > 0$, $\{k,s\} \subset \mathbb{Z}_+$.

Тогда, применив формулу Лейбница дифференцирования произведения двух функций, оценки (10) и последнее неравенство, найдем, что

$$\begin{aligned} |(\sigma^{s}Q(t,-\sigma))^{(k)}| &= \Big|\sum_{p=0}^{k} C_{k}^{p}(\sigma^{s})^{(p)}Q^{(k-p)}(t,-\sigma)\Big| \leq \\ &\leq |\sigma^{s}Q^{(k)}(t,-\sigma)| + ks|\sigma^{s-1}Q^{(k-1)}(t,-\sigma)| + \frac{k(k-1)}{2}s(s-1)|\sigma^{s-2}Q^{(k-2)}(t,-\sigma)| + \cdots \leq \\ &\leq cA^{s}B^{k}t^{-s\omega}k^{2k}s^{s\omega}\Big(1 + \frac{ks}{(A/t^{\omega})B}\frac{m_{k-1,s-1}}{m_{ks}} + \frac{1}{2!}\frac{ks}{(A/t^{\omega})^{2}B^{2}} \times \\ &\qquad \times \frac{m_{k-1,s-1}}{m_{ks}}(k-1)(s-1)\frac{m_{k-2,s-2}}{m_{k-1,s-1}} + \dots\Big) \exp\Big\{-\frac{\tilde{c}_{0}}{2}t|\sigma|^{1/\omega}\Big\} \leq \end{aligned}$$

$$\leq cA^{s}B^{k}t^{-s\omega}k^{2k}s^{s\omega}\left(1 + \frac{\gamma}{(A/t^{\omega})B}(k+s) + \frac{1}{2!}\frac{\gamma^{2}}{(A/t^{\omega})^{2}B^{2}}(k+s)^{2} + \dots\right)\exp\left\{-\frac{\tilde{c}_{0}}{2}t|\sigma|^{1/\omega}\right\} =
= cA^{s}B^{k}t^{-s\omega}k^{2k}s^{s\omega}\exp\left\{\frac{\gamma t^{\omega}}{AB}(k+s)\right\}\exp\left\{-\frac{\tilde{c}_{0}}{2}t|\sigma|^{1/\omega}\right\} \leq cA_{1}^{s}B_{1}^{k}t^{-s\omega}k^{2k}s^{s\omega}\exp\left\{-\frac{\tilde{c}_{0}}{2}t|\sigma|^{1/\omega}\right\},
A_{1} = A\exp\left\{\frac{\gamma T^{\omega}}{AB}\right\}, B_{1} = B\exp\left\{\frac{\gamma T^{\omega}}{AB}\right\}.$$

Таким образом,

$$|x^{k}D_{x}^{s}G(t,x)| \leq (2\pi)^{-1}cA_{1}^{s}B_{1}^{k}t^{-s\omega}k^{2k}s^{s\omega} \int_{\mathbb{R}} \exp\left\{-\frac{\tilde{c}_{0}}{2}t|\sigma|^{1/\omega}\right\}d\sigma =$$

$$= \tilde{c}A_{1}^{s}B_{1}^{k}t^{-(s+1)\omega}k^{2k}s^{s\omega}, \quad \omega = \frac{\alpha}{2b}, \quad \{k,s\} \subset \mathbb{Z}_{+}.$$

Тогда

$$\begin{split} |D_x^s G(t,x)| &\leq \tilde{\tilde{c}} A_1^s t^{-(s+1)\omega} s^{s\omega} \inf_k \frac{B_1^k k^{2k}}{|x|^k} \leq \\ &\leq \tilde{\tilde{c}} A_1^s t^{-(s+1)\omega} s^{s\omega} \exp\{-\alpha_0 |x|^{1/2}\}, \qquad x \in \mathbb{R}, \ t \in (0,T], \end{split}$$

постоянные $\tilde{c}, A_1, \alpha > 0$ не зависят от t. Здесь мы воспользовались известным неравенством из [18]:

$$\inf_{k} \frac{L^{k} k^{k\alpha}}{|x|^{k}} \le d_{0} \exp\{d|x|^{1/\alpha}\}, \qquad d, d_{0} > 0.$$

Таким образом, имеет место следующее утверждение.

Лемма 2. Для функции $G(t,x), (t,x) \in \Omega$, и её производных (по x) выполняются неравенства:

$$|D_x^s G(t,x)| \le \tilde{\tilde{c}} t^{-(s+1)\omega} A_1^s s^{s\omega} \exp\{-\alpha_0 |x|^{1/2}\}, \qquad s \in \mathbb{Z}_+, \quad \omega = \frac{\alpha}{2b},$$

где постоянные $\tilde{\tilde{c}}$, A_1 , $\alpha_0 > 0$ не зависят от t.

Другие свойства функции G сформулируем в виде отдельной леммы.

Лемма 3.

- 1. Функция $(t-\tau)^{-\alpha}G(\tau,\cdot), \ 0 < t \le T$, как абстрактная функция параметра $\tau, \ 0 < \tau < t,$ со значениями в пространстве $S_2^{\omega}, \ \omega = \frac{\alpha}{2b}$, непрерывна по τ .
- 2. Функция

$$\Phi_t(x) = \int_0^t \frac{G(\tau, x)}{(t - \tau)^{\alpha}} d\tau,$$

как абстрактная функция параметра t со значениями в пространстве S_2^{ω} , дифференцируема по t.

3. Имеет место формула

$$D_t^{\alpha}(f * G(t, \cdot)) = f * D_t^{\alpha}G(t, \cdot), \quad \forall f \in (S_2^{\omega})'.$$

- 4. Функция $G(t, \cdot)$ удовлетворяет уравнению (1).
- 5. В пространстве $(S_2^{\omega})'$ выполняются предельные соотношения

a)
$$\mu \lim_{t \to +0} G(t, \cdot) - \sum_{l=1}^{m} \mu_{l} \lim_{t \to t_{l}} G(t, \cdot) = \delta;$$
 (11)

6)
$$\mu \lim_{t \to +0} \omega(t, \cdot) - \sum_{l=1}^{m} \mu_l \lim_{t \to t_l} \omega(t, \cdot) = f$$
, (12)

где $\omega(t,x) = f * G(t,x), f \in (S_{2,*}^{\omega})', (t,x) \in \Omega, \delta$ – дельта-функция Дирака.

 \square 1. Из свойства непрерывности преобразования Фурье (прямого и обратного) в пространствах типа S следует, что для доказательства утверждения достаточно установить, что функция $F[(t-\tau)^{-\alpha}G(\tau,x)]=(t-\tau)^{-\alpha}Q(\tau,\sigma)$, как абстрактная функция параметра $\tau,0<\tau< t$ со значениями в пространстве S^2_ω , непрерывна по τ . Зафиксируем произвольно $\tau_0\in(0,t)$ и докажем, что семейство функций

$$\{\psi_{\tau,t}(\cdot) = (t-\tau)^{-\alpha}Q(\tau,\cdot) - (t-\tau_0)^{-\alpha}Q(\tau_0,\cdot), \ 0 < \tau < t\}$$

сходится к нулю при $au o au_0$ в пространстве S^2_ω . Для этого достаточно показать, что :

- 1) $D^s_\sigma \psi_{\tau,t}(\sigma) \to 0$ при $\tau \to \tau_0$ равномерно на каждом отрезке $[a,b] \subset \mathbb{R}, \ (s \in \mathbb{Z}_+);$
- 2) 2) $|D_{\sigma}^{s}\psi_{\tau,t}(\sigma)| \leq \overline{c}\overline{B}^{s}s^{s\omega}\exp\{-\overline{a}|\sigma|^{1/\omega}\}, \quad s \in \mathbb{Z}_{+},$

где постоянные $\bar{c}, \bar{a}, \bar{B} > 0$ не зависят от $\tau,$ достаточно близких к $\tau_0.$

Докажем свойство 1). Функция $Q(\tau, \sigma)$ бесконечно дифференцируема по σ . Поэтому $D_{\sigma}^{s}\psi_{\tau,t}(\sigma)=\sum_{n}a_{n}(\tau,\sigma),$ где

$$a_n(\tau,\sigma) = \Gamma^{-1}(n\alpha+1)((t-\tau)^{-\alpha}\tau^{n\alpha} - (t-\tau_0)^{-\alpha}\tau_0^{n\alpha})D_{\sigma}^s(P^n(\sigma)Q_2(\sigma)).$$

Функция $Q(\tau, \sigma)$ дифференцируема по τ , причём

$$\frac{\partial}{\partial \tau} Q(\tau, \sigma) = \sum_{n=1}^{\infty} \frac{P^n(\sigma) \tau^{n\alpha - 1}}{\Gamma(n\alpha)} = P(\sigma) \tau^{-1} E_{\alpha, \alpha}(P(\sigma) \tau^{\alpha}),$$

где $E_{\alpha,\beta}(\tilde{\omega})$ – функция Миттаг-Леффлера з двумя параметрами:

$$E_{\alpha,\beta}(\tilde{\omega}) = \sum_{n=0}^{\infty} \frac{\tilde{\omega}^n}{\Gamma(n\alpha + \beta)}, \quad \alpha > 0, \beta > 0, \quad \tilde{\omega} \in \mathbb{R}.$$

Отсюда следует, что функция $\psi_{\tau,t}(\sigma)$, $0 < \tau < t$ непрерывна (в обычном смысле) по аргументу τ . Учитывая оценки производных функции $Q_2(\sigma)$ имеем, что $\lim_{\tau \to \tau_0} a_n(\tau, \sigma) = a_n(\tau_0, \sigma) = 0$ равномерно относительно $\sigma \in [a, b] \subset \mathbb{R}$. Таким образом,

$$\lim_{ au o au_0} D^s_{\sigma} \psi(au, t)(\sigma) = \sum_n \lim_{ au o au_0} a_n(au, \sigma) = 0, \qquad s \in \mathbb{Z}_+,$$

равномерно на каждом отрезке $[a,b] \subset \mathbb{R}$, т.е. свойство 1) выполняется.

Для доказательства свойства 2) подберем ε так, чтобы выполнялись неравенства $\tau_0 + \varepsilon < t, \ \tau_0 - \varepsilon > 0$, что допустимо, так как $\tau_0 < t$, а τ возьмём из ε -окрестности точки τ_0 : $\tau_0 - \varepsilon < \tau < \tau_0 + \varepsilon$. Учитывая оценки (9) производных функции $Q(\tau, \sigma)$ и вид функции $\psi_{\tau,t}(\sigma)$ найдем, что

$$|D_{\sigma}^{s}\psi_{\tau,t}(\sigma)| \leq \overline{c}\overline{A}^{s}s^{2s}\exp\{-\overline{a}|\sigma|^{1/\omega}\},$$

где $\overline{c} = c((t - (\tau_0 + \varepsilon))^{-\alpha} + (t - \tau_0)^{-\alpha}), \overline{a} = \tilde{c}_0(\tau_0 - \varepsilon),$ постоянные $\overline{c}, \overline{A}, \overline{a} > 0$ не зависят от τ , меняющегося указанным образом. Таким образом, $\psi_{\tau,t}$ удовлетворяет условию 2).

2. Так как пространства типа S являются совершенными, то, как следует из теории абстрактных функций (см. [18]), для непрерывной абстрактной функции φ_{ν} , $0 < \nu \leq T$, со значениями в пространстве типа S в этом пространстве существует предел интегральной суммы

$$\lim \sum_j arphi_{
u_j} \Delta_{
u_j} = \int\limits_0^t arphi_
u d
u$$

для произвольно фиксированного $t \in (0,T]$. При этом, $\int\limits_0^t \varphi_{\nu} d\nu$, как абстрактная функ-

ция параметра $t \in (0,T]$ со значениями в пространстве типа S, является дифференцируемой по t [18]. Отсюда и из утверждения 1 леммы 3 следует доказываемое утверждение.

3. Справедливо равенство

$$D_t^{\alpha}(f*G(t,\cdot)) = \frac{1}{\Gamma(1-lpha)} \frac{\partial}{\partial t} \int\limits_0^t \frac{f*G(au,x)}{(t- au)^{lpha}} d au =$$

$$=\frac{1}{\Gamma(1-\alpha)}\frac{\partial}{\partial t}\int_{0}^{t}\frac{\langle f_{\xi},T_{-x}\check{G}(\tau,\xi)\rangle}{(t-\tau)^{-\alpha}}d\tau=\frac{1}{\Gamma(1-\alpha)}\frac{\partial}{\partial t}\Big\langle f_{\xi},\int_{0}^{t}\frac{T_{-x}\check{G}(\tau,\xi)}{(t-\tau)^{\alpha}}d\tau\Big\rangle.$$

Здесь мы воспользовались доказанным утверждением 1 этой леммы, согласно которому функция $(t-\tau)^{-\alpha}T_{-x}\bar{G}(\tau,\cdot)$ является непрерывной (а значит, и интегрированной), как абстрактная функция параметра t со значениями в пространстве S_2^ω . Из утверждения 2 леммы 3 следует, что функция

$$\psi_x(t,\xi) = \int\limits_0^t rac{T_{-x} \check{G}(au,\xi)}{(t- au)^lpha} d au \, ,$$

как абстрактная функция параметра t со значениям в пространстве S_2^{α} , дифференцируема по t. Таким образом.

$$\frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \left\langle f_{\xi}, \int_{0}^{t} \frac{T_{-x}\check{G}(\tau,\xi)}{(t-\tau)^{\alpha}} d\tau \right\rangle \equiv \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \left\langle f_{\xi}, \psi_{x}(t,\xi) \right\rangle =$$

$$= \frac{1}{\Gamma(1-\alpha)} \lim_{\Delta t \to 0} \left\langle f_{\xi}, \frac{1}{\Delta t} [\psi_{x}(t+\Delta t,\cdot) - \psi_{x}(t,\cdot)] \right\rangle =$$

$$= \frac{1}{\Gamma(1-\alpha)} \left\langle f_{\xi}, \lim_{\Delta t \to 0} \frac{1}{\Delta t} [\psi_{x}(t+\Delta t,\cdot) - \psi_{x}(t,\cdot)] \right\rangle =$$

$$= \left\langle f_{\xi}, \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \psi_{x}(t,\cdot) \right\rangle = \left\langle f_{\xi}, \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \int_{0}^{t} \frac{T_{-x}\check{G}(\tau,\xi)}{(t-\tau)^{\alpha}} d\tau \right\rangle =$$

$$= \left\langle f_{\xi}, \frac{1}{\Gamma(1-\alpha)} T_{-x} \frac{\partial}{\partial t} \int_{0}^{t} \frac{\check{G}(\tau,\xi)}{(t-\tau)^{\alpha}} d\tau \right\rangle = \left\langle f_{\xi}, T_{-x} D_{t}^{\alpha} \check{G}(t,\xi) \right\rangle = f * D_{t}^{\alpha} G(t,x).$$

Здесь учтено, что предельное соотношение

$$\frac{1}{\Delta t} [\psi_x(t + \Delta t, \cdot) - \psi_x(t, \cdot)] \xrightarrow{\Delta t \to 0} \frac{\partial}{\partial t} \psi_x(t, \cdot)$$

выполняется в смысле сходимости по топологии пространства S_2^{ω} (см. утверждение 2 леммы). Таким образом, $D_t^{\alpha}(f*G(t,\cdot)) = f*D_t^{\alpha}G(t,\cdot)$, что и требовалось доказать.

4. Функция G является решением уравнения (1). Действительно, так как интеграл

$$\int_{0}^{t} \left(\int_{\mathbb{R}} \frac{|Q(\tau,\sigma)|}{(t-\tau)^{\alpha}} d\sigma \right) d\tau,$$

сходится, то, вследствие теоремы Тонелли, верны следующие равенства

$$\int\limits_0^t \frac{G(\tau,x)}{(t-\tau)^\alpha} d\tau = (2\pi)^{-1} \int\limits_0^t \frac{1}{(t-\tau)^\alpha} \Big(\int\limits_{\mathbb{R}} Q(\tau,\sigma) e^{-i\sigma x} d\sigma \Big) d\tau =$$

$$= (2\pi)^{-1} \int_{\mathbb{R}} \left(\int_{0}^{t} \frac{Q(\tau, \sigma)}{(t - \tau)^{\alpha}} d\tau \right) e^{-i\sigma x} d\sigma.$$

Тогда

$$\begin{split} D_t^{\alpha}G(t,x) &= \frac{1}{\Gamma(1-\alpha)}\frac{\partial}{\partial t}\int_0^t \frac{G(\tau,x)}{(t-\tau)^{\alpha}}d\tau = \\ &= \frac{(2\pi)^{-1}}{\Gamma(1-\alpha)}\frac{\partial}{\partial t}\int_{\mathbb{R}} \Big(\int_0^t \frac{Q(\tau,\sigma)}{(t-\tau)^{\alpha}}d\tau\Big)e^{-i\sigma x}d\sigma = \\ &= \frac{(2\pi)^{-1}}{\Gamma(1-\alpha)}\int_{\mathbb{R}} \Big(\frac{\partial}{\partial t}\int_0^t \frac{Q(\tau,\sigma)}{(t-\tau)^{\alpha}}d\tau\Big)e^{-i\sigma x}d\sigma = \\ &= (2\pi)^{-1}\int_{\mathbb{R}} D_t^{\alpha}Q(t,\sigma)e^{-i\sigma x}d\sigma = F^{-1}[D_t^{\alpha}Q(t,\sigma)] = F^{-1}[P(\sigma)Q(t,\sigma)] \;. \end{split}$$

С другой стороны,

$$P(D)G(t,x) = F^{-1}[P(\sigma)F[G(t,\cdot)]] = F^{-1}[P(\sigma)Q(t,\sigma)].$$

Таким образом, $D_t^{\alpha}G(t,x) = P(D)G(t,x)$, что и требовалось доказать.

5. а) Используя свойство непрерывности преобразования Фурье и функции $G(t,\cdot)$ как абстрактной функции параметра t со значениями в пространстве S_2^{ω} , соотношение (11) заменим на эквивалентное предельное соотношение

$$\mu \lim_{t \to +0} F[G(t, \cdot)] - \sum_{l=1}^{m} \mu_{l} \lim_{t \to t_{l}} G(t, \cdot) = F[\delta]$$
 (13)

в пространстве $(S^2_{\omega})'$. Учитывая изображение функции G, (13) представим в виде

$$\mu \lim_{t \to +0} Q(t, \cdot) - \sum_{l=1}^{m} \mu_l \lim_{t \to t_l} Q(t, \cdot) = 1.$$
 (14)

Для доказательства (14) возьмём произвольную функцию $\varphi \in S^2_{\omega}$ и, используя теорему о предельном переходе под знаком интеграла Лебега, найдем, что

$$\begin{split} \mu \lim_{t \to +0} \langle Q(t,\cdot), \varphi \rangle - \sum_{l=1}^m \mu_l \lim_{t \to t_l} \langle Q(t,\cdot), \varphi \rangle = \\ = \mu \lim_{t \to +0} \int\limits_{\mathbb{D}} Q(t,\sigma) \varphi(\sigma) d\sigma - \sum_{l=1}^m \mu_l \lim_{t \to t_l} \int\limits_{\mathbb{D}} Q(t,\sigma) \varphi(\sigma) d\sigma = \end{split}$$

$$= \int_{\mathbb{R}} \left[\frac{\mu}{\mu - \sum_{k=1}^{m} \mu_k Q_1(t_k, \sigma)} - \sum_{l=1}^{m} \mu_l \frac{Q_1(t_l, \sigma)}{\mu - \sum_{k=1}^{m} \mu_k Q_1(t_k, \sigma)} \right] \varphi(\sigma) d\sigma =$$

$$= \int_{\mathbb{R}} \frac{\mu - \sum_{k=1}^{m} \mu_k Q_1(t_k, \sigma)}{\mu - \sum_{k=1}^{m} \mu_k Q_1(t_k, \sigma)} \varphi(\sigma) d\sigma = \int_{\mathbb{R}} \varphi(\sigma) d\sigma = \langle 1, \varphi \rangle.$$

Отсюда следует, что соотношение (14) выполняется в пространстве $(S_{\omega}^2)'$, а, значит, верным является соотношение (11).

5. б) Поскольку $f*G(t,x) = \langle f_{\xi}, T_{-x}\check{G}(t,\xi)\rangle$, $f \in (S_{2,*}^{\omega})'$, то из свойства непрерывности $G(t,\cdot)$, как абстрактной функции параметра t со значениями в пространстве S_2^{ω} , следует непрерывность $\omega(t,\cdot)$, как абстрактной функции параметра t со значениями в этом же пространстве. Тогда, учитывая свойство непрерывности преобразования Фурье и формулу

$$F[f * G] = F[f] \cdot F[G] = F[f] \cdot Q,$$

которая имеет место для любой обобщённой функции f из класса $(S_{2,*}^{\omega})'$, от (12), перейдем к соотношению

$$\mu \lim_{t \to +0} F[\omega(t,\cdot)] - \sum_{l=1}^{m} \mu_l \lim_{t \to t_l} F[\omega(t,\cdot)] = F[f],$$

в пространстве $(S_{\omega}^2)'$, или

$$\mu \lim_{t \to +0} Q(t, \cdot) - \sum_{l=1}^{m} \mu_{l} \lim_{t \to t_{l}} Q(t, \cdot) = 1,$$

которое, согласно доказанному раньше, имеет место в этом пространстве. Этим установлено, что в пространстве $(S_2^\omega)'$ выполняется (12).

Функцию G будем называть фундаментальным решением многоточечной (m-точечной) нелокальной по времени задачи для уравнения (1).

Отметим, что функция $\omega(t,x) = f * G(t,x), f \in (S_{2,*}^{\omega})'$, является решением уравнения (1). Действительно, из леммы 3 следует, что при каждом $x \in \mathbb{R}$ функция u(t,x) непрерывна по t на (0,T] и имеет непрерывно дифференцируемый по t дробный интеграл $J_t^{1-\alpha}u(t,x)$. Так как $f \in (S_{2,*}^{\omega})'$, то $u(t,\cdot) \in S_2^{\omega}$ при каждом t>0, при этом $T_{-x}\check{G}(t,\cdot)$, как абстрактная функция параметра x в пространстве S_2^{ω} (при фиксированном $t \in (0,T]$), бесконечно дифференцируема по x, т.к. в пространствах типа S операция сдвига аргумента не только непрерывна, но и бесконечно дифференцируема. Таким образом, $P(D)(f * G(\cdot,x)) = f * P(D)G(\cdot,x)$ (доказательство этой формулы аналогично доказательству формулы $D_t^{\alpha}(f * G(t,\cdot)) = f * D_t^{\alpha}G(t,\cdot)$). Тогда

$$\{D_t^{\alpha} - P(D)\}(f * G(t, x)) = f * \{D_t^{\alpha}G(t, x) - P(D)G(t, x)\} = 0,$$

поскольку, за доказанным ранее, функция G удовлетворяет уравнению (1) (см. лемму 3).

Соотношение (12) разрешает ставить для уравнения (1) m-точечную по времени задачу таким образом: найти решение u уравнения (1), удовлетворяющее условию

$$\mu \lim_{t \to +0} u(t, \cdot) - \sum_{k=1}^{m} \mu_k \lim_{t \to t_k} u(t, \cdot) = f, \quad f \in (S_{2,*}^{\omega})', \tag{15}$$

где предельное соотношение рассматривается в пространстве $(S_2^{\omega})'$ (ограничения на параметры $\mu, \mu_1, \ldots, \mu_m, t_1, \ldots, t_m$) такие же, как и в случае задачи (1), (2). Из приведённых выше результатов следует

Теорема. m-точечная задача (1), (15) разрешима. Решение этой задачи даётся формулой

$$u(t,x) = f * G(t,x) = \langle f, T_{-x} \check{G}(t,\cdot) \rangle$$

где $G(t,\cdot)$ – фундаментальное решением m-точечной по времени задачи для уравнения $(1), u(t,\cdot) \in S_2^\omega$ при каждом $t \in (0,T]$.

Отметим, что полученные результаты верны и в случае n независимых пространственных переменных.

Литература

- 1. Нигматулин Л.Л. Дробный интеграл и его физическая интерпретация // Теоретическая и математическая физика. − 1992. − 90, № 3. − С.354-358.
- 2. Сербина Л.И. Нелокальные математические модели переноса в водоносных системах / М.: Наука, $2007.-167\,$ с.
- 3. Бабенко Ю.И. Метод дробного дифференцирования в прикладных задачах теории тепломассообмена / СПб.: НПО «Профессионал», 2009. 584 с.
- 4. Нахушев А.М. Уравнения математической биологии / М.: Высшая школа, 1995. 301 с.
- 5. Нахушев А.М. Дробное исчисление и его применение / М.: Физматлит, 2003. 272 с.
- 6. Нахушева В.А. Дифференциальные уравнения математических моделей нелокальных процессов / М.: Наука, $2006.-174~\mathrm{c}.$
- 7. Povstenko Y.Z. Termoelasticity which uses fractional heat conduction equation // Мат. методы и физ.-мех. поля. 2008. 51, № 2. С.239-246.
- 8. Povstenko Y.Z. Theory of termoelasticity based on the space-time-fractional heat conduction equation // Phys. Scr. -2009.-136.-014017 (6 pp).
- 9. Povstenko Y.Z. Non-axisymmetric solutions to time-fractional heat conduction equation in a half-space in cylindrical coordinates // Мат. методы и физ.-мех. поля. − 2011. − 54, №1. − C.212-219.
- 10. Povstenko Y.Z. Fundamental solution of Robin boundary-value problems for time-fractional heat conduction equation in a half-line // Мат. методы и физ.-мех. поля. − 2012. − 55, №3. − С.164-169.
- 11. Кочубей А.Н. Задача Коши для эволюционных уравнений дробного порядка // Дифференц. уравнения. 1989. 25, №8. С.1359-1368.
- 12. Кочубей А.Н. Диффузия дробного порядка // Дифференц. уравнения. 1990. 26, N4. C.485-492.
- 13. Кочубей А.Н., Эйдельман С.Д. Уравнения одномерной фрактальной диффузии // Доповіді НАН України. 2003. №12. С.11-16.
- 14. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
- 15. Пташник Б.Й., Ільків В.С., Кміть І.Я., Поліщук В.М. Нелокальні крайові задачі для рівнянь із частинними похідними. К.: Наукова думка, 2002. 416 с.

- 16. Матійчук М.І. Параболічні та еліштичні задачі у просторах Діні / Чернівці: Чернівецький нац. ун-т, 2010. 248 с.
- 17. Горбачук В.И., Горбачук М.Л. Граничные значения решений дифференциально-операторных уравнений / К.: Наук. думка, 1984. 283 с.
- 18. Гельфанд И.М., Шилов Г.Е. Пространства основных и обобщенных функций / М.: Физматгиз, 1958.-308 с.
- 19. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Гипергеометрическая функции. Функции Лежандра / М.: Наука, 1965. 294 с.
- 20. Бейтмен Γ ., Эрдейи А. Высшие трансцендентные функции. Эллиптические и автоморфные функции. Функции Ламе и Матье / М.: Наука, 1967. 300 с.

SOLVABILITY OF NONLOCAL PROBLEM OF FRACTAL DIFFUSION TYPE EVOLUTION EQUATIONS ON THE SPACE OF GENERALIZED FUNCTIONS

Y.M. Drin

Bukovina State Finance and Economics University, Shterna St., 1 Chernivtsi, 58000, Ukraine, e-mail: drin_jaroslav@i.ua

Abstract. It is proved the correct solvability of nonlocal multipoint temporal problem for evolution equations with operator of fractional order differentiation on temporal variable when the initial function is Gevrey's ultr adistribution.

Key words: fractal environment, fractional derivative, nonlocal problem, the fundamental solution, the solvability, generalized function.