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Abstract. In the famous paper of Terry Lyons [1] a new approach to solving

a general class of stochastic differential equations with nonsmooth data was
proposed. As a byway some known results were refined: considered Brownian
paths with ”bad” trajectories, some generalization of integrals were proposed
not the same as those of Ito, Stratonovich, Skorokhod, more general formulas

of change of variables in multidimensional case were proved for new forms of
integrals, and a method of successive approximations was studied based on
iterated integrals of the new modified type. An interesting fact is that all
essential considerations in [1] are based on a seemingly simple inequality that

controls the most important estimates in the above paper. This remarkable
inequality is now known as the ”neo–classsical” one. In this paper we prove
that the hypothesis concerning the best constant in this inequality proposed
by E.T.R. Love in [2, 3] is not true, and we find the best constant for this

inequality. Some special cases and numerical results are also considered.

1. Introduction

A new approach to solving a general class of stochastic differential equations
with nonsmooth data was proposed in the well–known fundamental paper by Terry
Lyons in [1]. He considered stochastic differential equations of the form

dyt =
∑
k

fk(yt)dx
k
t , (1.1)

and in this equation fk are given vector fields, xt are control terms, yt is the
resulting trajectory.

The essential problem and occurring challenge is the following one. If, in ac-
cordance with the standard approach, we consider the time t as a parameter and
solve this equation as homogeneous, then often enough, the solution will not be
continuous and it can exist only as a distribution. In this case the classical the-
ory does not offer any useful methods for determining the solution. Moreover,
even for smooth but strongly oscillating problems there are no efficient algorithms
for finding solutions numerically. At the same time, this problem arises in many
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branches of mathematics and its applications: control theory, radio engineering
problems with noise, Lie algebras, probability theory (multidimensional Brownian
trajectories, semi-martingales, random processes), see [4, 5, 6, 7, 8, 9, 10]. For a
more detailed description of applications of T.Lyons’s approach see [1].

Combining existing methods with new ones in [1] was proposed a very useful
and powerful choice of functional spaces for solutions to equation (1.1). These
spaces includes norms with p–variations. And using such classes of spaces in [1]
solutions to (1.1) and effective numerical methods for it were derived based on
deterministic instead of stochastic approach. As a byway some known results were
refined: considered Brownian paths with ”bad” trajectories, some generalization
of integrals were proposed not the same as those of Ito, Stratonovich, Skorokhod,
more general formulas of change of variables in multidimensional case were proved
for new forms of integrals, and a method of successive approximations was studied
based on iterated integrals of the new modified type.

An interesting fact is that all essential considerations in [1] are based on a
seemingly simple inequality that controls the most important estimates in the
above paper. Exactly, it is the next remarkable inequality

n∑
k=0

C
k/p
n/px

k/p ≤ C(n, p)(1 + x)n/p, (1.2)

where p ≥ 1, n is a natural number, 0 ≤ x, and the constant C(n, p) > 0. Of
course (1.2) is a generalization of the Newton binomial formula (case p = 1)

n∑
k=0

Ck
nx

k = (1 + x)n. (1.3)

The binomial coefficient Cy
x is defined using the gamma function or beta function

via

Cy
x =

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
=

1

(x+ 1)B(x− y + 1, y + 1)
.

The inequality (1.2) became rather famous due to its importance for the stochastic
differential equations theory and received a name neo–classical inequality. This
inequality was studied also in [2, 3, 11, 12, 13].

In this paper we study the sharp constant in the inequality (1.2), namely the
best=minimal constant in its rhs Cmin(n, p). This problem has some history. In
[1] the proof of (1.2) is rather complicated and the constant C(n, p) is not optimal.
The next hypothesis was proposed by E.T.R. Love in 1996.

HYPOTHESIS [2, 3]: the best possible constant in (1.2) equals

Cmin(n, p) = p. (1.4)

In [1] it was declared that this hypothesis is approved by author’s numerical
calculations. But it occurred that this assertion needs some corrections. In this
paper we prove that the hypothesis proposed by E.T.R. Love in [2, 3] is not true,
and we find the best constant for the inequality (1.2), also consider some special
cases and numerical results.
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ON SHARP BOUNDS IN THE NEO–CLASSICAL INEQUALITY 3

2. Estimate of the exact constant in neoclassic binomial inequality

Theorem 2.1. Let 0 ≤ x, 1 ≤ p. Then for the exact constant in the inequality

n∑
k=0

C
k/p
n/px

k/p ≤ Cmin(n, p)(1 + x)n/p,

the equality

Cmin(n, p) =
1

2n/p

n∑
k=0

Γ
(

n
p + 1

)
Γ
(

k
p + 1

)
Γ
(

n−k
p + 1

) =
1

2n/p

n∑
k=0

C
k/p
n/p ≤ p, (2.1)

holds. The inequality sign in (2.1) is strict for all p > 1 and x ̸= 1. In other
words, the optimal constant found in Theorem 2.1 is better than the constant from
the hypothesis above, except for the trivial case p = 1 when we get binomial formula
(1.3).

Proof. Let find the maximum of the function

f(x) =
n∑

k=0

C
k/p
n/px

k/p · (1 + x)−n/p.

Its derivative has the form

f ′(x) =

n∑
k=0

C
k/p
n/p

[
k/pxk/p−1 · (1 + x)−n/p − n/pxk/p · (1 + x)−n/p−1

]
=

=
1

p
(1 + x)−n/p−1

n∑
k=0

C
k/p
n/px

k/p−1 [k + (k − n)x] .

We have f ′(x) = 0 when x = 1. Indeed, since, obviously C
k/p
n/p = C

(n−k)/p
n/p

f ′(1) =
2−n/p−1

p

n∑
k=0

C
k/p
n/p [2k − n] =

=
2−n/p−1

p

[
C

0/p
n/p(−n) + C

1/p
n/p(2− n) + C

2/p
n/p(4− n) + ...

...+ C
(n−2)/p
n/p (n− 4) + C

(n−1)/p
n/p (n− 2) + C

n/p
n/pn

]
= 0.

When n os odd the corresponding terms cancel each other out, when n is even all
the corresponding terms cancel each other out except what’s in the middle but it
vanishes since 2k − n = 2 · n

2 − n = 0.
Now we show that f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1. We have

f ′(x) =
1

p
(1 + x)−n/p−1

n∑
k=0

C
k/p
n/px

k/p−1 [k + (k − n)x] =

=
1

p
(1 + x)−n/p−1

(
n∑

k=0

C
k/p
n/pkx

k/p−1 −
n∑

k=0

C
k/p
n/p(n− k)xk/p

)
.
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First consider the case when p > n. Changing index in the last sum by n−k→k
we get

f ′(x) =
1

p
(1 + x)−n/p−1

(
n∑

k=0

C
k/p
n/pkx

k/p−1 −
n∑

k=0

C
(n−k)/p
n/p kx(n−k)/p

)
=

=
1

p
(1 + x)−n/p−1

n∑
k=0

C
k/p
n/pk(x

k/p−1 − x(n−k)/p).

It is easy to see now that since (xk/p−1−x(n−k)/p)>0 when p>n we have f ′(x)>0
for x < 1 and f ′(x)<0 for x>1 since (xk/p−1−x(n−k)/p)<0 for all k = 0, 1, ..., n.

Let now p ≤ n, then we can combine the first p terms of the sum
n∑

k=0

C
k/p
n/pkx

k/p−1

with the last p terms of the sum
n∑

k=0

C
k/p
n/p(k − n)xk/p:

f ′(x) =
1

p
(1 + x)−n/p−1

n∑
k=0

C
k/p
n/px

k/p−1 [k + (k − n)x] =

=
1

p
(1 + x)−n/p−1

(
n∑

k=0

C
k/p
n/pkx

k/p−1 −
n∑

k=0

C
k/p
n/p(n− k)xk/p

)
=

=
1

p
(1 + x)−n/p−1

 p∑
k=0

C
k/p
n/pkx

k/p−1 −
n∑

k=n−p

C
k/p
n/p(n− k)xk/p

+

+
1

p
(1 + x)−n/p−1

 n∑
k=p

C
k/p
n/pkx

k/p−1 −
n−p∑
k=0

C
k/p
n/p(n− k)xk/p

 .

Let us show that the last bracket is equal to zero. We can write n∑
k=p

C
k/p
n/pkx

k/p−1 −
n−p∑
k=0

C
k/p
n/p(n− k)xk/p

 =
(
C1

n/pp− C0
n/pn

)
+

+
(
C

1/p+1
n/p (p+ 1)− C

1/p
n/p(n− 1)

)
x1/p + ...+

(
C

n/p
n/pn− C

n/p−1
n/p p

)
xn/p−1 =

=
n∑

k=p

(
C

k/p
n/pk − C

k/p−1
n/p (n+ p− k)

)
xk/p−1 = 0

since

C
k/p
n/pk − C

k/p−1
n/p (n+ p− k) =

=
Γ
(

n
p + 1

)
Γ
(

k
p + 1

)
Γ
(

n−k
p + 1

) k −
Γ
(

n
p + 1

)
Γ
(

k
p

)
Γ
(

n−k
p + 2

) (n+ p− k) =

=
Γ
(

n
p + 1

)
Γ
(

n−k
p + 1

)
Γ
(

k
p

) (k · p
k
− (n+ p− k) · p

n− k + p

)
= 0.

80



ON SHARP BOUNDS IN THE NEO–CLASSICAL INEQUALITY 5

Therefore we obtain that

f ′(x) =
1

p
(1 + x)−n/p−1

 p∑
k=0

C
k/p
n/pkx

k/p−1 −
n∑

k=n−p

C
k/p
n/p(n− k)xk/p

 =

=
1

p
(1 + x)−n/p−1

(
p∑

k=0

C
k/p
n/pk(x

k/p−1 − x(n−k)/p)

)
.

Since (xk/p−1 − x(n−k)/p) > 0 for x < 1 and (xk/p−1 − x(n−k)/p) < 0 for x > 1 we
get f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1 for all k = 0, 1, ..., p when p ≤ n.

So we get for all x ≥ 0 and for p ≥ 1 function f(x) has a strict maximum at
x = 1:

fmax = f(1) =
1

2n/p

n∑
k=0

C
k/p
n/p =

1

2n/p

n∑
k=0

Γ
(

n
p + 1

)
Γ
(

k
p + 1

)
Γ
(

n−k
p + 1

)
and for 0 ≤ x ̸= 1

f(x) =
n∑

k=0

C
k/p
n/px

k/p · (1 + x)−n/p < fmax = f(1) =
1

2n/p

n∑
k=0

C
k/p
n/p

that gives statement of theorem. �

Corollary 2.2. Let n = 1, p ≥ 1, x ≥ 0. Then the equality

Cmin(1, p) = 21−1/p ≤ p, (2.2)

holds for the exact constant in the inequality (1.2) which takes form

1 + x1/p ≤ 21−1/p(1 + x)1/p.

Corollary 2.3. Let n = 2, p ≥ 1, x ≥ 0. Then the equality

Cmin(2, p) = 21−2/p +
1√
π

Γ(1/p+ 1/2)

Γ(1/p+ 1)
. (2.3)

holds for the exact constant in the inequality (1.2) which takes form

1 + x2/p − 21−2/p(1 + x)2/p ≤ 1√
π

Γ
(

1
p + 1

2

)
Γ
(

1
p + 1

) ((1 + x)2/p − 22/p x1/p
)
. (2.4)

Proof. Applying the inequality (1.2) when n = 1 we can write

1 +
Γ
(

2
p + 1

)
Γ2
(

1
p + 1

) x1/p + x2/p ≤ (1 + x)2/p

22/p

2 +
Γ
(

2
p + 1

)
Γ2
(

1
p + 1

)
 .

Using the Legendre formula

Γ(z) Γ

(
z +

1

2

)
= 21−2z

√
π Γ(2z)
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we get

Γ
(

2
p + 1

)
Γ2
(

1
p + 1

) =
22/p√
π

Γ
(

1
p + 1

2

)
Γ
(

1
p + 1

)
and

1 +
22/p√
π

Γ
(

1
p + 1

2

)
Γ
(

1
p + 1

) x1/p + x2/p ≤ 21−2/p(1 + x)2/p +
1√
π

Γ
(

1
p + 1

2

)
Γ
(

1
p + 1

) (1 + x)2/p

or (2.4). �

Example 2.4. Let consider the graphical representation of the inequality from

theorem (2.1). We denote A(n, p, x) =
n∑

k=0

C
k/p
n/px

k/p, B(n, p, x) = Cmin(n, p)(1 +

x)n/p, G(n, p, x) = p(1+x)n/p. Plots of these three functions for n = 10, x = 1/2,
p ∈ [1, 15] is presented in Figure 1.

Figure 1. Functions A(n, p, x), B(n, p, x), G(n, p, x).

Figure 1 demonstrates the inequalities A(n, p, x) ≤ B(n, p, x) ≤ G(n, p, x). We
can see that for p ≥ 3 the upper estimateG(n, p, x) is much rougher thanB(n, p, x).
If we calculate values A(n, p, x), B(n, p, x), G(n, p, x) for some concrete p < 3 we
get

A(10, 1, 1/2) = B(10, 1, 1/2) = G(10, 1, 1/2) ≈ 57.665,

A(10, 1.5, 1/2) ≈ 22.2691 < B(10, 1.5, 1/2) ≈ 22.3647 < G(10, 1.5, 1/2) ≈ 22.3889,

A(10, 2, 1/2) ≈ 14.8877 < B(10, 2, 1/2) ≈ 15.0831 < G(10, 2, 1/2) ≈ 15.1875,

A(10, 2.5, 1/2) ≈ 12.1413 < B(10, 2.5, 1/2) ≈ 12.4126 < G(10, 2.5, 1/2) ≈ 12.6563,

So we can see that the estimate B(n, p, x) is better then G(n, p, x) for the p < 3
also.
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ON SHARP BOUNDS IN THE NEO–CLASSICAL INEQUALITY 7

3. Term-by-term estimates

Next, consider term-by-term estimates for the sum in (1.2). In term-based
estimates the key inequality is

C
k/p
n/p ≤ D(n, p)Ck

n, (3.1)

where D(n, p) is some constant. Such estimates allow us to sum up the expression
on the left in (1.2). This relationship has clear combinatorial interest. Each
estimate of the form (3.1) implies a corresponding inequality of the form (1.2)
with its own constant.

Theorem 3.1. If the inequality (3.1) holds, then the inequality

n∑
k=0

C
k/p
n/px

k/p ≤ 2n(1−1/p)D(n, p)(1 + x)n/p.

Proof. Estimating the terms in
n∑

k=0

C
k/p
n/px

k/p taking into account (3.1) we get

n∑
k=0

C
k/p
n/px

k/p ≤
n∑

k=0

D(n, p)Ck
nx

k/p =

= D(n, p)(1 + x1/p)n ≤ D(n, p)2n(1−1/p)(1 + x)n/p.

Inequality (1 + x1/p)n ≤ 2n(1−1/p) follows from the monotonicity of power means

of the form Mα(t, y) =
(

tα+yα

2

)1/α
, α ∈ R ([14, 15]). Namely for α1 < α2 we have

Mα1(t, y) ≤ Mα2(t, y) or(
tα1 + yα1

2

)1/α1

≤
(
tα2 + yα2

2

)1/α2

.

In our case t = 1, y = x, α1 = 1/p < 1 = α2.
�

Thus, with the chosen method, the question is reduced to obtaining good esti-
mates for ratios of gamma or beta functions of the form (3.1). There are several
ways to obtain such inequalities [15, 16, 17].

Another possibility is based on the use of inequalities of the form

C
k/p
n/p ≤ B(n, p), (3.2)

with some constant B(n, p).

Theorem 3.2. Let the estimate (3.2) be fulfilled under the additional condition
p > n+2

3 . Then the inequality

n∑
k=0

C
k/p
n/px

k/p ≤ A(n, p)(1 + x)n/p. (3.3)

holds with constant

A(n, p) = (n+ 1)2−
n
p B(n, p).
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Proof. Let (3.2) hold, then, summing up the geometric progression in
n∑

k=0

C
k/p
n/px

k/p,

we obtain the estimate
n∑

k=0

C
k/p
n/px

k/p ≤ B(n, p)
n∑

k=0

xk/p ≤ B(n, p)
1− (x1/p)n+1

1− x1/p
.

Now we apply the Tibor Rado inequality [18] with clarifications from [15] of the
form

Rn(t, y) ≤ Mn+2
3
(t, y), n ≥ 1,

where

Rn(t, y) =

(
tn+1 − yn+1

(n+ 1)(t− y)

)1/n

, Mn+2
3
(t, y) =

(
t
n+2
3 + y

n+2
3

2

) 3
n+2

.

Then, under the additional condition n+2
3p < 1, providing comparison with the

arithmetic mean, we obtain[
1−

(
x1/p

)n+1

(n+ 1)
(
1− x1/p

)]1/n = Rn

(
1, x1/p

)
≤

≤

1 +
(
x1/p

)n+2
3

2


3p

n+2 ·
1
p

≤
(
1 + x

2

)1/p

,

1− x
n+1
p

1− x1/p
≤ (n+ 1) · 2−

n
p ·B(n, p).

This gives us the inequality (3.3). �

Theorem 3.3. Under the restrictions of theorem 3.2, the inequality
n∑

k=0

C
k/p
n/px

k/p ≤ H(n, p)(1 + x)n/p. (3.4)

holds with the constant

H(n, p) =
(n+ 1)Γ

(
n
2p + 1

2

)
√
πΓ
(

n
2p + 1

) ≤
√

2

π

(n+ 1)
√
p

√
n

.

Proof. Let consider

C
k/p
n/p =

Γ
(

n
p + 1

)
Γ
(

k
p + 1

)
Γ
(

n−k
p + 1

) .
Here we will use the logarithmic convexity of the gamma function. Namely, if for
all x1, x1 ∈ X and for all p1 > 0, p2 > 0, p1 + p2 = 1 the inequality

f(p1xx + p2x2) ≤ fp1(x1)f
p2(x2)

holds then the function f(x) is called logarithmically convex on X. It is well
known [14, 19, 20] that Γ(x) has the property of logarithmic convexity. Applying
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ON SHARP BOUNDS IN THE NEO–CLASSICAL INEQUALITY 9

this property to denominator in C
k/p
n/p for p1 = p2 = 1

2 , x1 = k
p + 1, x2 = n−k

p + 1
we get

Γ

(
k

p
+ 1

)
Γ

(
n− k

p
+ 1

)
≥
(
Γ

(
k

2p
+

1

2
+

n− k

2p
+

1

2

))2

= Γ2

(
n

2p
+ 1

)
and using the Legendre duplication formula

Γ(z) Γ

(
z +

1

2

)
= 21−2z

√
π Γ(2z).

we obtain

C
k/p
n/p ≤

Γ
(

n
p + 1

)
Γ2
(

n
2p + 1

) =
2

n
p Γ
(

n
2p + 1

2

)
√
πΓ
(

n
2p + 1

) .
In [16] we can find the inequalities for the ratio of gamma functions with a differ-
ence of arguments equal to half of the form

Γ
(
t+1
2

)
Γ
(
t+2
2

) <
2√

2t+ 1
, t > 0.

In our case putting t = n
p + 1 we get

C
k/p
n/p ≤

2
n
p +1√p

√
π
√
2n+ 3p

≤
2

n
p + 1

2
√
p

√
π
√
n

= B(n, p).

From theorem 3.2 we obtain
n∑

k=0

C
k/p
n/px

k/p ≤ (n+ 1)2−
n
p B(n, p)(1 + x)n/p =

= (n+ 1)2−
n
p ·

2
n
p + 1

2
√
p

√
π
√
n

(1 + x)n/p =

√
2

π

(n+ 1)
√
p

√
n

(1 + x)n/p.

That gives the statement of theorem. �

Other estimates of for the ratio Γ(x+β)
Γ(x) can be found in [15, 16, 17]. They are

useful for inequalities of considered type.
Thus, using the results of this paper, one can refine some estimates and conclu-

sions from [1]. Note the remaining unsolved problem of finding the lower bound if
the sign in the inequality (1.2) is replaced by the opposite sign. Also an interest-
ing question is to classify a sum in the LHS of the neo–classical inequality (1.2),
it looks like some truncated Fox–Wright function [7, 21, 22] but in fact doesn’t
coincide with any of them.
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