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Abstract—We establish a mean value property for the functions which is satisfied to Laplace–
Bessel equation. Also results involving generalized divergence theorem and the second Green’s
identities relating the bulk with the boundary of a region on which differential Bessel operators act
we obtained.

DOI: 10.1134/S1995080222090232

Keywords and phrases: Bessel operator, B-harmonic function, Laplace–Bessel operator.

1. INTRODUCTION

As is well known, the spherical mean operator has many important properties with application to
classical harmonic analysis and PDEs (see [1]). B-harmonic analysis provides a mathematical theory to
deal with problems connection with the singular Bessel differential operator of the form [2]

Bγj =
1

x
γj
j

∂

∂xj
x
γj
j

∂

∂xj
, j = 1, ..., n. (1)

We will use notation�γ = (�γ)x =
∑n

k=1(Bγk)xk
. For�γ the term Laplace–Bessel operator is used.

A function u = u(x) = u(x1, ..., xn) defined in a domain Ω ∈ R
n for xi ≥ 0, i = 1, ..., n is said to be B-

harmonic if u ∈ C2(Ω) such that ∂u
∂xi

|xi=0 = 0, i = 1, ..., n and satisfies the Laplace–Bessel equation of
the form Δγu = 0 at every point of the domain Ω.

Laplace–Bessel equation Δγu = 0 is a singular elliptic equation containing the Bessel operator.
These equations are mathematical models of axial and multiaxial symmetry of the most diverse processes
and phenomena in the nature. Difficulties in the study of such equations are connected with singularities
in the coefficients. Such equations were started to be analyzed systematically by Weinstein in [3,
4]. I.A. Kipriyanov, together with V.V. Katrakhov and V.I. Kononenko (see [5, 6]) studied boundary
value problems for elliptic equations, with singularities of the type of essential singularities of analytic
functions at isolated boundary points. Trace theory for boundary value problems for elliptic equations
with power singularities was presented in [7]. Another problems with singular differential equations with
a Bessel operator were considered in [8, 9].

The first who apply the Fourier–Bessel (Hankel) transform to equations with the Bessel operator Bγ

was Ya. I. Zhitomirsky [10]. This served as an impetus for the development of B-harmonic analysis and
its application to the solution of a wide variety of problems associated with the Bessel operator. In this
article we continue to develop B-harmonic analysis and would like to present mean-value theorem for
B-harmonic functions. In order to do it we will need the second Green’s formula for the Laplace–Bessel
operator.
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2. DEFINITIONS AND B-HARMONIC FUNCTIONS

The theory of B-harmonic functions is should include generalizations of classical tools for solving
problems with the Laplace–Bessel operator. We need following definitions. First of all since divergent
form (1) of Bessel operator contains power function x

γj
j we should restrict our consideration to not

negative (or positive) xj for all j = 1, ..., n. Next, all integrals by n-dimensional regions in this theory
should be taken by weight measure.

Suppose that Rn is the n-dimensional Euclidean space,

R
n
+ = {x = (x1, . . . , xn) ∈ R

n, x1>0, . . . , xn>0},
R
n
+ = {x = (x1, . . . , xn) ∈ R

n, x1≥0, . . . , xn≥0},

γ = (γ1, . . . , γn) is a multi-index consisting of positive fixed real numbers γi, i = 1, . . . , n, and |γ| =
γ1 + . . .+ γn.

Let Ω be finite or infinite open set in R
n symmetric with respect to each hyperplane xi=0, i = 1, ..., n,

Ω+ = Ω∩R
n
+. We deal with the class Cm(Ω+) consisting of m times differentiable onΩ+ functions such

that all derivatives of these functions with respect to xi for any i = 1, ..., n are continuous up to xi=0.

Class Cm
ev(Ω

+) consists of all functions from Cm(Ω+) such that ∂2k+1f

∂x2k+1
i

|xi=0 = 0 for all non-negative

integer k ≤ m−1
2 (see [10] and [2], p. 21). In the following, we will denote Cm

ev(R
n
+) by Cm

ev.

Part of the sphere of radius r with center at the origin belonging to R
n
+ we will denote S+

r (n):

S+
r (n) = {x ∈ R

n
+ : |x| = r} ∪ {x ∈ R

n
+ : xi = 0, |x| ≤ r, i = 1, . . . , n}.

For the weighed integral by the S+
1 (n) we have formula ([11], formula 107, p. 49)

|S+
1 (n)|γ =

∫

S+
1 (n)

xγdS =

n∏

i=1
Γ
(
γi+1
2

)

2n−1Γ
(
n+|γ|

2

) , xγ =

n∏

i=1

xγii . (2)

The multidimensional generalized translation is defined by the equality

(γTy
xf)(x) =

γTy
xf(x) = (γ1T y1

x1
...γnT yn

xn
f)(x), (3)

where each of one-dimensional generalized translation γiT yi
xi acts for i=1, ..., n according to [12]

(γiT yi
xi
f)(x)=

Γ
(
γi+1
2

)

√
πΓ

(γi
2

)

π∫

0

f(x1, ..., xi−1,
√

x2i + τ2i − 2xiyi cosϕi, xi+1, ..., xn) sin
γi−1 ϕi dϕi.

Next we will use notation C(γ) = π−n
2

n∏

i=1

Γ
(

γi+1

2

)

Γ( γi
2 )

.

We will use notation �γ = (�γ)x =
n∑

k=1

(Bγk)xk
, where Bγj =

1

x
γj
j

∂
∂xj

x
γj
j

∂
∂xj

= ∂2

∂x2
j
+

γj
xj

∂
∂xj

, j =

1, ..., n is the Bessel operator For �γ the term Laplace–Bessel operator is used. A function u =

u(x) = u(x1, ..., xn) defined in a domain Ω+ ⊂ R
n
+ is said to be B-harmonic if u ∈ C2

ev(Ω
+) and satisfies

the Laplace–Bessel equation Δγu = 0 at every point of the domain Ω+.

Let x ∈ R
n
+, n > 1 and

E(x) =

⎧
⎨

⎩

1
|S+

1 (n)|γ
ln |x|, n+ |γ| = 2;

|x|2−n−|γ|

(2−n−|γ|)|S+
1 (n)|γ

, n+ |γ| > 2,

where |S+
1 (n)|γ is (2), then for |x| > ε ∀ε > 0 we have �γE(x) = 0, therefore E(x) is B-harmonic in

any domain not containing a neighborhood of the origin.
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3. GENERALIZED DIVERGENCE THEOREM AND THE SECOND GREEN’S FORMULA
FOR THE LAPLACE–BESSEL OPERATOR

The aim of this section is to develop some elements of a field theory for the case when the Laplace-
Bessel operator is used instead of the Laplace operator. Here we prove generalized divergence theorem
and the second Green’s identities relating the bulk with the boundary of a region on which differential
Bessel operators act.

Let

∇′
γ =

(
1

xγ11

∂

∂x1
, ...,

1

xγnn

∂

∂xn

)

is the first weighted operator nabla,

∇′′
γ =

(

xγ11
∂

∂x1
, ..., xγnn

∂

∂xn

)

is the second weighted operator nabla, then (∇′
γ · ∇′′

γ) = Δγ , where Δγ =
n∑

j=1
Bγj is Laplace–Bessel

operator, Bγj =
1

x
γj
j

∂
∂xj

x
γj
j

∂
∂xj

= ∂2

∂x2
j
+

γj
xj

∂
∂xj

, j = 1, ..., n is a Bessel operator.

If �F = �F (x) = (F1(x), ..., Fn(x)) is a vector field, then

div′γ �F = (∇′
γ · �F ) =

1

xγ11

∂F1

∂x1
+ ...+

1

xγni

∂Fn

∂xn

is the first weighted divergence,

div′′γ �F = (∇′′
γ · �F ) = xγ11

∂F1

∂x1
+ ...+ xγnn

∂Fn

∂xn

is the second weighted divergence.
In this case the generalized divergence theorem states that the weighted surface integral of a vector

field over a closed surface is equal to the weighted volume integral of the first weighted divergence over
the region inside the surface.

Theorem 1. Let G+ is a domain in R
n
+ such that each line perpendicular to the plane xi = 0,

i = 1, ..., n, either does not intersect G+ either has one common segment with G+ (possibly
degenerating into a point) of the form

αi(x
′) ≤ xi ≤ βi(x

′), x′=(x1, ..., xi−1, xi+1, ..., xn), i = 1, ..., n,

where αi, βi are smooth for i = 1, ..., n. If �g=(g1(x), ..., gn(x)) is a vector field continuously
differentiable in G+ and �F=(F1(x), ..., Fn(x)), F1(x)=xγ11 g1(x), ..., Fn(x)=xγnn gn(x), then

∫

G+

(∇′
γ · �F )xγdx =

∫

S+

(�g · �ν)xγ dS, (4)

where �ν = �e1 cos η1 + ...+�en cos ηn is an outer surface normal vector for S+, ηi is an angle between
vector �ν and an axe xj , �e1, ..., �en is an orthonormal basis in R

n.

Proof. Let i is the fixed natural number between 1 and n inclusively. The part of surface S+ defined by
equation xi = βi(x

′) we denote by S+
u and part of surface S+ defined by equation xi = αi(x

′) we denote
by S+

d , then

(�ν, ei) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1√
1+

(
∂αi
∂x1

)2
+...+(

∂αi
∂xi−1

)2+
(

∂αi
∂xi+1

)2
+...+

(
∂αi
∂xn

)2
, x ∈ S+

d ,

1√
1+

(
∂βi
∂x1

)2
+...+

(
∂βi

∂xi−1

)2
+

(
∂βi

∂xi+1

)2
+...+

(
∂βi
∂xn

)2
, x ∈ S+

u .
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We have
∫

G+

(∇′
γ · �F )xγdx =

n∑

i=1

∫

G+

1

xγii

∂Fi

∂xi
xγdx.

Let consider

∫

G+

1

xγii

∂Fi

∂xi
xγdx =

∫

Q

xγ11 ...x
γi−1

i−1 x
γi+1

i+1 ...x
γn
n dx1...dxi−1dxi+1...dxn

βi(x
′)∫

αi(x′)

∂Fi

∂xi
dxi,

where Q is a projection of G+ to xi = 0. Integrating by xi we obtain
∫

G+

1

xγii

∂Fi

∂xi
xγdx =

∫

Q

Fi(x)|xi=βi(x′)
xi=αi(x′)x

γ1
1 ...x

γi−1

i−1 x
γi+1

i+1 ...x
γn
n dx1...dxi−1dxi+1...dxn.

Let (x′)γ
′
= xγ11 ...x

γi−1

i−1 x
γi+1

i+1 ...x
γn
n , dx′ = dx1...dxi−1dxi+1...dxn, then

∫

G+

1

xγii

∂Fi

∂xi
xγdx =

∫

Q

Fi(x1, ..., xi−1, βi(x
′), xi+1, ..., xn)(x

′)γ
′
dx′

−
∫

Q

Fi(x1, ..., xi−1, αi(x
′), xi+1, ..., xn)(x

′)γ
′
dx′ =

∫

Q

Fi(x1, ..., xi−1, βi(x
′), xi+1, ..., xn)(�ν, ei)

×

√

1 +

(
∂βi
∂x1

)2

+ ...+

(
∂βi

∂xi−1

)2

+

(
∂βi

∂xi+1

)2

+ ...+

(
∂βi
∂xn

)2

(x′)γ
′
dx′

+

∫

Q

Fi(x1, ..., xi−1, αi(x
′), xi+1, ..., xn)(�ν, ei)

×

√

1 +

(
∂αi

∂x1

)2

+ ...+

(
∂αi

∂xi−1

)2

+

(
∂αi

∂xi+1

)2

+ ...+

(
∂αi

∂xn

)2

(x′)γ
′
dx′

=

∫

S+
u

Fi(x)(�ν, ei)(x
′)γ

′
dSu +

∫

S+
d

Fi(x)(�ν, ei)(x
′)γ

′
dSd

=

∫

S+
u

gi(x)(�ν, ei)x
γdSu +

∫

S+
d

gi(x)(�ν, ei)x
γdSd =

∫

S+

gi(x) cos ηi x
γdS.

Then
∫

G+

(∇′
γ · �F )xγdx =

n∑

i=1

∫

S+

gi(x) cos ηi x
γdS =

∫

S+

(�g · �ν)xγ dS,

which completes the proof.

Remark 1. Suppose that the domain G+ ∈ R
n
+ is a union of domains G+

1 , ..., G
+
m without common

interior points. Let each domain G+
j in R

n
+ is such that each line perpendicular to the plane xi = 0,

i = 1, ..., n, either does not intersect G+
j either has only one common with G+

j segment (possibly
degenerating into a point) of the form

αj
i (x

′) ≤ xi ≤ βj
i (x

′), x′=(x1, ..., xi−1, xi+1, ..., xn), i = 1, ..., n,
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where αi, βi are smooth for i=1, ..., n and �F=(F1(x), ..., Fn(x)), F1(x)=xγ11 g1(x), ..., Fn(x)=xγnn gn(x),
�g = (g1(x), ..., gn(x)) is a vector field continuously differentiable in G+, then the following formula holds

∫

G+

(∇′
γ · �F )xγdx =

∫

S+

(�g · �ν)xγ dS, (5)

where S+ ∈ R
n
+ piecewise smooth surface boundary of G+, �ν is a normal vector of the surface S+.

Theorem 2. Let G+ satisfies to the conditions of Remark 1. If ϕ,ψ ∈ C2
ev(G

+), then the second
Green’s formula for the Laplace–Bessel operator of the form

∫

G+

(ψΔγϕ− ϕΔγψ)x
γdx =

∫

S+

(

ψ
∂ϕ

∂�ν
− ϕ

∂ψ

∂�ν

)

xγ dS (6)

is valid.
Proof. Let

�F = ψ∇′′
γϕ− ϕ∇′′

γψ =

(

ψ · xγ11
∂ϕ

∂x1
− ϕ · xγ11

∂ψ

∂x1
, ..., ψ · xγnn

∂ϕ

∂xn
− ϕ · xγnn

∂ψ

∂xn

)

=

(

xγ11

(

ψ
∂ϕ

∂x1
− ϕ

∂ψ

∂x1

)

, ..., xγnn

(

ψ
∂ϕ

∂xn
− ϕ

∂ψ

∂xn

))

,

then �F satisfies conditions of Remark 1. Setting

�g =

(

ψ
∂ϕ

∂x1
− ϕ

∂ψ

∂x1
, ..., ψ

∂ϕ

∂xn
− ϕ

∂ψ

∂xn

)

we obtain that �g is continuously differentiable vector field defined in G+ and

(∇′
γ · �F ) = (∇′

γ · (ψ∇′′
γϕ− ϕ∇′′

γψ))

=
n∑

i=1

(
1

xγii

∂

∂xi

(

ψ · xγii
∂ϕ

∂xi

)

− 1

xγii

∂

∂xi

(

ϕ · xγii
∂ψ

∂xi

))

=

n∑

i=1

(
1

xγii

∂ψ

∂xi
· xγii

∂ϕ

∂xi
+ ψ · 1

xγii

∂

∂xi
xγii

∂ϕ

∂xi
− 1

xγii

∂ϕ

∂xi
· xγii

∂ψ

∂xi
− ϕ · 1

xγii

∂

∂xi
xγii

∂ψ

∂xi

)

=

n∑

i=1

(ψBγiϕ− ϕBγiψ) = ψΔγϕ− ϕΔγψ,

(�g · �ν) =
(

ψ
∂ϕ

∂x1
cos η1 + ...+ ψ

∂ϕ

∂xn
cos ηn

)

−
(

ϕ
∂ψ

∂x1
cos η1 + ...+ ϕ

∂ψ

∂xn
cos ηn

)

= ψ
∂ϕ

∂�ν
− ϕ

∂ψ

∂�ν
.

Now we can easily get (6) by applying (5).

4. MEAN-VALUE THEOREM FOR B-HARMONIC FUNCTIONS

In this section we obtain mean-value theorem for B-harmonic functions. This theorem states that
the value of a B-harmonic function at a point is equal to its weighted spherical mean over part of
a sphere centered at that point. Weighted spherical mean in this case constructed with the help of
multidimensional generalized translation.

Weighted spherical mean (see [13–17]) of function u(x), x ∈ R
n
+ for n ≥ 2 is

(Mγ
t u)(x) = (Mγ

t )x[u(x)] =
1

|S+
1 (n)|γ

∫

S+
1 (n)

γTtθ
x u(x)θ

γdS, (7)
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where θγ=
n∏

i=1
θγii , S+

1 (n)={θ:|θ|=1, θ∈Rn
+} is a part of a sphere in R

n
+, |S+

1 (n)|γ is given by (2) and

γTtθ
x is the multidimensional generalized translation (3). For n = 1 let Mγ

t [f(x)] =
γT t

xf(x).
The weighted spherical mean Mγ

t [f(x)] is the transmutation operator intertwining (Δγ)x and
(Bn+|γ|−1)t for the f ∈ C2

ev (see [11]):

(Bn+|γ|−1)tM
γ
t [f(x)] = Mγ

t [(Δγ)xf(x)].

Theorem 3. Let n+ |γ| > 2. If u is B-harmonic in a domain Ω and if the part of a sphere S+
r0,x(n)

is contained in Ω, then u(x) = (Mγ
r u)(x) for 0 < r ≤ r0.

Proof. Since operator γiT yi
xi of function u ∈ C2

ev is a transmutation operator with the following
intertwining property

γiT yi
xi
(Bγi)xiu(x) = (Bγi)yi

γiT yi
xi
u(x),

then if u is B-harmonic in a domain Ω then γTy
xu is harmonic in Ω1. That is, B-harmonicity is preserved

under generalized translations. Therefore, we can consider only the case when x = 0. Let E is a
subdomain of Ω satisfies to the conditions of Remark 1 such that ∂E consists of smooth pieces and
∂E ⊂ Ω. Applying formula (6) we obtain

∫

∂E

∂u

∂�ν
xγdS =

∫

E

Δγu(x)x
γdx = 0, (8)

where ∂
∂�ν is differentiation in the direction of the outward directed normal to ∂E and dS is the element of

surface area on ∂E.
Let x ∈ R

+
n and v(x) = |x|2−n−|γ|, then for |x| > ε ∀ε > 0 we have �γv(x) = 0, so v is B-harmonic

in any domain not containing a neighborhood of the origin.
Suppose S+

ε,0(n) and S+
r,0(n) be the surfaces of the parts of spheres centered in origin of radii ε and

r correspondingly and Ω∗ is the shell domain between S+
ε,0(n) and S+

r,0(n). Applying formula (6) to the
functions u and v we obtain

0 =

∫

Ω∗

(uΔγv − vΔγu)x
γdx =

∫

∂Ω∗

(

u
∂v

∂�ν
− v

∂u

∂�ν

)

xγ dS. (9)

On the coordinate planes xi = 0, i = 1, ..., n the the surface integrals in the right side of (9) are equal to
zero. In the parts of a spheres S+

ε,0(n) and S+
r,0(n) the function v(x) is constant so by (8) we get

∫

∂Ω∗

v
∂u

∂�ν
xγ dS = 0.

Therefore we obtain from (9)

∫

∂Ω∗

u
∂v

∂�ν
xγ dS = (2− n− |γ|)

⎛

⎜
⎜
⎝

∫

S+
r,0(n)

u(x)|x|1−n−|γ| xγ dS −
∫

S+
ε,0(n)

u(x)|x|1−n−|γ| xγ dS

⎞

⎟
⎟
⎠ = 0.

Consequently

r1−n−|γ|
∫

S+
r,0(n)

u(x)xγ dS = ε1−n−|γ|
∫

S+
ε,0(n)

u(x)xγ dS

and

(Mγ
r u)(0) =

1

|S+
1 (n)|γ

∫

S+
1 (n)

γu(rθ)θγdS = {rθ = x} =
1

|S+
1 (n)|γrn+|γ|−1

∫

S+
r,0(n)

u(x)xγ dS
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=
1

|S+
1 (n)|γεn+|γ|−1

∫

S+
ε,0(n)

u(x)xγ dS → u(0), ε → 0.

This proves Theorem 3.
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