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Abstract 

Based on the previously presented model of space-time, the structural features of elementary 

particles formation are considered. The paper investigates the model of elementary particles 

formation composed of such fundamental particles as loveton, electron, neutrino, and their anti-

particles. In this paper, a set of basic particles is selected from among the simplest composite 

elementary particles, followed by a consideration of the ways of their decay, allowing the 

estimation of the masses and binding energies of fundamental particles. Formulas to calculate the 

masses of elementary particles have been obtained, and, based on the proposed algorithm and the 

developed program; mass spectra of both hadrons and leptons have been calculated. Structures of 

the τ-lepton and proton have been determined, and a possible reason for proton stability has been 

revealed. The difference between hadrons and leptons, mesons and baryons is explained. 

Comparison of the calculated data on the masses of elementary particles obtained experimentally 

showed good agreement with the available empirical data. This fact confirms the validity of the 

procedure for the formation of composite particles based on the construction of mass formulas for 

their decay and shows the high efficiency of the proposed approach. Comparison of hadrons and 

leptons allowed us to propose a hypothesis about the possible nature of the strong interaction by 

considering electron-positron pairs as electric dipoles. 
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Аннотация 

На основе ранее представленной модели пространства-времени, рассмотрены структурные 

особенности формирования элементарных частиц. В статье исследуется модель образования 

элементарных частиц, составленных из таких фундаментальных частиц как лавтон, 

электрон, нейтрино, а также их античастиц. Произведен выбор набора базовых частиц из 

числа наиболее простых составных элементарных частиц, с последующим рассмотрением 

способов их распада, позволившая провести оценку масс и энергий связи фундаментальных 

частиц. Получены формулы для вычисления масс элементарных частиц, а также, на основе 
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предложенного алгоритма и разработанной программы, рассчитаны спектры масс как 

адронов, так и лептонов. Определены структуры τ-лептона и протона, выявлена возможная 

причина стабильности протона. Дано объяснение отличию адронов от лептонов, мезонов от 

барионов. Сравнение расчетных данных по массам элементарных частиц, с полученными 

экспериментальным путем, показали полное согласие с имеющимися эмпирическими 

данными. Этот факт подтверждает справедливость процедуры формирования составных 

частиц на основе построения массовых формул по данным их распада и свидетельствует о 

высокой эффективности предложенного подхода. Сопоставление адронов и лептонов 

позволило предложить гипотезу о возможной природе сильного взаимодействия путем 

рассмотрения электрон-позитронных пар как электрических диполей. 

Ключевые слова: лептон; адрон; лавтон; фундаментальная частица; базовая частица; 

составная частица; энергия связи; электрон-позитронная пара; ядерная сила 
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INTRODUCTION 

The explanation of the mass spectrum of observable particles is one of the burning questions of 

modern physics. To elucidate the essence of the elementary particles of which material substance is 

constructed, it is first of all necessary to determine the rules and laws governing their behaviour. To date, 

there are a significant number of papers devoted to describing the properties and structure of elementary 

particles [1]. Many researchers [2-5] made a general contribution to the development of constitutive models 

that applied the model approach to the study of phenomena and processes in the physics of elementary 

particles. This issue attracts special attention not only because of the definition of the set of fundamental 

particles, but also because of the need to visualize the particles. 

The idea that hadrons are composite particles originated as early as 1949, when Enrico Fermi and 

Chen-Ning Yang [6] posed the question whether all particles are equally elementary, and pointed out that 

the main features of Hideki Yukawa's theory can be reproduced if we accept the hypothesis that π-meson 

is a compound particle composed of a nucleon and an antinucleon. According to their hypothesis the 

positively charged π+-meson must consist of a proton and an antineutron, the negatively charged π--meson 

of a neutron and an antiproton, and the neutral π0- meson of a mixture of proton-antiproton and neutron-

antineutron pairs. The main requirement was that all quantum numbers of a compound particle must be 

obtained additively from the quantum numbers of the proton, neutron, and their antiparticles. 

The next step in the development of the model of compound particles was the model of Maurice 

Goldhaber [7], where besides the proton and the neutron the K-mesons (К+, К0) and their antiparticles were 

considered as fundamental particles. In his model the baryons Λ and Σ were bound states of nucleons and 

antiparticles, and all the other elementary particles could be constructed from these particles. However, in 

spite of the more extended classification scheme, this approach has not been widely adopted. 

In 1956, the model of Seichi Sakata [8] came to the fore. According to this model, there are only three 

fundamental baryons: the proton, neutron, and Λ-hyperon, as well as their antiparticles, from which all 

other mesons and baryons are formed. In this case, π-mesons are constructed in the same way as in the 

Fermi-Young model, and strange particles are constructed using the Λ-hyperon. Each of the mesons, 

according to the Sakata scheme, consists of one fundamental particle bonded to a fundamental antiparticle. 

They are bound so strongly that the mass defect is close to the sum of the masses of both mesons. The 

baryon charge of any of the mesons thus composed is zero, and the other quantum numbers, like isotopic 

spin and strangeness, are also correct. 

Based on the Sakata model, Ken-iti Matumoto [9] proposed formula for the hadron mass in the ground 

state, according to which the hadron mass m is obtained by subtracting the hadron binding energy from the 

sum of the masses of its constituent particles and antiparticles, the binding energy is calculated as energy 

of repulsion of fundamental particles or their antiparticles from each other taken with opposite sign [3] 
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𝑚 = (𝑛𝑁 + 𝑛�̅�)𝑚𝑁 + (𝑛Λ + 𝑛Λ̅)𝑚Λ − (𝑛𝑁�̅� − 𝑛𝑁𝑁 − 𝑛�̅��̅�)𝑉(𝑁�̅�) − (𝑛𝑁Λ̅ + 𝑛Λ�̅� − 𝑛𝑁Λ −

− 𝑛𝑁𝛬̅̅ ̅̅ )𝑉(𝑁Λ̅) − (𝑛ΛΛ̅ − 𝑛ΛΛ − 𝑛ΛΛ̅̅ ̅̅ )𝑉(ΛΛ̅) , 
(1) 

where 𝑛𝑁 , 𝑛�̅� – are the number of nucleons and antinucleons in a compound particle; 𝑚𝑁 , 𝑚Λ – are the 

nucleon and lambda masses of the hyperon; 𝑛𝑁�̅� , 𝑛𝑁𝑁 , 𝑛�̅��̅� – are the number of nucleon-antinucleon 

combinations and their combinations; 𝑛𝑁Λ̅, 𝑛Λ�̅� , 𝑛ΛΛ̅ – number of nucleon-lambda hyperon combinations 

and their combinations, including antiparticles; 𝑉(𝑁Λ̅),  𝑉(ΛΛ̅),  𝑉(𝑁�̅�) – binding energies of nucleon-

lambda hyperon combinations and their combinations, including antiparticles. 

The binding energy can be determined using the known mass values of the π-meson, K-meson and 

Ξ-particle. Here the energy involved in the formation of the material substance is divided into two 

components. The first component is the total rest energy of the material formations participating in the 

formation of a new particle, and the second refers to the binding energies between these formations. 

In formula (1) the hadron mass is expressed in terms of the number of the fundamental constituent 

elements that make it up. If the meson is assumed to be a coupled system of strongly interacting particles 

and antiparticles, like the Fermi-Jang model, one will have difficulty with the multiple formations of 

particle-antiparticle pairs and the system will have to be treated as complex. From this point of view it 

seems very strange that Matsumoto formula gives qualitatively correct description of masses, in spite of 

the hypothesis based on a small fixed number of fundamental components. Understanding of the fact that 

properties of the hadron as a composite system are determined by the number of fundamental components 

has been of great importance for the development of further research. In other words, Sakata's model can 

be regarded not just as one possible classification scheme but as a theory with predictive power. Sakata's 

model has been improved subsequently by Harry Lipkin [10], who in 1960 has extended the model to 

include, apart from hadrons, leptons as well. 

The next step in classifying hadrons was the model proposed in 1960 by Murray Gell-Mann [11] and 

independently of him by Yuval Ne'eman [12] – the so-called "octal" way. The octal path was based on two 

assertions: firstly, the symmetry group of hadrons is group SU(3) and the second – all hadrons are composed 

of the fundamental eight of baryons. Since in the said eight baryons group there are particles with close 

properties and close masses, it is possible that there are some stronger and more symmetric interactions. If 

we leave only these interactions "included", disabling together with weak and electromagnetic, strong 

interactions as well, then all these eight baryons will not be separate particles, but different states of one 

and the same particle. Moreover, the symmetry of these interactions will be exactly the one chosen in the 

Sakata model and, moreover, will be described by the unitary group SU(3). In this approach, the eight 

baryons: 2N, 3Σ, Λ, 2Ξ, called the fundamental octet, have been chosen as the fundamental particles from 

which all other elementary particles are composed. 

Based on the octal pathway the Gell-Mann-Okubo mass formula [13] was subsequently proposed, 

providing a sum rule for hadron masses within a given multiplet defined by their isospin I and oddity or, 

alternatively, hypercharge Y 

 𝑀 = 𝑎0 + 𝑎1Y + 𝑎2 [𝐼(𝐼 + 1) −
1

4
𝑌2] , (2) 

where a0, a1 and a2 are free parameters. The inclusion of electromagnetic interaction leads to the splitting 

of the masses already inside the isotopic multiplet. 

For leptons a similar rule has been discovered by Yoshio Koide [14], who proposed a formula giving 

the mass ratio of the three leptons: electron, muon and tauon. It has the following form 

 𝑚e + 𝑚μ + 𝑚τ =
2

3
(√𝑚𝑒 + √𝑚μ + √𝑚τ)2 . (3) 

This relation, at first sight, cannot have a theoretical explanation and at first it was considered as a 

mere coincidence. However, the Japanese physicist Yukinari Sumino [15] has developed quite a workable 

field theory in which he introduces a gauge symmetry giving masses in exact accordance with the Koide 

formula. 
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In 1964 Murray Gell-Mann [16] and, independently of him, George Zweig [17] proposed a model of 

quarks, which drew attention to the fact that it is possible to describe all observed hadrons as a composite 

construction of some new particles – quarks. In the quark model any baryon is easily constructed as a 

combination of three quarks and meson as a combination of two quarks. The quark model differs from 

Sakata’s model mainly in the fact that fundamental particles in it are not selected among already known 

ones, but belongs to a new, deeper level of matter organization. In other words, the quark model considers 

all hadrons as composite particles and in this sense is equal to each other. Moreover, the capabilities of the 

quark model are not limited to the classification of hadrons. The model also gives quite definite predictions 

about the regularities to be observed in the processes of strong, electromagnetic and weak interactions in 

hadron decays. 

The emergence of the Standard Model [18], which describes the interaction of elementary particles 

on the basis of quark theory, allowed to order and to classify the acquired knowledge in elementary particle 

physics. However, in the Standard Model the masses of particles and their ratios are postulated as constants, 

rather than being derived from general principles and, therefore, it is more of a descriptive theory, the 

development of which has advanced only in the wake of experiments. It is believed that the so-called Higgs 

field and its quantum Higgs boson, which determines the presence of mass in elementary particles [19], are 

responsible for the mechanism of mass formation, and the ratios of these masses differ from each other by 

many orders of magnitude. The standard model is currently inapplicable to many unsolved problems of 

modern physics [20]. At the same time, the explanation of the mass spectrum of observable particles may 

allow, and in the future, to extend and deepen our understanding of the microcosm [21]. In spite of the 

ongoing searches [22-26], so far the set of characteristics for particles which allow describing the mass 

spectrum of known elementary particles from the unified position has not been found; the proposed 

formulas for determination of particle masses have not led to the theoretical construction of the particle 

mass spectrum.  

At the end of the composite particles models’ consideration one can conclude that it is not yet 

completely possible to classify all elementary particles and resonances according to one scheme or one 

principle. Out of the general system fall first of all the leptons: electron, μ-meson (muon), τ-lepton (tauon), 

all three types of neutrinos, and their antiparticles. However, there is a rather coherent classification of 

mesons, baryons, mesons and baryon resonances, i.e. strongly interacting particles. At the present time 

elementary particle physics is at a turning point in its history, facing a new situation not previously 

encountered in science. Most importantly, in spite of all efforts, experimenters cannot isolate in pure form 

the fundamental elements that make up material objects. Attempts to derive the mass spectrum analytically 

from first principles have also failed. Based on the above, the main purpose of the present work was to 

identify such general regularities for elementary composite particles, which would allow further 

development of a general theory consistent with the results of experiments to estimate the mass spectrum 

of elementary particles.  

1 RESEARCH OBJECTIVE  

The main task before us is to try and describe the properties of elementary particles on the basis of 

the previously proposed space-time model [27] without involving any fitting parameters, under conditions 

of limited information on the properties of elementary particles. Analysis of the decay products of 

elementary particles shows that their constituent parts are the same set of fundamental particles, united with 

each other by energy bonds maintaining the integrity of the structure. Since space-time can be considered 

like a 4-dimensional lattice consisting of bound lovetons and antilovetons, it is logical to assume that the 

elementary particles we know can be seen as energetically excited states of local regions of this spatial 

lattice. In this case, the configurations of the particles should not be any, but relatively stable, representing 

static structures.  

While carrying out this research aimed at constructing a model of elementary particles, we will define 

the following conditions and restrictions: 

1. Let's assume that elementary particles are relatively stable configurations formed on the basis of 

4-dimensional lattice of space-time loveton-antiloveton, which can be regarded as a perturbation of this 

space-time lattice.  
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2. Each elementary particle is constructed from some number of fundamental particles taking into 

account energies of their interrelations.  

3. It is necessary to exclude from consideration dynamic effects, at construction of models of 

composite elementary particles, at primary stage of the ongoing research, except for the cases when these 

effects explain a way of formation of the structure of the particle. 

4. Number and peculiarities of bonds of fundamental particles together with their masses must 

determine mass parameters of elementary particles completely.  

5. To find the binding energies, responsible for formation of the structure of compound particles, it is 

necessary to calculate the masses of these particles and indicate the number of each of these bonds inside 

the compound elementary particle. 

6. Decay products are elements of composite particles, as well as number of possible bonds between 

them. The daughter particles are not created in the process of decay, but are initially present in the particles 

in question. 

7. The real dimensions of the particles are not taken into account, the particles and antiparticles are 

not identified separately, they are considered without any indication of their belonging to any space and the 

presence or absence of a charge. 

8. All neutrinos are not subdivided into types and only the electron neutrino is considered in the study. 

 

2 MODELING 

We will model composite elementary particles by analysing the decay products of elementary 

particles into their constituent parts, each of which has energy bonds maintaining the integrity of the 

structure represented in a 4-dimensional space-time lattice. 

 

2.1 PRIMARY ELEMENTARY PARTICLES 

The most effective method used in dealing with elementary particles will be the approach where the 

formation of mass formulas is based on the analysis of decay schemes of composite particles. This approach 

allows dividing the known elementary particles into three groups: fundamental, basic and compound 

particles. 

2.1.1 FUNDAMENTAL PARTICLES 

We will consider the fundamental particles to be the true elementary particles, from which all 

other composite particles can be constructed. These can include such particles as free and bounded 

lovetons [27], electron, neutrino, as well as their antiparticles. Here, by bound lovetons and 

antilovetons we will understand such elements, the bonds between which allow to form cells of the 

space-time lattice. Besides, in the process of formation of elementary particles, we will include into 

their composition also particles which have been called free lovetons (antilovetons) arising due to 

breaking of bonds between bounded lovetons and antilovetons. All fundamental particles are united 

among themselves by boinding energies allowing to describe the whole spectrum of basic and 

compound elementary particles. The main challenge is to establish how the particles are bound 

together, by what rules their formation takes place, and in what quantity these bonds are created. 

2.1.2 BASIC PARTICLES 

All elementary particles not included into the set of fundamental particles, we will consider as 

composite, represented by sets of fundamental particles in different energetic unions among 

themselves. At the same time, to determine the binding energies between fundamental particles, we 

will select a number of particles which masses are measured with pinpoint accuracy. In most cases 

such particles are rather simple in their composition and should be composed only of fundamental 

particles. These particles will be called the basic particles. We will refer: proton, neutron, μ-meson, as 

well as π0- and π±-mesons to the basic particles. All other elementary particles will belong to the group 

of purely compound particles. 

 

2.2 MASS FORMULAS FOR ELEMENTARY PARTICLES 



 

Bondarev V.G., Migal L.V. Computer modelling of material objects’ structure. Part II. 
Elementary particles // Research result. Information technologies. – Т.8, №1, 2023 

8 

 

 

To construct mass formulas let us consider N elementary particles with masses mi (i = 1, 2, . . ., N), 

having a composite internal structure and described on the basis of a set of fundamental particles and the 

constants defining their binding energies.  

2.2.1 FORMAL SCHEME OF THE MASS SPECTRUM OF ELEMENTARY PARTICLES  

To consider the composite elementary particles it is necessary at first to find out the binding 

energies between fundamental particles, which form an internal structure of the composite particles. The 

basis of the current research will be the principle that all masses of basic and other composite particles 

are combinations of fundamental particles and their binding energies. This approach provides a system 

of equations representing mass formulas to quantify the bonding energies of fundamental particles. In 

order to find the binding energies responsible for forming the structure of elementary particles, it is also 

necessary to specify the number of each of these bonds within a composite particle. For this purpose, for 

all composite particles, including the basic particles, we will write mass formulas, based on the analysis 

of products of their decays.  

Suppose that formally the mass тi of an elementary compound particle can be described by the equation 

  𝑚𝑖 = 𝑁𝐿𝑚𝐿 + 𝑁𝑒𝑚𝑒 + 𝑁𝑣𝑚𝑣 + 𝑁𝐿𝐿𝐸𝐿𝐿 + 𝑁𝑒𝑒𝐸𝑒𝑒 + 𝑁𝐿𝑒𝐸𝐿𝑒 + 𝑁𝐿𝑣𝐸𝐿𝑣 + 𝑁𝑒𝑣𝐸𝑒𝑣 , (4) 

where NL, Ne and Nv are the numbers of, respectively, lovetons, electrons, neutrinos or their 

antiparticles; NLL, Nee, NLe, NLv and Nev are the numbers of bonds between the corresponding 

fundamental particles; ELL, Eee, ELe, ELv and Eev are the binding energies between these particles. 

Equation (2) defines the mass of i-th constituent particle. Considering that the binding energies of 

neutrinos must be several orders of magnitude smaller than the binding energies of the lovetons and 

electrons, these terms can be combined and included in the term responsible for the neutrino mass. Also, in 

the future, we will assume that each neutrino has only one bond each with a loveton (antiloveton) and an 

electron (positron). These statements allow to simplify essentially calculations of binding energies of the 

other fundamental particles 

 𝑚𝑣
′ = 𝑚𝑣 + 𝐸𝐿𝑣 + 𝐸𝑒𝑣 , (5) 

where 𝑚𝑣
′  is the reduced mass of the neutrino. Substituting expression (5) in equation (2), we get 

 𝑚𝑖 = 𝑁𝐿𝑚𝐿 + 𝑁𝑒𝑚𝑒 + 𝑁𝑣𝑚𝑣
′ + 𝑁𝐿𝐿𝐸𝐿𝐿 + 𝑁𝑒𝑒𝐸𝑒𝑒 + 𝑁𝐿𝑒𝐸𝐿𝑒 . (6) 

Equation (6) is a mass formula of a compound particle, containing quantitative relations of the number 

of bonds and masses, as well as the bonding energies between the fundamental particles composing them.  

2.2.2 DETERMINATION THE BINDING ENERGIES OF FUNDAMENTAL PARTICLES 

To determine the masses of composite elementary particles let's first find out the values of binding 

energies between fundamental particles composing their internal structure. The essence of the matter is that 

the binding energies of fundamental particles included in equation (6), proposed for determination of 

composite particles masses, have not been determined by anyone up to the present moment. In fact, the 

binding energies entered in mass formula (1) referred to slightly different set of fundamental particles and, 

consequently, their numerical values did not reflect real values of binding energies between fundamental 

particles included in a given elementary particle. 

To determine the binding energies and the possible number of each of these bonds within a 

composite particle, let's apply the method of analysis of basic particles decays. We begin with the 

analysis of the neutron’s decay. This case is interesting because in a rather simple way it allows to 

estimate the binding energy between the electron and the loveton included through the proton in the 

neutron composition. As a result of the neutron’s decay, we will get a proton, an electron and an 

electron neutrino as products of this decay. Let's assume that the electron included in the neutron has 

only one bond with the loveton, hence, the equation to determine the neutron mass will have the form  

 𝑚𝑛 = 𝑚𝑝 + 𝑚𝑒 + 𝑚𝑣
′ + 𝐸𝐿𝑒 . (7) 
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Knowing the masses of the basic particles included in expression (7), and considering that the reduced 

mass of the neutrino must be several orders of magnitude smaller relative to them, the binding energy of 

the loveton and electron in the neutron can be approximately estimated by the value:  

ELe ≈ 0.78 meV.  

The terms in formula (6) for the number of bonds between the lovetons NLL and the value of the 

binding energy itself between these ELL particles are considerably more difficult to estimate. An 

estimate of these parameters will be made by considering the decay products of π-mesons.  

Firstly, let us estimate the binding energies between the electrons Eee and between the bound 

lovetons ELL. For this purpose we will assume that the binding energies of the electrons between 

themselves and of the electrons with the lovetons are close in their values, i.e. Eee ≈ ELe. This conclusion 

can be taken as plausible when considering the linear size of their contacts with each other. Similarly, 

let us estimate the value of the binding energy between the lovetons themselves. Taking into account 

that the dimensions of the loveton and electron differ approximately by a factor of seven [27], we 

assume the same difference in the binding energies of the lovetons ELL and between the loveton and 

the electron ELe, which leads to the value: ELL ≈ 5.5 meV. Now, from the approximate binding energies 

obtained, we shall attempt to determine the number of inter loveton contacts for π0- meson (neutral 

pion). In other words, let us determine the number of spatial cells of 4-dimensional space-time 

occupied by this particle. 

It is known that π0-meson can fall into two γ-quantas, and is thus based on a single electron-positron 

pair which, under annihilation, gives this result. The pion mass, as a major contribution, must contain the 

binding energies of the lovetons and, based on the mass of π0-meson, we may assume that the neutral pion 

occupies at least two spatial cells. The bound lovetons of these cells have twenty bonds between them: 

NLL = 20. The electron-positron pair entering the pion has only one bond: Nee = 1. It remains to find 

out the number of bonds between the loveton and the electron. 

A priori let's assume that the electron (positron) from the electron-positron pair is placed at one 

boundary of this formation and, therefore, has only four bonds with lovetons, and the positron (electron), 

being inside one of the spatial cells, has eight bonds, i.e. in total we have twelve bonds: NLe = 12 (Fig. 1).  

 

 
Fig. 1. Schematic structure of π0-meson: 

 – bound loveton;  – bound antiloveton;  – electron;  – positron 

Рис. 1. Схема структуры π0-мезона:  

 – связанный лавтон;  – связанный антилавтон;  – электрон;  – позитрон 
 

If one also takes into account the number of neutrinos, which, according to the way π0-meson 

decays, reaches the value: Nν = 4 (note that in the data on decays of particles only the types of neutrinos, 

and not their number, are specified), in this case the mass formula for π0-meson will have the following 

form 

 𝑚𝜋0 = 2𝑚𝑒 + 4𝑚𝑣
′ + 20𝐸𝐿𝐿 + 𝐸𝑒𝑒 + 12𝐸𝐿𝑒 (8) 
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As the second base particle for our study we will take π±-мезон. Presumably this particle is based 

on the same π0-meson. The difference from π0- meson will then consist only of an additional bond 

between a free electron and a positron of the electron-positron pair: Nee = 2, and the free electron may 

also have an additional four bonds with the bound lattice lovetons, allowing us to write down ELe = 16 

(fig. 2). The number of neutrinos being a part of π±- meson, according to its mode of decay, would in 

turn increase to five neutrinos. 

 

 
Fig. 2. Schematic structure of π±-meson: 

 – bound loveton;  – bound antiloveton;  – electron;  – positron 

Рис. 2. Схема структуры π±-мезона:  

 – связанный лавтон;  – связанный антилавтон;  – электрон;  – позитрон 

 

Based on the above logical reasoning, in accordance with formula (6), we can form the following 

mass equation for π±-meson 

 𝑚𝜋± = 3𝑚𝑒 + 5𝑚𝑣
′ + 20𝐸𝐿𝐿 + 2𝐸𝑒𝑒 + 16𝐸𝐿𝑒 (9) 

In the proposed equation (9) we still do not know such parameters as the reduced neutrino mass 

and the exact values of the coupling energies of the lovetons ELL and electrons Eee. By neglecting the 

value of the reduced neutrino mass, on the basis of a joint solution of equations (8) and (9), we can 

approximate values for the coupling energies of the loveton-loveton pair and more precisely, the 

electron-electron pair: ELL ≈ 6.18 meV; Eee ≈ 0.96 meV.  
With the approximate values of the calculated parameters available, and on the basis of the decay 

products analysis, we also determine the number of bonds between bound lavtons for a μ-meson (fig. 3), 

whose mass formula can be given by the following form 

 𝑚𝜇 = 𝑚𝑒 + 2𝑚𝑣
′ + 𝑁𝐿𝐿𝐸𝐿𝐿 + 8𝐸𝐿𝑒 (10) 

Solving equation (10) with respect to the unknown parameter, which is the number of bonds 

between bounded lovetons, we obtain a value numerically equal to: NLL = 16. The reason for this 

number of L-L bonds is most likely dynamic effects. Let the μ-meson occupy a single spatial cell. In 

this case we have 12 bonds between lovetons. Now, let the electron perform shifts arbitrarily in the 

horizontal plane. Here, a shift of the electron to the right, for example, partially activates in addition 

the spatial cell to the right of the cell occupied by the μ-meson (as shown in Fig. 3). When moving to 

the left, forward or backward – in place of the right-hand cell, respectively, other neighboring spatial 

cells can be partially activated in turn, leading to the addition of 4 more L-L bonds. 
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Fig. 3. Schematic structure of μ-meson (in addition to the main spatial particle cell, the figure on the right 

shows a partially activated cell): 

 – bound loveton;  – bound antiloveton;  – electron 

Рис. 3. Схема структуры μ-мезона (на рисунке кроме основной пространственной ячейки частицы 

справа показана частично активизированная ячейка):  

 – связанный лавтон;  – связанный антилавтон;  – электрон 
 

Now, knowing the number of bonds between the fundamental particles, let's calculate the exact 

values of all the bonding energies and the reduced neutrino masses included in the formula (6). To do 

this we will combine expressions (7-10) in a general system of linear homogeneous equations to 

determine the parameters of the fundamental particles. Here we do not know the real values of the 

reduced neutrino mass, as well as the values of the binding energies of the fundamental particles. The 

solution of the proposed system of equations allows us to obtain the exact values of all these 

parameters (Table 1).  

To conclude this parameters’ consideration of the elementary particles, let us define the mass of 

the loveton as a fundamental particle. During the study of the 4-dimensional space-time structure 

model [27] from geometrical considerations the value of the mass of the loveton was obtained, which 

had an approximate value numerically equal to: mL ≈ 892.18 meV. To estimate the real mass of the 

loveton let us try to form an equation for the proton structure. To do this we will distribute the difference 

of mass between the proton and the loveton by the number of bonds between the lovetons, as well as 

possible electron-positron pairs. Taking into account that the proton, being a compound particle, at the same 

time does not decay into other elementary particles, we will look for the presumable reason for this fact in 

the absence of such particles as neutrinos in its composition. In this case, the mass formula for the proton 

may be written in general form 

 𝑚𝑝 = 𝑚𝐿 + 𝑁𝑒𝑚𝑒 + 𝑁𝐿𝐿𝐸𝐿𝐿 + 𝑁𝑒𝑒𝐸𝑒𝑒 + 𝑁𝐿𝑒𝐸𝐿𝑒 . (11) 

According to Ockham's methodological principle, which can be summarised as follows: «entities 

must not be multiplied beyond necessity", we will assume that only one electron-positron pair should be 

included in the proton: Ne = 2, while we automatically get one electron-positron bond as well: Nee = 1. 

Also, for the same reason, to fix the free loveton we will choose a separate face of the spatial cell. In this 

case it is possible to determine the number of bonds of bound lovetons equal to four, and the number of 

bonds of a free loveton with bound lovetons also equal to four. Therefore the total number of bonds between 

lovetons will be: NLL = 8 (Fig. 4a). The number of bonds of the electron (positron) with the lovetons 

will be estimated considering that each of them can touch only three lovetons (Fig. 4b): NLe = 6. Based 

on the above logical reasoning the mass formula for the proton can be written in the following form 

 𝑚𝑝 = 𝑚𝐿 + 2𝑚𝑒 + 8𝐸𝐿𝐿 + 𝐸𝑒𝑒 + 6𝐸𝐿𝑒 . (12) 
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a)             b) 

Fig. 4. Schematic structure of proton 

a) general view; b) side right view: 

 – bound loveton;  – bound antiloveton;  – free loveton; 

 – electron;  – positron 

Рис. 4. Схема структуры протона 

a) общий план; b) вид с боковой правой стороны: 

 – связанный лавтон;  – связанный антилавтон;  – свободный лавтон; 

 – электрон;  – позитрон 
 

The obtained value of the mass of the loveton, according to equation (12), will be somewhat less 

than its geometrical counterpart: mL = 882.158477726 meV. All calculated values of fundamental 

particles parameters, including the mass of the loveton, were then summarized together and presented 

in Table 1. 

 

Таble 1 

Estimated data on fundamental particles and their binding energies 

Таблица 1 

Расчетные данные по фундаментальным частицам и их энергиям связи 

Particle Mass (meV) Bond type Binding energy (meV) 

Loveton, L 882.158477726 LL 6.18094291005 

Electron, e 0.51099895 Le 0.78127053419 

Neutrino, v 0.00106285981 ee 0.95644605733  

Note. For neutrinos a value of reduced mass is given. Notations: LL – loveton-loveton; Le – loveton-electron; ee – electron-

electron. 

 

Now, having all values of parameters of fundamental particles it is possible to calculate values of 

masses of basic particles and then to compare them with known experimental data [28]. The results of the 

calculations are presented in table 2. 

 

Таble 2 

Mass spectrum and structural composition of basic particles 

Таблица 2 

Спектр масс и структурный состав базовых частиц 

Particle Experiment L e v LL Le ee Calculation 

mexp (meV) abs. accuracy mcalc (meV) |mcalc - mexp| 

 105.6583755 0.0000023 0 1 2 16 8 0 105.6583755 0.00000000 

0 134.9768000 0.0005000 0 2 4 20 12 1 134.9767999 0.00000001 

± 139.5703900 0.0001800 0 3 5 20 16 2 139.5703899 0.00000001 

p 938.27208816 0.00000029 1 2 0 8 6 1 938.2720810 0.00000001 

n 939.5654205 0.0000005 1 3 1 8 7 1 939.5654205 0.00000000 

Note: L is the number of free lovetons. 
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3 RESULTS AND DISCUSSION 

Extensive experimental data are now available for all known elementary particles, both on mass 

values and on the resulting product compositions after particle decay [28]. This allows the construction of 

mass formulas of elementary particles on the basis of experimental data on the known channels of their 

decay. 
 

3.1 COMPOSITE PARTICLE FORMATION 

Knowing the masses of the loveton, electron and neutrino, as well as the binding energies between 

the fundamental particles, we are able to calculate the mass spectrum of all composite elementary particles. 

We will assume that the main contribution to the mass of a compound particle, besides daughter particles, 

is given by bound and free lovetons. All listed types of lovetons, together with electrons and their binding 

energies, including electron-positron pairs, allow to form new elementary particles with increasing 

complexity.  

In the formation of composite elementary particles masses it is necessary to follow a number of 

empirically selected rules, derived from the analysis of their decay products: 

1. A particle may have in its composition, besides products of its decay, for mesons – a number of 

pions, and for baryons, besides pions, also protons, allowing to form the required mass. 

2. The reverse decay process, which is the synthesis of daughter particles, can be performed either 

along the edges of the space-time cell or along its faces. The first option adds 2 L-L bonds, while the 

second option adds 4 L-L bonds. 

3. In the presence of free electrons and positrons, not bound into electron-positron pairs, partial 

activation of adjacent space-time cells is possible.  

4. When studying the ways of formation of composite elementary particles included in hadrons, one 

can neglect the contribution to the rest-mass of the reduced neutrino mass.  

In order to find possible configurations of composite particles, we first determine the admissible 

combinations realizable for the chosen particle. We require that the calculations of the particle masses 

reproduce the experimental data with the accuracy within the limits of the absolute errors obtained for each 

of the particles. In determining the configurations of the complex elementary particles the particles were 

chosen, which have an absolute error of not more than two electron masses (about 1 meV). The exception 

was the particles having a slightly higher instrument error, but playing an important role in the decay 

processes of other elementary particles. For a number of particles the difference between the experimental 

and calculated mass values turned out to be, by a rather small value, larger than the experimental error. In 

this case the experimental value was shifted to one of the limits of the corridor of possible values and the 

difference of the mass data was re-evaluated. If the difference in mass was within the known instrument 

error, the value was accepted as true. 

The practical selection of possible configurations was carried out according to the following algorithm: 

1. Among decay variants the daughter particles having as large mass as possible were determined. 

Such particles in most cases turn out to be either two, or even one.  

2. The missing mass was compared with the values of pion masses, where the latter were chosen 

taking into account the charge of the mother particle and the presence of pions in the decay products. If the 

residual mass was found to be less than the pion mass, the number of possible L-L bonds was additionally 

determined. 

3. The remaining mass was distributed between the electron-positron pairs and the number of L-e and 

e-e bonds. In these cases the following rule was followed: the number of e-e bonds for compound particles 

is always smaller than the total number of electrons and positrons, and the number of L-e bonds must be 

equal or greater than the total number of electrons and positrons. 

Here, while the first point of the algorithm was carried out in the manual mode, the next two points 

were implemented by means of a program, which determined possible combinations of the number of pions, 

electron-positron pairs, and binding energies of fundamental particles corresponding to a given error of the 

particle measurement. The resulting set of combinations was analysed and the combination that best 

matched the required conditions and constraints was chosen. 
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In addition, in the selection of elementary particles configurations, the direct dependence of the 

number of loveton-loveton bonds on the total number of pions was actively used. At the same time, in cases 

of inconsistency in the behavior of these parameters the compositions of the corresponding elementary 

particles were checked again. Here, and further on, the pions included in the composition of daughter 

particles included in the decay products were not considered. 

 

3.2 LEPTONS 

It is customary to refer to leptons as elementary particles such as electron, muon, tauon and neutrino. 

The electron, in our study, refers to the fundamental particles and is part of all other leptons. The muon we 

have considered in the previous section and its composition is already known to us. Recall that a separate 

consideration of the neutrino can be excluded at this stage, due to its small mass. Here we will focus only 

on the determination of the composition of the last lepton particle, the tauon. 

It should be noted at once that the τ-lepton will be regarded as an excited state of the loveton-

antiloveton pair (Fig. 5), with an additional particle in the form of τ-neutrino besides electrons and 

positrons. Let us pay attention to the dual nature of the loveton-antiloveton pair of the τ-lepton. On the one 

hand, both loveton and antiloveton form the lattice edge, hence they belong to bound lovetons, but on the 

other hand, due to their excited state, they also possess mass like free lovetons. On the basis of this notion, 

the mass of a tauon can be obtained by calculating the following equation (the data on the quantitative 

composition are obtained by combining the possible combinations of the number of fundamental particles 

and their binding energies) 

 𝑚𝜏 = 2𝑚𝐿 + 5𝑚𝑒 + 𝑚𝑣
′ + 𝐸𝐿𝐿 + 5𝐸𝐿𝑒 . (13) 

The calculation by formula (13) gives the value of the mass τ-lepton at the limits of its absolute error 

|mcalc – mexp| = 0.10 (Δexp = 0.12): mτ = 1776.9603. We note that in this case there are no bonds in the 

electron-positron pairs of the τ-lepton, indicating that the electron-positron pairs in the τ-lepton decay 

and are represented as separate electrons and positrons. 

 

 
Fig. 5. Schematic structure of τ-lepton: 

 – bound loveton;  – bound antiloveton;  – electron;  – positron 

Рис. 5. Схема структуры τ-лептона: 

 – связанный лавтон;  – связанный антилавтон;  – электрон;  – позитрон 

 

An interesting fact is the possibility of representing the τ-lepton also as consisting of the loveton 

and antiloveton, but having only three electrons, with the presence of the loveton-electron bonds equal 

to: ELe = 6. Such a structure seems to be even more preferable, but a comparison of the calculated and 

experimental masses of the lepton in this configuration reveals a discrepancy and a slightly increased 

difference in masses: |mcalc – mexp| = 0.14. 

Thus, we conclude that the above analysis, by the example of the τ-lepton structure, shows the correctness 

of the chosen approach to the possibility of describing the formation of elementary particle masses by 

choosing a set of fundamental particles and the energies of their interrelation with each other. 

 

3.3 MESONS 

The results of the formation of mesons’ rest-masses are calculated by the mass formula (6), which in 

turn are compared with known experimental data [28], are summarized in the approximate table (Table 3). 
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This comparison was carried out for a sufficiently large sample of mesons. The table also shows the 

difference between the masses of elementary particles obtained by computational and experimental 

methods (for the true value of the rest mass of the particle was taken the values of masses determined 

experimentally). At the same time, the calculated values of masses correspond well to the observed values 

of the meson mass spectrum, and the obtained values of the difference of these masses in their magnitude 

in most cases did not exceed the absolute error of the experimental values. 

Table 3 

Mass spectrum and structural composition of mesons 

Таблица 3 

Спектр масс и структурный состав мезонов 

Particle 

Experiment 

Decay 

products 

± 

0 LL ee e Le 

Calculation 

Mass, mexp 

(meV) 

Absolute 

accuracy 

Mass, 

mcalc 

(meV) 

|mcalc - 

mexp| 

K± 493,677 0,016 – 3 0 12 0 0 1 493,664 0,013 

K0
S 497,611 0,013 – 2 0 34 0 4 8 497,600 0,011 

K0
L 497,611 0,013 – 2 1 12 0 6 8 497,605 0,006 

η 547,862 0,017 – 2 1 18 7 8 15 547,877 -0,015 

ρ(770)± 775,260 0,230 η 1 0 12 3 6 10 775,352 -0,092 

ρ(770)0 775,260 0,230 η 0 1 14 1 2 5 775,479 -0,003 

ω(782) 782,660 0,130 η 0 1 14 2 4 12 782,689 -0,044 

K*+(892) 891,670 0,260 K± 0 2 20 1 2 3 891,572 0,098 

K*0(892) 895,550 0,200 K0 0 2 20 1 2 3 895,506 0,044 

η'(958) 957,780 0,060 η 2 0 20 2 4 4 957,764 0,016 

f(1020) 1019,461 0,016 η 2 1 8 3 4 4 1019,466 -0,005 

f2(1270) 1275,500 0,800 2K± 0 1 24 1 2 4 1275,777 -0,277 

f1(1285) 1281,900 0,500 2K± 0 1 24 3 6 7 1282,078 -0,178 

a2(1320) 1318,200 0,600 2K± 0 2 8 3 6 7 1318,159 0,041 

f1(1420) 1426,300 0,900 2K± 2 0 24 3 6 7 1426,242 0,058 

D0 1864,840 0,050 K0f2(1270) 0 0 14 1 2 4 1864,748 0,092 

D± 1869,660 0,050 K*(892)+ 5 2 0 2 4 8 1869,683 -0,023 

D±
s 1968,350 0,070  K*+K*0 1 0 4 3 6 14 1968,387 -0,037 

D*0(2007) 2006,850 0,050 D0 0 1 0 2 4 4 2006,899 -0,049 

D*+(2010) 2010,260 0,050 D0 1 0 0 1 2 5 2010,295 -0,035 

D*
s
± 2112,200 0,400 D±

s 0 1 0 2 4 6 2111,971 0,229 

D*
s0(2317)+ 2317,800 0,500 D±

s 0 2 12 1 2 4 2317,578 0,222 

D*
1 (2420)0 2421,400 0,600 D*(2010)+

  1 1 20 3 6 9 2421,393 0,007 

D1 (2420)0 2422,100 0,600 D*(2007)0 0 2 22 2 4 7 2422,210 -0,110 

Ds1(2460)+ 2459,500 0,600 D±
s 2 1 10 3 6 12 2459,588 -0,088 

D*
2(2460)+ 2461,100 0,700 D*(2010)+ 1 1 28 2 4 4 2461,546 -0,446 

D*
2(2460)0 2462,800 1,000 D*+(2010) 1 1 28 1 2 4 2462,977 -0,177 

Ds1(2536)+ 2535,110 0,060 D*+(2010) 0 0 2 5 6 9 2535,113 -0,003 

D*
s2(2573)+ 2569,100 0,800 D*0(2007) 0 0 8 3 6 12 2569,219 -0,119 

ηc(1S) 2983,900 0,400 2f2(1270) 0 2 24 3 6 11 2983,826 0,074 

J/Ψ(1S) 3096,900 0,006 2Σ(1385)- 0 1 28 4 8 14 3096,895 0,005 

χc0(1P) 3414,710 0,300 J/Ψ 0 1 28 2 4 8 3415,150 -0,440 

χc1(1P) 3510,670 0,050 J/Ψ 0 2 22 2 4 5 3510,698 -0,028 

hс(1P) 3525,380 0,110 J/Ψ 0 2 24 2 4 8 3525,403 -0,023 

χc2(1P) 3556,170 0,070 J/Ψ 2 0 28 2 4 4 3556,189 -0,019 

ψ(2S) 3686,100 0,060 J/Ψ(1S)η 0 0 6 1 2 3 3686,170 -0,070 

ψ(3770) 3773,700 0,400 2D+ 0 0 4 2 4 7 3773,470 0,230 

ψ2(3823) 3823,700 0,500 χc2(1P) 0 2 6 1 2 5 3823,594 0,106 

ψ3(3842) 3842,710 0,200 2D± 0 0 16 1 2 3 3842,537 0,173 

χс1(3872) 3871,650 0,060 2D0 0 1 0 2 4 4 3871,739 -0,089 

χс2(3930) 3922,500 1,000 2D0 0 1 6 2 4 8 3921,590 0,910 

ψ(4040) 4039,000 1,000 χc1(1P) 2 1 16 3 6 12 4038,993 0,007 
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Particle 

Experiment 

Decay 

products 

± 

0 LL ee e Le 

Calculation 

Mass, mexp 

(meV) 

Absolute 

accuracy 

Mass, 

mcalc 

(meV) 

|mcalc - 

mexp| 

B± 5279,340 0,120 ψ(2S)K*+ 2 2 22 3 6 14 5279,718 -0,378 

B0  5279,660 0,120 ψ(2S)K*0 0 4 24 1 2 10 5279,691 -0,031 

B*+ 5324,710 0,210 B± 0 0 6 1 2 8 5324,654 0,056 

B0
s 5366,920 0,100 2Λ(2625)+

c 0 0 16 2 4 10 5366,885 0,035 

B*
2(5747)+ 5737,200 0,700 B* 2 0 20 2 4 8 5737,677 -0,477 

B*
2(5747)0 5739,500 0,700 B* 1 1 20 3 6 13 5738,968 0,532 

Bs1(5830)0 5828,700 0,200 B*+K– 0 0 0 2 4 8 5828,594 0,106 

Bs2(5840)0 5839,860 0,120 B*+K– 0 0 2 1 2 9 5839,759 0,101 

B±
с 6274,470 0,320 J/ΨD*(2010)+

K*0(892) 

0 1 20 3 6 9 6274,272 0,198 

Bс(2S)± 6871,470 1,000 Bc
± 2 2 16 1 2 2 6871,790 -0,320 

ϒ(1S) 9460,300 0,260 2Zc(4430) 0 2 36 2 4 10 9460,237 0,063 

χb0(1P) 9859,440 0,310 ϒ(1S) 0 2 18 3 6 15 9859,165 0,275 

χb1(1P) 9892,780 0,310 ϒ(1S) 2 0 22 3 6 15 9893,076 -0,296 

ϒ(2S) 10023,260 0,310 ϒ(1S) 2 1 22 3 6 9 10023,365 -0,105 

χb0(2P) 10232,500 0,400 ϒ(1S) 0 1 10 3 6 8 10232,232 0,268 

χb1(2P) 10255,460 0,220 ϒ(1S) 0 1 14 3 6 6 10255,393 0,067 

χb2(2P) 10268,650 0,220 ϒ(1S) 0 1 16 3 6 7 10268,536 0,114 

ϒ(3S) 10355,200 0,500 ϒ(1S) 2 0 6 3 6 12 10354,797 0,403 

Note. Decay products are daughter particles included in the composition of the considered elementary particle. The table shows the 

absolute measurement errors of meson masses. 

 

Let us look at the neutral K0-meson, whose composition differs from the total mass of the particles. 

The K0 meson, for example, is a union of two or three pions, and consequently has two configurations, S 

and L, which have different lifetimes. The short-lived configuration of the meson is shown in the table 

(Table 3) to be represented by two π± mesons, which are united structurally by separate edges that add only 

two L-L bonds to the particle. Electrons and positrons in this configuration (eight particles) may have 

continuous displacements, additionally partially activating adjacent spatial cells, similar to the formation 

of the muon. Each of the two pions has four outer edges; hence this allows the addition of 16 L-L bonds, 

making a total of 32 L-L bonds. In this case, the total number of bonds for this configuration is a value 

equal to: NLL = 34. 

The long-lived К0-meson configuration will already be represented by three pions united by their 

faces, allowing 4 L-L bonds to be added. Electrons and positrons in such a configuration have no dynamical 

shifts leading to partial activation of adjacent spatial cells, so the total number of L-L bonds is limited to 

the value: NLL = 12. We also note the number of electron-positron pairs, the number of which is exactly the 

same as the number of pions, but the reason for the same number of loveton- electron bonds equal to: 

NLe = 8, the authors have not uniquely identified. Note that all K mesons have no extra electron-positron 

pairs (the number of e-e bonds is zero) outside of their constituent pions. This fact is unique among 

composite particles of the meson class. 

The second elementary particle that also has the same mass value, not only for the neutral particle, 

but also for the charged particle, is ρ(770)-meson. In accordance with the considered compositions of these 

particles, we may note that in this case the charged particle includes in its decay products apart from η-

meson also the π±-meson, in contrast to the neutral one, which is based on both the η-meson and the π0-

meson. 

An overwhelming number of elementary particles contain in their composition electron-positron pairs 

divided into a number of groups. Thus, a number of particles contain such pairs united in chains. Among 

the mesons, these include π±, η and φ(1020)-mesons, while the vast majority of mesons have electron-

positron pairs in an isolated state. J/Ψ particle is also of great interest, its decay giving rise to baryons, and 

the total number of electron-positron pairs appeared to be the highest of all elementary particles, being of 

the order of four. Unfortunately for ϒ(1S)-meson no daughter particles of good accuracy were found, so 
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the resulting composition of the particle was determined somewhat arbitrarily, but in accordance with the 

existing decay version. 

 

3.4 BARYONS 

To the class of particles, which are usually called baryons, belong structural elements including in 

their composition free lovetons. In the approximate table (Table 4) the results of formation of rest masses 

of baryons, obtained on the basis of calculations by the mass formula (6), are summarized and additionally 

compared with experimental data [28]. This approach is performed for a large sample of currently reliably 

determined baryons. The table also shows the error of the measurement of baryon masses by empirical 

methods and compares the calculated and experimental data.  

 

Table 4 

Mass spectrum and structural composition of baryons 

Таблица 4 

Спектр масс и структурный состав барионов 

Particle 

Experiment 

Decay products ± 0 LL ee e Le 

Calculation 

Mass, mexp 

(meV) 

Absolute 

accuracy 

Mass, mcalc 

(meV) 

|mcalc - 

mexp| 

Λ0 1115,683 0,006 p 1 0 4 7 8 3 1115,687 0,004 

Σ+ 1189,370 0,070 p 0 1 16 2 4 17 1189,382 0,012 

Σ0 1192,642 0,024 p 1 0 18 1 2 2 1192,640 0,002 

Σ- 1197,449 0,030 p 1 0 16 3 6 19 1197,487 0,038 

D(1232) 1210,000 1,000 p 1 0 20 1 2 8 1209,690 0,310 

Ξ0 1314,860 0,200 Λ0  0 1 8 2 4 14 1315,002 0,142 

Ξ- 1321,710 0,070 Λ0 1 0 8 3 6 14 1321,644 0,066 

Σ(1385)*+ 1382,800 0,350 Λ0 1 0 20 1 2 2 1382,413 0,387 

Σ(1385)*0 1383,700 1,000 Λ0 0 1 20 2 4 6 1382,923 0,777 

Σ(1385)*– 1387,200 0,500 Λ0 1 0 20 2 4 6 1387,517 0,317 

Λ(1405) 1405,100 1,000 Σ+  1 0 10 3 6 12 1406,060 0,960 

Λ(1520) 1519,000 1,000 Σ0 0 2 8 2 4 4 1519,125 0,125 

Ξ(1530)0 1531,800 0,320 Ξ0 0 1 12 2 4 5 1531,871 0,071 

Ξ(1530)– 1535,000 0,600 Ξ- 0 1 12 1 2 3 1535,180 0,180 

Ω- 1672,450 0,290 Ξ(1530)0 1 0 0 0 0 1 1672,152 0,298 

Λ+
c 2286,460 0,140 Λ(1520) 3 1 34 1 2 2 2286,381 0,079 

Σс(2455) + 2452,900 0,400 Λ+
c 0 1 4 2 4 4 2453,243 0,343 

Σс(2455) 0 2453,750 0,140 Λ+
c 1 0 4 0 0 4 2453,879 0,129 

Σс(2455) ++ 2453,970 0,140 Λ+
c 1 0 4 0 0 4 2453,879 0,091 

Ξ+
c 2467,710 0,230 Ω−K+ 1 0 24 3 6 10 2467,788 0,078 

Ξ0
c 2470,440 0,280 Ω−K+  0 1 24 3 6 14 2470,254 0,186 

Σс(2520)+ 2517,400 0,600 Λ+
c 0 1 14 2 4 7 2517,396 0,004 

Σс(2520)++ 2518,410 0,200 Λ+
c 1 0 14 1 2 5 2518,448 0,038 

Σс(2520)0 2518,480 0,200 Λ+
c 1 0 14 1 2 5 2518,448 0,032 

Λ(2595)+
c 2592,250 0,280 Λ+

c 0 2 4 1 2 12 2592,491 0,241 

Λ(2625)+
c 2628,110 0,190 Λ+

c 2 0 10 0 0 1 2628,191 0,081 

Ξ(2645)+
с 2645,100 0,300 Ξ0

c 1 0 4 2 4 8 2644,941 0,159 

Ξ(2645)0
с 2646,160 0,250 Ξ0

c 1 0 4 3 4 8 2645,898 0,262 

W0
с 2695,200 1,700 Ω−ϼ+ 0 1 16 3 6 12 2696,892 1,692 

Ξ(2815)+
с 2816,510 0,250 Ξc

+ 2 0 10 2 4 5 2816,523 0,013 

Ξ(2815)0
с 2819,790 0,300 Ξc

0 2 0 10 2 4 6 2820,035 0,245 

Λ(2880)+
c 2881,630 0,240 Λc

+ 2 0 12 1 2 10 2881,583 0,047 

Λ(2940)+
c 2939,600 1,500 Σc(2455)++ 1 1 32 2 4 12 2939,639 0,039 

Ξ(3080)с
+ 3077,200 0,400 Λc

+K+ 1 0 24 2 4 7 3077,476 0,276 

Ξ(3080)с
0 3079,900 1,400 Λc

+K- 0 1 24 3 6 12 3078,767 1,133 

Ξсc
++ 3621,600 0,400 Σc(2455)++ K- 1 2 40 3 6 14 3621,282 0,318 

Λ0
b 5619,600 0,170 χc1(3872)pK− 0 1 28 2 4 5 5619,506 0,094 

Ξ0
b 5791,900 0,500 J/ψΞ0 0 1 14 1 2 2 5792,407 0,507 



 

Bondarev V.G., Migal L.V. Computer modelling of material objects’ structure. Part II. 
Elementary particles // Research result. Information technologies. – Т.8, №1, 2023 

18 

 

 

Particle 

Experiment 

Decay products ± 0 LL ee e Le 

Calculation 

Mass, mexp 

(meV) 

Absolute 

accuracy 

Mass, mcalc 

(meV) 

|mcalc - 

mexp| 

Ξ–
b  5797,000 0,600 J/ψΞ− 0 1 14 3 6 6 5796,759 0,241 

Σb
+ 5810,560 0,250 Λb

0 1 0 6 3 6 11 5810,785 0,225 

Σb
− 5815,640 0,270 Λb

0 1 0 8 2 4 4 5815,700 0,060 

Σ*
b
+ 5830,320 0,270 Λb

0 1 0 10 2 4 7 5830,406 0,086 

Σ*
b
− 5834,740 0,300 Λb

0 1 0 10 2 4 13 5835,093 0,353 

Λb(5912)0 5912,190 0,170 Λb
0 0 2 2 2 4 8 5912,123 0,067 

Λb(5920)0 5920,090 0,170 Λb
0 0 2 4 1 2 5 5920,162 0,072 

Ξ/
b(5635)- 5935,020 0,050 Ξb

0 1 0 0 1 2 2 5935,011 0,009 

Ω−
b 6046,100 1,700 J/ψΩ−p 1 1 8 3 6 12 6046,943 0,843 

Λb(6146)0 6146,200 0,400 Λb
0 2 1 16 3 6 10 6146,361 0,161 

Λb(6152)0 6152,500 0,400 Λb
0 2 1 16 3 6 18 6152,611 0,111 

Note. Decay products are daughter particles included in the composition of the considered elementary particle. The table shows 

the absolute errors in measuring the masses of baryons. 

 

Let us consider the obtained results of the analysis of the structural composition of baryons. A special 

place should be given to Λ0- hyperon, which was not accidentally considered as one of the contenders for 

a place in the row of fundamental particles [8]. Note that in this compound particle, the electron-positron 

pairs are represented as a chain of particles, and this is the only case among baryons; all other baryons either 

have sets of independent electron-positron pairs, or these pairs are completely absent (here electron-positron 

pairs are included in daughter particles are not considered). The latter case occurs in the compositions of 

four particles: Ω-, Σ0
с(2455), Σ++

с(2455) and Λ+
с(2625).  

The results of calculations using mass formulas and the structures of composite particles formed on 

their basis show their complete agreement with experimental data, taking into account the known errors of 

estimates of elementary particle masses. 

 

3.5 PRINCIPLES FOR DIVIDING ELEMENTARY PARTICLES INTO CLASSES 

When considering elementary particles, it is found that the known classes of particles have a number 

of fundamental differences (Table 5). The presence of independent electrons and positrons, in other words, 

the complete absence of electron-positron pairs in the composition of particles, allows us to classify these 

particles as leptons. This class includes the electron itself. Consequently, leptons can be formed on the basis 

of two components, such as bound lovetons (antilovetons), included in the composition of spatial cells, and 

electrons (positrons). 

 

Table 5 

Classification of elementary particles by structural composition 

 

Таблица 5 

Классификация элементарных частиц по структурному составу 

Particle type 
Electron 

(positron) 
Bound loveton 

Electron-positron 

pair 
Free loveton 

Lepton + +   

Meson  + +  

Baryon  + + + 

 

Hadrons, in contrast to leptons, necessarily contain electron-positron pairs and bound lovetons. At 

the same time, hadrons themselves are divided into two classes of mesons and baryons. In the meson 

subgroup there are no independent electrons (positrons), while mixed mesons may include electrons and 

positrons in their composition in the presence of one or more positive pions. The composition of baryons 

can be determined in a similar way. If hadrons, except for bound lovetons and electron-positron pairs, 

additionally contain free lovetons in their composition, they must be assigned to the class of baryons. In 
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conclusion, let us note that two basic particles can be presented as exceptions to this classification. Thus, a 

charged pion has in its composition an additional electron (positron) and, therefore, is a fusion of a lepton 

with a meson. A similar situation is observed for the neutron, which can be regarded as a fusion, in this 

case, of the lepton with the baryon (proton). 

 

3.6 PHYSICAL NATURE OF THE STRONG INTERACTION 

One of the main differences between leptons and hadrons is the absence of bonds between electrons 

and positrons. This fact indicates that probably it is the presence of electron-positron pairs in hadrons that 

causes the strong interaction. Let us consider this assumption in more details. 

Thus, if the moments p1 and p2 of two electron-positron pairs, represented in the form of dipoles 

situated along one straight line, are equally directed, they are attracted, and the force of attraction Fd is 

proportional to the product of electric moments of the dipoles: pi = eli (e is the electron charge, l is the 

dipole ratio arm) and inversely proportional to the fourth power of the distance between them [29]. 

 𝐹𝑑 = −
6𝑝1𝑝2

4𝜋𝜀𝑜𝑟4
 . (14) 

Given that the arms of both dipoles can change their positions relative to each other, we note the fact 

that the interaction forces between the dipoles are noncentral, since they depend not only on the distance 

between them, but also on their mutual orientation. Nuclear forces have a similar property. To compare 

dipole Fd and coulombian Fq forces let's take their ratio to each other 

 
𝐹𝑑

𝐹𝑞
=

6𝑙2

𝑟2
 . (15) 

We take the value of the dipole arm numerically equal to the proton radius: Rp = 0.84 fm [30]. Then 

the equality of the forces in question will take place at: 𝑟 = 𝑙√6, which tentatively gives a distance of the 

order of 2 fm. At a further approach of protons the interaction force of electron-positron pairs essentially 

exceeds the Coulomb repulsion force of free lovetons being fundamental particles for protons. However, 

already at the onset of contact of free lovetons there is an additional elastic force. Thus, the distance between 

free lovetons acting as rigid proton cores can be found by considering a single face of a spatial cell 

consisting of bound lovetons (Fig. 4): 𝑅𝐿 = 𝑅𝑝/(√2 + 1), which gives the value of the radius of the 

loveton: RL = 0.36 fm. In this case, the distance between the contacting free lovetons, will have the value 

of the diameter of the loveton, which is quite close to the distance at which the repulsion of nucleons in the 

nucleus occurs.  

Thus, from both qualitative and quantitative points of view, the attraction forces of electron-positron 

pairs together with the Coulomb repulsion forces of lovetons allow us to explain the behavior of nuclear 

forces at small distances. Of course, these estimates are approximate, but the general nature of the 

interaction between two electron-positron pairs as dipoles allows us to consider the electromagnetic forces 

as the basis for the strong interaction. 

 

4 CONCLUSION 

The presented work overcomes a number of significant shortcomings of previous research related to 

elementary particle physics. These include the limitation by known particles, i.e. actually a choice of 

fundamental particles only from the set of known elementary particles. The opposite option, where sets 

containing only hypothetical particles are considered, is also actively proposed. Here, using the previously 

proposed model of space-time and matter, a model of the mass spectrum of elementary particles as hadrons 

and leptons is constructed. In the calculations performed there are no fitting parameters, and the exact 

correspondence with known experimental data on the masses of elementary particles indicates the correct 

direction of the research carried out. Qualitatively, and in most important cases, quantitatively, the unity of 

the method of formation of composite particles is shown.  
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The following results were obtained as a result of the study:  

1. A general model of the mass spectrum of elementary particles obtained on the basis of separation 

of fundamental particles, as well as by forming mass formulas based on the analysis of the decay products 

of elementary particles. 

2. Partitioning of elementary particles into three groups: fundamental, basic and compound elementary 

particles was carried out. 

3. Using the obtained mass formulas and their solutions the values of bonding energies between 

fundamental particles were calculated. 

4. Structural composition of proton and tau-lepton was determined. 

5. The analysis of products of decay of compound particles allowed to determine both the composition 

of these particles and the number of possible bonds between them. 

6. It is shown that the products of decay are initially in the compositions of elementary particles. 

7. Leptons and hadrons are different from each other due not only to the presence of strong interaction, 

but also have differences in their structure. It is found that baryons necessarily have free lovetons in their 

composition. Free lovetons are absent in mesons and leptons. 

8. On the basis of the analysis of mass formulas, taking into account their decay schemes, we calculate 

the masses of compound particles. 

9. The physical nature of nuclear forces determined by the interaction of electron-positron pairs 

represented in the form of dipoles has been revealed. 

Based on the structure of elementary particles the criteria for their partitioning into separate species 

are defined. It is shown that for the formation of mesons it is sufficient to consider a two-component 

structure consisting of a set of bound lovetons and electron-positron pairs. Leptons also have a similar two-

component structure, but the leptons do not contain electron-positron pairs. In the analysis of mass formulas 

for baryons, free lovetons are additionally included in the composition of elementary particles to form a 

three-component structure of elementary particles.  

The possibility to determine the structural composition of elementary particles, based on the known 

masses of fundamental particles and their bonding energies, in the future will allow specifying and 

extending the methods and approaches used in investigations carried out in atomic nucleus and elementary 

particle physics. 
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