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1. In troduction

In applied fractional m odeling, the order of the fractional derivative is often unknown, 
and determ ining this order is an im portant inverse problem  (see, for exam ple, the review 
article [1]). In this paper, w e consider the inverse problem  of determ ining the order of 
the fractional tim e derivative in the w ave equation. The m ethod proposed in the article is 
based on the classical Fourier m ethod. This allow s us to consider an arbitrary self-adjoint 
operator w ith a discrete spectrum  as the elliptic part of the equation.

Since a precise statem ent of our m ain result requires several definitions, here (in 
the introduction) w e form ulate the corresponding result on the exam ple of the follow ing 
sim ple in itial-boundary value problem . L et 1 <  p <  2 be an unknow n num ber to be 
determ ined. C onsider the tim e-fractional string vibration  equation w ith  the R iem an n - 
Liouville fractional derivative (see the next Section for the definition) of order p:

dpu (x, t) -  uxx(x, t) =  f  (x, t), x e  ( —n , n ], t >  0, 

and attach the 2 n-periodical boundary conditions and the follow ing initial conditions 

lim dp- 1 u (x, t) =  f ( x ) ,  lim dpt - 2u (x, t) =  ty(x),
t^0 t^0

w here f ,  and f  (■, t) are 2 n-periodical g iven functions (for the m otivation to consider 
periodic boundary conditions, see the fundam ental book by C ourant and H ilbert [2] and 
the solution m ethods for the case p =  2 see the book [2], for the case p e  (1 ,2 )  see [3,4 ]). 
U nder certain  conditions on these functions, there is a unique solution to this problem . 
Obviously, this solution depends on the choice of the order of the derivative p. Now let us 
ask a question: is there any additional inform ation about the solution at a fixed m om ent of 
tim e that allows us to uniquely determ ine the param eter p?
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As it follows from the main result of this paper, the answer is “yes". As for additional 
inform ation at a fixed tim e instant to, one m ay consider the following:

П

J  u (x, t0)dx  =  d0. (1)
-П

Know ledge of the value of this integral determ ines the param eter p and, moreover, if 
one has two pairs of solutions {u 1(x, t ) ,p 1} and {u 2(x, t), p2} ,  then u1 (x, t) =  u2(x, t) and 

Pi =  P2-
It should be noted that the first eigenfunction of the corresponding spectral problem is 

equal to ( 2 n ) -1/2. Therefore, integral (1) is in fact, the projection of the solution onto the 
first eigenfunction.

This result can be interpreted as follows. The vibration of a string is usually perceived 
by us by the sound made by the string. The sound of a string is an overlay of simple tones 
corresponding to standing w aves, into w hich vibration is decom posed. The above result 
states: having heard only one standing w ave, one can uniquely determ ine the order p of 
the fractional derivative in the corresponding equation of string vibrations.

Usually, inverse problem s in the theory of partial differential equations are called 
problem s in which, along with the solution of a differential equation, it is also necessary to 
determ ine a certain  coefficient of the equation or the right side or the initial or boundary 
function. Naturally, in this case, in order to find a new  unknow n function, additional 
inform ation (redefinition condition) is required on the solution to the differential equation. 
M oreover, the redefinition condition m u st ensure both the existence and uniqueness of 
the solution to the inverse problem . Since inverse problem s have im portant applications 
in m any areas of m odern science, including m echanics, seismology, m edical tom ography, 
geophysics, and m uch more (see, for exam ple, refs. [5,6] and references therein), interest in 
their study is constantly growing.

As noted above, in this paper we study another inverse problem, namely, the problem 
of restoring the order of a fractional derivative in partial differential equations. This inverse 
problem  has been  studied in m any papers ( [1,7- 13]). It should be noted that in  all these 
publications the unknow n order of the derivative is less than one (that is, p <  1), and the 
follow ing equality w as considered as a redefinition condition

u (x0, t) =  h (t) ,  0 <  t <  T, (2)

at the observation point x0 €  П. Since the goal is to find the order of the derivative in time, 
it seem s natural to have inform ation about the solution on a large tim e scale. H ow ever, 
this condition, as a rule (an exception is paper [13] by J. Janno, where both uniqueness and 
existence are proved, see below ), can ensure only  the uniqueness o f the solution to the 
inverse problem. However, as the main result of this paper states, condition (1 ) guarantees 
both the existence and uniqueness of a solution.

The problem  concerning the uniqueness of the solution to the inverse problem  w ith 
condition (2 ) w as studied in papers [7- 10]. The authors of [7,8 ] considered subdiffusion 
equations w ith  the G erasim ov-C ap u to  derivative (see next Section for definition). The 
problems for multi-term  tim e-fractional diffusion equations and distributed order fractional 
diffusion equations w ere considered in  papers by Li et al. [9,10], correspondingly. In  the 
paper by  J. Cheng et al. [7], the authors show ed, in addition to the uniqueness of the order 
p, the uniqueness of the diffusion coefficient p (x ) .

As far as w e know, the only paper [13] by J. Janno deals w ith  the existence problem . 
The author considered a subdiffusion equation w ith the G erasim ov-C aputo derivative. By 
setting an additional boundary condition B u ( ■, t) =  h ( t ) ,0  <  t <  T, w ith som e functional 
B, the author proved the existence of an unknown order of the derivative and the kernel of 
the integral operator involved in the equation. The com plexity  of the proof of existence 
is due to the fact that the function h (t)  cannot be given arbitrarily; since t changes w here
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the equation takes place, the function h (t)  m ust som ehow  be related to the equation. This 
circum stance is evident from the form ulation of the corresponding theorem  (see Theorem  
7.2 of the w ork, w hich is form ulated on m ore than one page of the journal).

In paper [14], H atano et al., the equation dpи =  A u is considered w ith  the D irichlet 
boundary  condition and the initial function p (x ). The authors proved the follow ing 
property of the param eter p: if cp E C0°(П ) and A  p (x 0) =  0, then

p =  hm [t3tu(x0, t)[u (x0, t) -  p (x 0)] - 1].

It should be noted that the problem  considered and solved in the present article w as 
form ulated as open in the "O p en  Problem s" section of the recent review  [1] (p. 440) by  Z. 
Li et al.: "T h e  studies on inverse problem s of the recovery of the fractional orders ... are 
far from satisfactory since all the publications either assumed the hom ogeneous boundary 
condition or studied this inverse problem  by the m easurem ent on t E (0, ° ) .  It w ould be 
interesting to investigate inverse problem by the value of the solution at a fixed time as the 
observation data".

In references [15- 22], this problem  is discussed for various equations of m athematical 
physics. We note right away that in these works the authors prove not only the uniqueness 
of the solution to the inverse problem but also its existence. The m ethod used in this paper 
w as first proposed in a recent paper [15], w here sim ilar questions are investigated for the 
subdiffusion equation w ith  a fractional R iem ann-L iou ville derivative of order 0 <  p <  1. 
The elliptic part of the equation considered in [15] is a second-order differential operator. 
The authors of [15] instead of the redefinition condition (2 ), considered a condition that 
m eets the requirem ents form ulated in  the open problem  form ulated above. Namely, as a 
redefinition condition, they took the projection of the solution onto the first eigenfunction 
of the elliptic part of the equation at a fixed point in time. However, note that the m ethod 
of [15] requires the first eigenvalue to be zero. This lim itation was lifted in recent w orks by 
A lim ov and A shurov [16,17] . The authors of these papers, taking an additional condition 
in  the form  ||u(x, t0)||2 =  d0 and the boundary  condition not necessarily  hom ogeneous, 
proved both the existence and uniqueness of a solution to the inverse problem. In this case, 
the norm  11и (x, t0) ||2 is a part of the potential energy. Indeed, if, for exam ple, the elliptic 
part of the equation has the form  A u =  —Аи +  к2и, then the potential energy is equal to 
the sum  of the norm s ||Vи ||2 +  к2 ||и||2.

In reference [12,18], the inverse problem was studied, where it is required to determine, 
along w ith the solution to the equation, both the order of the derivative and the right-hand 
side of the equation. The authors of [12] proved only the uniqueness of the solution to the 
inverse problem , w hile the authors of [18] proved the existence and uniqueness theorem.

The authors of [19] have studied the subdiffusion equations, the elliptic part of w hich 
has a continuous spectrum . In this w ork, along w ith other problem s, the inverse problem  
of determ ining the order of the derivative w ith respect to both space and tim e is solved.

As far as we know, the inverse problem under consideration for a m ixed-type equation 
was first studied in [20]. The inverse problem for the fractional w ave equation was studied 
in  [21]. In this w ork, in contrast to the present w ork, the fractional derivative is taken in 
the G erasim ov-C aputo sense. W ithout additional restrictions on the spectrum  of operator 
A, the authors present a solution to the problem  posed in the review  [1] for the fractional 
order w ave equation.

We note one more paper [22], where a system of subdiffusion equations is considered, 
the elliptic part of w hich is elliptic pseudodifferential operators. The authors m anaged to 
find such additional conditions for solving the inverse problem  of restoring the order of 
fractional derivatives, w hich guarantees both the uniqueness and the existence of a solution. 
It should be specially noted that the desired order of the fractional derivative in this w ork 
is a vector.
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We also note the recent w ork [23], where the uniqueness of the inverse problem for the 
simultaneous determination of the coefficient of the equation and the order of the fractional 
derivative is proved.

In order to not be d istracted by  the technical aspects o f the issue, connected w ith  
the uniform  convergence of the Fourier series, w e first consider an abstract statem ent of 
the problem . Then, at the end of the paper, w e w ill m ake the necessary rem arks for the 
transition to the classical setting.

This article is organized as follow s. In the next section, w e give the necessary defi­
nitions and form ulate the m ain result. N ote that the elliptic part o f our fractional w ave 
equation is an arbitrary self-ad joint operator A  in a H ilbert space. Section 2 proves the 
existence and uniqueness of a solution to the d irect problem . This result w ill be used to 
prove the main result in Section 3. Section 4 gives various examples of operator A  for w hich 
the m ain result of the paper is valid. The article ends w ith a conclusion.

2. M ain  R esu lt

Consider an arbitrary nonnegative self-adjoint operator A  in a separable H ilbert space
H. Let (■, ) be a scalar product and || ■ ||h a norm  in H. A ssum e that A  has a com pact 
inverse and denote by  {v k }  the com plete system  of orthonorm al eigenfunctions and by 
{A k}  a countable set of nonnegative eigenvalues: Ak <  ^k+1 .

For vector functions (or just functions) f  : R +  ^  H, fractional analogs of integrals and 
derivatives are defined using the definition of strong integral and strong derivative (see, 
for exam ple, [24]). In this case, the know n form ulas and properties of fractional integrals 
and derivatives are preserved. Thus, fractional integration in the Riem ann-Liouville sense 
of order p <  0 is defined as

t

d p f( t )  =  f f - p j  /  г - § + 1 d f, ‘  >  a

provided the right-hand side exists as an elem ent of H. Here the sym bol Г (p) denotes the 
Euler gam m a function. By this definition, w e define the fractional derivative o f order p, 
k  — 1 <  p <  k, k  €  N, in the R iem ann-Liouville sense as

<0 =  j p  d - —f  <t).

If in this equality  the fractional integral and derivative are interchanged, then w e obtain 
the definition of the G erasim ov-C aputo fractional derivative.

It is easy to see that for p =  k  the fractional derivative coincides w ith  the classical 

derivative of integer order: d p f <t) =  dpkf <t). For general inform ation on fractional integro- 
differential operators of different classes w ith m any applications cf. [3,25,26] .

Let p €  <1,2) be an  unknow n constant num ber and let C<<a, b ); H )  stand for a set 
of continuous functions u (t)  of t €  <a, b) w ith  values in H. C onsider the C auchy-type 
problem :

dpu (t)  +  Au<t) =  f  <t), 0 <  t <  T, (3)

lim dp 1 u (t) =  w, lim dp 2u (t) =  Ф, (4)t^0 t ' t^0

w here the lim it is taken in H  norm , f  <t), f ,  and are given elem ents of H.

D efin ition  1. I f  a fu nction  u (t)  has the properties

I . dpt u<t), Au<t) €  C<<0, T]; H ),

2. dp—1 u<t), dp—2u (t) €  C<[0, T ] ;H )

an d satisfies conditions (3) and (4), then it is called th e  (g en era liz ed )  s o lu t io n  to problem s (3) 
and (4).
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We first prove that for any given functions f ,  ф e  H , and t2 -p f  (t) e  C ([0, T]; H ), the 
solution of this problem  exists and it is unique. This solution obviously w ill depend on p. 
To determ ine this num ber w e use the additional condition:

U (p; to) =  (u (to ), Vi) =  do, to >  To, (5)

w here T0 is defined later.
We call problem (3 ) and (4) the forw ard  problem. Problem (3) and (4) together w ith extra 

condition (5) is called the inverse problem.
Let us denote by  Ep,p (t) the M ittag-Leffler function of the form

Ep,p(t) =  E
tk

k=o T (p k  +  p Y  

On M ittag-Leffler functions cf. [4,25,27,28].

Theorem  1. For any f ,  ф e  H a n d f ( t )  w ith t2 - pf ( t )  e  C ([o, T ]; H ) fo rw ard  problem  (3) and  
(4) has a unique solution and this solution has the fo rm

TO 1

t(t) =  E  [f / - 1 Ep,p ( ~ ¥ p) +  Ф Т - 2 Ep,p- i ( - J ) +  /  f j  (t -  I  )l p-x  Epp ( ~ \j I p )d£ ] Vj, (6)
j =1 o

where the series converges in H , f j  (t) , f j  and фj are corresponding Fourier coefficients.

Forward problems for fractional linear w ave equations and systems of such equations, 
involving various elliptic operators and the properties of their solutions have been studied 
by m any authors. Since the m ain purpose of this article is the solution to the inverse prob­
lem, w ithout dwelling on these papers, we refer interested readers to review papers [29,3o]. 
We also note that in a num ber of papers, initial boundary value problems and the properties 
of their solutions for nonlinear fractional wave equations are also studied (see, for example, 
ref. [31] and the literature therein).

D efin ition  2. Let u (t) be the solution to problems (3) and (4), and the param eter p e  (1 ,2 ) . Then 
we call a pair { u (t) , p } th e  (g en era liz ed )  so lu t io n  to the inverse problem s (3)- (5).

Let us describe the proposed method for solving the inverse problem w hen the follow­
ing conditions are satisfied

Л1 =  o, f 1 (t) =  o, f2  +  ф2 =  o. (7)

If these conditions are not satisfied, then the method becom es technically cumbersome. 
Further, let param eter To in (5 ) be defined as

(  2, f  1 • ф1 >  o,

To = j  2 • m a x { 1, M } , f 1 • Ф1 <  o.

Let us form ulate a result on the inverse problem .

Theorem  2. Let f ,  ф e  H  and t2- pf  (t) e  C ([o, T ]; H ). Moreover, assume that the conditions (7)
are satisfied and to >  To is any fixed  number. Then fo r  the inverse problem (3)- (5) to have a unique
solution { u (t) , p } it is necessary and sufficient that condition

m in { f 1, f 1 to +  Ф1} <  do <  m ax{ f 1, f  to +  Ф1}

be satisfied.

CO



Fractal Fract. 2023, 7, 67 6 of 13

R em ark  1. Theorem  2 asserts the existence o f  a unique solution  o f  equation  (5) w ith respect 
to p . I f  w e set the condition (5) at another point t1, then we can obtain a new  solution  p 1, i.e., 
U (p i; t i )  =  di. However, then from  the equality U (p1; t0) =  d0, by Theorem 2 we have pi =  p.

3. Forward Problem

In this section, w e prove Theorem  1. In accordance w ith the Fourier m ethod, w e w ill 
seek the solution to the problem  (3 ) and (4 ) as a series:

°

u (t) =  E  T j(t)v j, (8 )
j=1

w here functions Tj(t) are solutions to the Cauchy-type problem

dpt Tj +  AjTj =  f j ( t ) ,  lim dpt —1 T j(t) =  p j, lim dp- 2 T j(t) =  f j .  (9)

The unique solution of problem  (9) has the form (see, for exam ple, [32], p. 173)

t

Tj (t) =  p jtp—1 Epp ( —Ajtp) +  f j t p—2 Ep,p—1 ( —Ajtp) +  j  f j  (t — f ) f p—1 Bp,p ( —Aj f p ) d f .  (10)
0

The uniqueness o f the forw ard problem 's solution can be proved by  the standard 
technique based on the com pleteness in H  of the set of eigenfunctions { v j }. For convenience, 
w e present a proof here (see, for exam ple [33], for the case p E (0 ,1 )).

Proof. A ssum e the opposite, i.e., let the problem  (3 ) and (4 ) have tw o solutions u 1(t)  and
u2(t). L et us prove that u (t) =  u1 (t) — u2(t) =  0. D ue to the linearity  o f the problem , to
determ ine u (t)  w e obtain the hom ogeneous problem:

dpt u ( t ) +  A u (t)  =  0, t >  0; (11)

lim dp 1u (t) =  0 , l im dp 2u (t) =  0 . (12)
t^0 t t^0 t

Let u (t)  be a solution of problem  (11) and (12) and Vk be an arbitrary eigenfunction 
w ith the corresponding eigenvalue Ak. Consider the function

wk (t) =  (u (t) , Vk). (13)

By definition of the solution, w e m ay w rite

dpwk (t) =  (dpu ( t ) ,v k ) =  —(A u ( t ) ,v k ) =  —(u (t) , A vk ) =  —Ak (u ( t ) ,v k ) =  —Akwk (t), t >  0.

Therefore, w e have the Cauchy problem  for wk( t):

dpwk (t) +  Akwk (t) =  0, t >  0; Urn dp—1 wk (t) =  0, Urn dp—2w k (t) =  0.

This problem has a unique null solution: wk( t) =  0 (see (10)). Due to the completeness 
of system s of eigenfunctions {v k } ,  this m eans that u (t) =  0 for all t >  0 (see (13)). H ence 
the uniqueness is proved.

We turn to the proof of the existence of a solution to the forward problem. For this, we 
recall the following estim ate for the M ittag-Leffler function w ith a negative argum ent (see, 
e.g., [32], p. 29)

C
|Ep,P( —1)|< ^ , t >  0. (14)



Fractal Tract. 2023, 7, 67 7 of 13

Therefore, for any positive eigenvalues Xj one has

CtP- 1 С
\tp- 1 E p p ( - X jt p)\ <  C j - f p  <  J - t (tpX j)£/p, t >  0, (15)

w ith 0 <  £ <  p. Indeed, if tp Xj <  1, then

1 1
^ i f Xj ) £/p >  tpXi >  f - 1,

and if tpXj >  1, then

Xjt 1 Xjt

I i tpx )£/P >  Ij j

The fact that function (6 ) form ally  satisfies Equation (3 ) follow s from  the definition
of functions Tj (see (9 )). Therefore, by  D efinition 1, w e first need to prove that function (6) 
satisfies A u (t)  €  С ((0 , T]; H ). C onsider the sum

к
Sk (t) =  E [f j tP 1 Ep,p( - X j tP ) +  $ j tP 2Ep,p- 1 ( - X j tP)

j=1

t

+  J  f j ( t  -  l ) l p- 1 Ep,p( - X j l p) d l ] v j.
0

By virtue of the Parseval equality, w e m ay rewrite

k
\\A S k ( t ) \\H =  E  Xj [ J  1 Ep,p ( - X j tp ) +  $ j tp 2Ep,p- 1 ( - X j tp )

j=1

t

+  j  f j ( t  -  l ) l p- 1 E p ,p ( -X jlp) d l ] 2. (16)
0

U sing the inequality  (a +  b +  c )2 <  3 (a 2 +  b2 +  c2) w e have three sum s on the 
right side.

For the first sum , one has

к 2 к
E  Xj f j tp-1 Ep,p ( - X j tp) <  C t-2  £  \ f j \2 <  C t-2  \\ f\\H. (17)
j=1 j=1

H ere, w e use estim ate (14) and inequality Xtp -1 (1 +  Xtp) -1  <  t - 1 .
Function Ep,p- i ( - X j t p) in the second sum has the same estimate as E p ,p (-X jtp). There­

fore, the second sum also has an estim ate sim ilar to (17).
N ow  let us consider the third sum  in  (16). Since operator A  is nonnegative, then 

Xj0 >  0 for som e j 0 >  1. Further, if f  (t) satisfies the condition of the theorem , then 

t2 - p \\f (t)\\H <  C f . Therefore, taking into account estim ate (15) and the generalized 
M inkow ski inequality, one has

к f
E \ / X jfj(t -  l )l p- 1 Ep,p(- X j l pd \2
=j0 0

E \j  X j(t -  l ) p -2 f j ( t  -  l ) ( t  -  l ) 2 -p l p- 1 E p ,p ( -X jlp) d l \2
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t k 2
<  c ( t f - 1 (t -  Z )p- 2( E (t -  Z )2(2- p) \fj (t -  Z ) |2 )1/2d^ <  C • Cj • (e - 2 +  (p -  1) - 2).

V o j=jo J

Hence, summing up the estimates of all three terms in (16), we obtain A u (t)  e  C ((o , T]; H ). 
Further, Equation (3) implies dpSk( t) =  -  A S k( t). Therefore, from the above reasoning, 

w e finally have dpu (t) e  C ((o , T]; H ).
A sim ple calculation show s the fulfillm ent of the initial conditions (4 ) (see (9)).
Thus, Theorem  1 is proved. □

4. Inverse P roblem

First, w e study som e properties of the projection of the forw ard problem 's solution 
onto the first eigenfunction, i.e., U (p; to) (see (5 )) as a function of p e  (1 ,2 ) . L et To be a 
num ber, defined above.

Lem m a 1. Let conditions (7) be satisfied and to >  To. Then function  U (p; to ) is strictly monotonic 
in the variable p e  ( 1 ,2 ) and

lim U (p; to) =  f 1, U (2; to) =  f T o  +  фи (18)
p̂ 1

Proof. Since eigenfunctions { v j }  are orthonormal, then from (6) by virtue of conditions (7), 
one m ay obtain

U (p; to) =  f 1to- 1 Ep,p( o ) +  ф ^ - 2 Ep,p- 1 (o), 

or, by  definition of the M ittag-Leffler function,

t - 1
U (p ; To) =  f  1 y (p ) +  ф1 y (p -  1 ), y (p ) =  ropy•

D enote by  Y (p ) the logarithm ic derivative of the gam m a function Г (p) (see [34] for 
the definition of this function and its properties). We have Г (p) =  r ( p )Y (p )  and, then,

tp - 1

y' (p ) =  rop) l̂n To -  .

Let y  ~  o.57722 be the E u ler-M ascheroni constant, then - j  <  Y (p )  <  1 -  Y and 
Y (p  -  1) <  o for p e  (1 ,2 ). Hence, if to >  2, then y'(p ) >  o and y'(p  -  1) >  o. Therefore, if 
f  1 • ф1 >  o and to >  2, then U (p; to) is strictly m onotonic in the variable p.

Let now  f  1 • ф1 <  o and prove that to can be chosen in such a w ay that

\f1 У'Ы \ >  \ф1у (p -  1) \. (19)

In order to show  this, w e w ill rew rite the function U '(p; to ), taking into account the 
equations

1 =  p -  1 , Y (p  -  1 ) =  Y (p ) -  1
r (p  - 1 ) r ( p r  7 p - 1

in the form

t -1  
to__
r ( p ) K  2

It is easy to see that

2 ln to -  2Y (p) >  (p -  1) ln to +  1 -  Y (p )

U'(p; To ) =  ro p ) ^ [2 ln  To -  2Y (p )] +  "ф1 [(p -  1) ln To +  1 -  Y (p )^  • (2o)
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for all t0 >  2. Indeed, this inequality is equivalent to the follow ing

2
2 ln t0 >  (3 — p) ln t0 >  Y (p ) +  1 >  —y  +  1 >  5 ,

that is ln t0 >  1/5. Therefore, if t0 >  e 1 >  |, or t0 >  2, then w e obtain  the required 
estim ate.

Therefore, for the valid ity  o f estim ate (19), it is sufficient to sim ultaneously fulfill 
tw o inequalities t0 >  2 and t01 p 11 >  2 1 f  11 (see (20 )), or w hich  is the sam e, one inequality

t0 >  2 m a x {1, M } .0 -  IP11J
Thus, if t0 >  T0, then U (p ; t0) is strictly monotonic in the variable p. The equalities (18) 

are easy to check. □

N ow  let us go to the proof of the Theorem  2 .

Proof. The fact that u (x , t) exists for any p E (1 ,2 )  follows from Theorem  1. Let the given 
num ber d0 be such that

m in {p 1, p 110 +  f 1} <  d0 <  m a x {p 1, p 1t0 +  f }.

Then it im m ediately  follow s from  Lem m a 1 that there exists a unique num ber 
satisfying the condition (5 ). O bviously, if the opposite inequalities hold, then such a 
num ber does not exist.

We turn to the proof of the uniqueness of the solution to the inverse problem  (3 )- (5 ). 
Let there be two pairs of solutions {u 1,p 1} and {u 2,p  2 } such that 1 <  pк <  2 and

dpkuk ( t ) +  A u k (t) =  f  (t) , 0 <  t <  T; (21)

Игл dpk 1 Uk(t) =  p , him dpk 2Щ (t) =  f ,  (22)

w here к =  1, 2.
Consider the follow ing functions

wк (t) =  (Uk (t) , Vj) к =  1 ,2 ; j  =  1 ,2 , •••

Then Equations (21) and (22) im ply

dpkwk (t) +  Ajwk (t) =  f j ^ , Km dpk—1wk(t) =  p j , limJ  dpk—2 w k (t) =  f j .

Solutions to these Cauchy-type problems can be represented as (10). Then, (5 ) implies 
w1 (t0) =  w\(t0) =  d0, or, since f 1 =  0,

p 1101 Ep1,p1 (0 ) +  f 1101 Ep1,p1 —1(0 ) =  p 1 T0 Ep2,p2 (0 ) +  f 1 T0 Ep2,p2 — 1(0) =  d0.

A s w e have seen above (see Lem m a 1), it follow s from  these equations that 1 =  2. 

H owever, in this case, (t) =  w^(t)  for all t and j.  Hence

(u ^ t )  — U2 (t) , Vj) =  0

for all j.  Finally, from  the com pleteness o f the set o f eigenfunctions { v j }  in H, w e have 
U1 (t) =  U2(t). H ence, Theorem  2 is com pletely proved. □
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5. Exam ples o f O perator A

C onsideration of the abstract operator A  allow s us to explore m any different m odels. 
In this section, w e provide several exam ples of operator A , to w hich our results apply.

First, w e obtain  an  interesting exam ple if w e take a square m atrix  w ith  constant 
elem ents as the operator A: A  =  { a i/j }  and H  =  R N . In this case, the problem  (3 ) and (4 ) 
becom es the Cauchy problem for a linear system of differential equations of fractional order.

As an example of operator A , one can also take any of the physical examples considered 
in Section 6 of the article by M. Ruzhansky et al. [33]. In particular, the authors considered 
differential m odels w ith  involution, fractional Laplacian, and fractional S turm -L iou ville  
operators, anharm onic and harm onic oscillators, Landau H am iltonians, and m any other 
operators w ith a discrete spectrum . If the first eigenvalue Л1 of the operator A  is not zero, 
then the operator A -  Л1I  w ith  zero first eigenvalue should be considered as required in 
Theorem  2. Here, I  is the identity operator.

The solution to the problem  in  this w ork, as w ell as in our w ork, is understood in a 
generalized sense (see D efinition 1).

Now, let us show  how  sim ilar results as in this paper can be obtained for classical 
solutions (see also [15]).

Let A (x , D ) =  E  aa (x )D a be an arbitrary non-negative formally self-adjoint elliptic
\a\<m

differential operator of the order m =  2l defined in N -dim ensional bounded dom ain П 
w ith boundary ЭП.

A ssum e that 1 <  <  2 is an unknow n param eter that needs to be determ ined and
that the initial-boundary value problem  has the form

dpu (x , t) +  A (x , D )u (x , t) =  f  (x , t), x e  П , o <  t <  T, (23)

B ju (x , t) =  E  baj ( x ) D av (x )  =  o, j  =  1 ,2 ,..., l; x e  ЭП, o <  t <  T, (24)
\a\<mj

lino dp- 1 u (x , t) =  f ( x ) ,  lino dpt - 2u (x , t) =  ф(x ), x e  П  (25)

w here f  (x , t), f ( x )  and ф(x)  are given sufficiently sm ooth functions from L2(П ).
In the paper by S. Agm on [35], it is considered the spectral problem

j  A (x , D )v (x )  =  Л v(x), x e  П;

^ B jv(x) =  o, o <  mj <  m -  1, j  =  1, 2, . . . , l; x e  ЭП. ( 6)

The author found sufficient conditions on the boundary of dom ain П and operators 
A (x , D ) and Bj that guarantee the com pactness of the corresponding inverse operator, i.e., 
the existence of a com plete system  { vk( x ) }  of orthonormal eigenfunctions and a countable 
set {Л к}  of non-negative eigenvalues of the spectral problem  (26).

As the next exam ple, instead of A  we take operator A (x , D ) w ith boundary conditions 
Bj and set H  =  L2(Q ). In this case, an additional condition (5 ) for determ ining p w ill have 
the form:

J  u (x , to )v 1 (x )d x  =  do, to >  To, (27)

n

w here To is defined as above. Let gk stand for the Fourier coefficient of a function
g (x )  e  L2( n )  by the system  of eigenfunctions { vk( x ) } .

D efin ition  3. A  pair {u (x , t), p }  o f  the fu nction  u (x , t) and the param eter p with the properties

1. p e  (1 ,2 ) , _
2. dpt u (x , t), A (x , D )u (x , t) e  C ( n  x  (o, to)),

3. dp- 1 u (x , t), dp- 2u (x , t) e  С (П  x [o, to))
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an d satisfying all the conditions o f  problem s (23)- (25), (27) in the classical sense is called th e  
c la s s ic a l  s o lu t io n  o f  inverse problem  (23)- (25), (27). 

Theorem  3. Let f ,  f ,  f  be sufficiently sm ooth fu nctions. Further, let conditions (7) be satisfied  
an d t0 >  T0 be any fix ed  number. Then fo r  the inverse problem  (23)- (25), (27) to have a unique 
solution {u (x , t), p }  it is necessary and sufficient that condition

m in { f 1, f 110 +  f 1} <  d0 <  m ax{ f 1, f 10 +  f 1}

be satisfied.

The theorem  is proved using sim ilar argum ents presented above (see, also [15]). In 
order to reduce the study of uniform  convergence to the study of convergence in L2-norm, 
w e apply Lem m a 22.1 of the m onograph [36] (p. 453).

R em ark 2 . L e tA 0(x , D ) =  £  aa (x )D a be an elliptic operator and B0,j =  £  ba,j (x )D a
0<jaj<m 0<jaj<m|

be boundary operators. Then the fir s t  eigenfunction o f  the spectral problem  (26) is a constant and  
Xi =  0 .

6. C onclu sions

The problem  of determ ining the fractional order of a m odel has been  considered by 
m any authors because of its im portance to the application. The authors m ainly considered 
subdiffusion equations in w hich the G erasim ov-C aputo fractional derivative is involved.

As far as w e know, the inverse problem  of determ ining the order o f the fractional 
derivative for the fractional w ave equation w as considered only in  [1] . As a fractional 
derivative, the authors took the G erasim ov-C aputo derivative.

In the present w ork, by  studying the abstract w ave equation w ith  the R iem an n - 
Liouville derivative, the open problem formulated in the review article [1] for the considered 
inverse problem s is positively  solved. Since the problem  is solved on the basis of the 
classical Fourier method, the explicit form of the elliptic part is not fundamental. Therefore, 
an arbitrary non-negative self-ad joint operator A  in a separable H ilbert space H  is taken 
as the elliptic part. If H  =  L2(Q ), w here П  is an N -dim ensional bounded dom ain w ith  a 
sm ooth boundary, then as the operator A  w e can take the Laplacian w ith  the N eum ann 
condition. In this case, the first eigenvalue is equal to zero, as required in Theorem  2 .
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